home | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (FeedForwardToCnnPreProcessor.java)

This example Java source code file (FeedForwardToCnnPreProcessor.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

clonenotsupportedexception, data, feedforwardtocnnpreprocessor, illegalargumentexception, indarray, inputpreprocessor, invalid, jsoncreator, jsonproperty, override, runtimeexception, util

The FeedForwardToCnnPreProcessor.java Java example source code

/*
 *
 *  * Copyright 2015 Skymind,Inc.
 *  *
 *  *    Licensed under the Apache License, Version 2.0 (the "License");
 *  *    you may not use this file except in compliance with the License.
 *  *    You may obtain a copy of the License at
 *  *
 *  *        http://www.apache.org/licenses/LICENSE-2.0
 *  *
 *  *    Unless required by applicable law or agreed to in writing, software
 *  *    distributed under the License is distributed on an "AS IS" BASIS,
 *  *    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  *    See the License for the specific language governing permissions and
 *  *    limitations under the License.
 *
 */

package org.deeplearning4j.nn.conf.preprocessor;

import com.fasterxml.jackson.annotation.JsonCreator;
import com.fasterxml.jackson.annotation.JsonProperty;
import lombok.*;
import org.deeplearning4j.nn.conf.InputPreProcessor;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.shape.Shape;
import org.nd4j.linalg.util.ArrayUtil;

import java.util.Arrays;

/**A preprocessor to allow CNN and standard feed-forward network layers to be used together.<br>
 * For example, DenseLayer -> CNN<br>
 * This does two things:<br>
 * (a) Reshapes activations out of FeedFoward layer (which is 2D or 3D with shape
 * [numExamples, inputHeight*inputWidth*numChannels]) into 4d activations (with shape
 * [numExamples, numChannels, inputHeight, inputWidth]) suitable to feed into CNN layers.<br>
 * (b) Reshapes 4d epsilons (weights*deltas) from CNN layer, with shape
 * [numExamples, numChannels, inputHeight, inputWidth]) into 2d epsilons (with shape
 * [numExamples, inputHeight*inputWidth*numChannels]) for use in feed forward layer
 * Note: numChannels is equivalent to depth or featureMaps referenced in different literature
 * @author Adam Gibson
 * @see CnnToFeedForwardPreProcessor for opposite case (i.e., CNN -> DenseLayer etc)

 */
@Data
public class FeedForwardToCnnPreProcessor implements InputPreProcessor {
    private int inputHeight;
    private int inputWidth;
    private int numChannels;

    @Getter(AccessLevel.NONE)
    @Setter(AccessLevel.NONE)
    private int[] shape;

    /**
     * Reshape to a channels x rows x columns tensor
     * @param inputHeight the columns
     * @param inputWidth the rows
     * @param numChannels the channels
     */
    @JsonCreator
    public FeedForwardToCnnPreProcessor(@JsonProperty("inputHeight") int inputHeight,
                                        @JsonProperty("inputWidth") int inputWidth,
                                        @JsonProperty("numChannels") int numChannels) {
        this.inputHeight = inputHeight;
        this.inputWidth = inputWidth;
        this.numChannels = numChannels;
    }

    public FeedForwardToCnnPreProcessor(int inputWidth, int inputHeight) {
        this.inputHeight = inputHeight;
        this.inputWidth = inputWidth;
        this.numChannels = 1;
    }

    @Override
    public INDArray preProcess(INDArray input, int miniBatchSize) {
        if(input.ordering() != 'c' || !Shape.strideDescendingCAscendingF(input)) input = input.dup('c');

        this.shape = input.shape();
        if(input.shape().length == 4)
            return input;
        if(input.columns() != inputWidth * inputHeight * numChannels)
            throw new IllegalArgumentException("Invalid input: expect output columns must be equal to rows " + inputHeight
                    + " x columns " + inputWidth + " x channels " + numChannels + " but was instead " + Arrays.toString(input.shape()));

        return input.reshape('c',input.size(0),numChannels,inputHeight,inputWidth);
    }

    @Override
    // return 4 dimensions
    public INDArray backprop(INDArray epsilons, int miniBatchSize){
        if(epsilons.ordering() != 'c' || !Shape.strideDescendingCAscendingF(epsilons)) epsilons = epsilons.dup('c');

        if(shape == null || ArrayUtil.prod(shape) != epsilons.length()) {
            if(epsilons.rank() == 2) return epsilons;   //should never happen

            return epsilons.reshape('c',epsilons.size(0), numChannels, inputHeight, inputWidth);
        }

        return epsilons.reshape('c',shape);
    }



    @Override
    public FeedForwardToCnnPreProcessor clone() {
        try {
            FeedForwardToCnnPreProcessor clone = (FeedForwardToCnnPreProcessor) super.clone();
            if(clone.shape != null) clone.shape = clone.shape.clone();
            return clone;
        } catch (CloneNotSupportedException e) {
            throw new RuntimeException(e);
        }
    }


}

Other Java examples (source code examples)

Here is a short list of links related to this Java FeedForwardToCnnPreProcessor.java source code file:



my book on functional programming

 

new blog posts

 

Copyright 1998-2019 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.