home | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (SparkTrain.java)

This example Java source code file (SparkTrain.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

computationgraph, computationgraphconfiguration, frequency, illegalargumentexception, ioexception, javardd, number, option, override, sparkcomputationgraph, sparkcontext, sparktrain, string, trainingmaster

The SparkTrain.java Java example source code

package org.deeplearning4j;

import org.apache.spark.SparkContext;
import org.apache.spark.api.java.JavaRDD;
import org.deeplearning4j.cli.subcommands.BaseSubCommand;
import org.deeplearning4j.nn.conf.ComputationGraphConfiguration;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.deeplearning4j.spark.api.TrainingMaster;
import org.deeplearning4j.spark.impl.graph.SparkComputationGraph;
import org.deeplearning4j.spark.impl.paramavg.ParameterAveragingTrainingMaster;
import org.deeplearning4j.util.ModelSerializer;
import org.kohsuke.args4j.Option;
import org.nd4j.linalg.dataset.DataSet;

import java.io.IOException;

/**
 * Spark train command on spark
 *
 * @author Adam Gibson
 */
public class SparkTrain extends BaseSubCommand {
    @Option(name = "--model", usage = "model file (json,yaml,..) to resume training",aliases = "-mo", required = true)
    private String modelInput;
    @Option(name = "--conf", usage = "computation graph configuration",aliases = "-c", required = true)
    private String confInput;
    @Option(name = "--masterUri", usage = "spark master uri",aliases = "-ma", required = true)
    private String masterUri;
    @Option(name = "--input", usage = "input data",aliases = "-i", required = true)
    private String masterInputUri;
    @Option(name = "--type", usage = "input data type",aliases = "-t", required = true)
    private String inputType;
    @Option(name = "--examplesPerFit", usage = "examples per fit",aliases = "-b", required = true)
    private int examplesPerFit;
    @Option(name = "--totalExamples", usage = "total number of examples",aliases = "-n", required = true)
    private int totalExamples;
    @Option(name = "--numWorkers", usage = "number of workers",aliases = {"-p", "--numWorkers"}, required = true)
    private int numWorkers;
    @Option(name = "--output", usage = "output path",aliases = "-o", required = true)
    private String outputPath;
    @Option(name = "--saveUpdater", usage = "Also save the updater state when training", aliases = "-u")
    private boolean saveUpdater = true;
    @Option(name = "--averagingFrequency", usage = "Frequency with which to do parameter averaging", aliases = "-af")
    private int averagingFrequency = 1;
    @Option(name = "--workerPrefetchNumBatches", usage = "Number of batches to prefetch (for workers)", aliases = "-pre")
    private int workerPrefetchNumBatches = 0;

    private SparkContext sc;

    /**
     * @param args arguments for command
     */
    public SparkTrain(String[] args) {
        super(args);
    }

    private SparkContext getContext() {
        if(sc != null)
            return sc;
        return null;
    }

    private JavaRDD<DataSet> getDataSet() {
        SparkContext sc = getContext();
        if (inputType.equals("binary")) {

        }
        else if(inputType.equals("text")) {

        }
        else
            throw new IllegalArgumentException("Input type must be either binary or text.");
        return null;
    }

    private ComputationGraph getComputationGraph() throws IOException {
        if(confInput != null &&  modelInput != null)
            throw new IllegalArgumentException("Conf and model input both can't be defined");
        ComputationGraph graph = null;

        if(confInput != null) {
            ComputationGraphConfiguration conf = ComputationGraphConfiguration.fromJson(confInput);
            graph = new ComputationGraph(conf);
            graph.init();

        }
        else if(modelInput != null) {
            graph = ModelSerializer.restoreComputationGraph(modelInput);

        }

        return graph;
    }

    private void saveGraph(ComputationGraph graph) {

    }




    /**
     * Execute a command
     */
    @Override
    public void execute() {
        ComputationGraph graph;

        try {
            graph = getComputationGraph();
            TrainingMaster tm = new ParameterAveragingTrainingMaster.Builder(numWorkers)
                    .batchSizePerWorker(examplesPerFit / numWorkers)
                    .saveUpdater(saveUpdater)
                    .averagingFrequency(averagingFrequency)
                    .workerPrefetchNumBatches(workerPrefetchNumBatches)
                    .build();

            SparkComputationGraph multiLayer = new SparkComputationGraph(getContext(), graph, tm);
            JavaRDD<DataSet> dataSet = getDataSet();
            //int examplesPerFit, int totalExamples, int numWorkers



            ComputationGraph newGraph = multiLayer.fit(dataSet);
            saveGraph(newGraph);
        } catch (IOException e) {
            e.printStackTrace();
        }

    }
}

Other Java examples (source code examples)

Here is a short list of links related to this Java SparkTrain.java source code file:



my book on functional programming

 

new blog posts

 

Copyright 1998-2019 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.