home | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (WordVectorsImpl.java)

This example Java source code file (WordVectorsImpl.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

basicmodelutils, collection, default_unk, event, getter, indarray, list, modelutils, override, string, task, util, vocabcache, weightlookuptable, wordvectorsimpl

The WordVectorsImpl.java Java example source code

/*
 *
 *  * Copyright 2015 Skymind,Inc.
 *  *
 *  *    Licensed under the Apache License, Version 2.0 (the "License");
 *  *    you may not use this file except in compliance with the License.
 *  *    You may obtain a copy of the License at
 *  *
 *  *        http://www.apache.org/licenses/LICENSE-2.0
 *  *
 *  *    Unless required by applicable law or agreed to in writing, software
 *  *    distributed under the License is distributed on an "AS IS" BASIS,
 *  *    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  *    See the License for the specific language governing permissions and
 *  *    limitations under the License.
 *
 */

package org.deeplearning4j.models.embeddings.wordvectors;

import com.google.common.util.concurrent.AtomicDouble;
import lombok.Getter;
import lombok.NonNull;
import lombok.Setter;
import org.deeplearning4j.clustering.vptree.VPTree;
import org.deeplearning4j.models.embeddings.reader.ModelUtils;
import org.deeplearning4j.models.embeddings.reader.impl.BasicModelUtils;
import org.deeplearning4j.models.embeddings.reader.impl.FlatModelUtils;
import org.deeplearning4j.models.sequencevectors.sequence.SequenceElement;
import org.deeplearning4j.models.embeddings.WeightLookupTable;
import org.deeplearning4j.models.word2vec.wordstore.VocabCache;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.heartbeat.Heartbeat;
import org.nd4j.linalg.heartbeat.reports.Environment;
import org.nd4j.linalg.heartbeat.reports.Event;
import org.nd4j.linalg.heartbeat.reports.Task;
import org.nd4j.linalg.heartbeat.utils.EnvironmentUtils;

import java.util.*;

/**
 * Common word vector operations
 * @author Adam Gibson
 */
public class WordVectorsImpl<T extends SequenceElement> implements WordVectors {

    //number of times the word must occur in the vocab to appear in the calculations, otherwise treat as unknown
    @Getter protected int minWordFrequency = 5;
    @Getter protected WeightLookupTable<T> lookupTable;
    @Getter protected VocabCache<T> vocab;
    @Getter protected int layerSize = 100;
    @Getter protected transient ModelUtils<T> modelUtils = new BasicModelUtils<>();
    private boolean initDone = false;

    protected int numIterations = 1;
    protected int numEpochs = 1;
    protected double negative = 0;
    protected double sampling = 0;
    protected AtomicDouble learningRate = new AtomicDouble(0.025);
    protected double minLearningRate = 0.01;
    @Getter protected int window = 5;
    protected int batchSize;
    protected int learningRateDecayWords;
    protected boolean resetModel;
    protected boolean useAdeGrad;
    protected int workers = Runtime.getRuntime().availableProcessors();
    protected boolean trainSequenceVectors = false;
    protected boolean trainElementsVectors = true;
    protected long seed;
    protected boolean useUnknown = false;


    public final static String DEFAULT_UNK = "UNK";
    @Getter @Setter private String UNK = DEFAULT_UNK;

    @Getter protected List<String> stopWords = new ArrayList<>(); //StopWords.getStopWords();
    /**
     * Returns true if the model has this word in the vocab
     * @param word the word to test for
     * @return true if the model has the word in the vocab
     */
    public boolean hasWord(String word) {
        return vocab().indexOf(word) >= 0;
    }
    /**
     * Words nearest based on positive and negative words
     * @param positive the positive words
     * @param negative the negative words
     * @param top the top n words
     * @return the words nearest the mean of the words
     */
    public Collection<String> wordsNearestSum(Collection positive,Collection negative,int top) {
        return modelUtils.wordsNearestSum(positive, negative, top);
    }

    /**
     * Words nearest based on positive and negative words
     * * @param top the top n words
     * @return the words nearest the mean of the words
     */
    @Override
    public Collection<String> wordsNearestSum(INDArray words,int top) {
        return modelUtils.wordsNearestSum(words, top);
    }

    /**
     * Words nearest based on positive and negative words
     * * @param top the top n words
     * @return the words nearest the mean of the words
     */
    @Override
    public Collection<String> wordsNearest(INDArray words, int top) {
        return modelUtils.wordsNearest(words, top);
    }

    /**
     * Get the top n words most similar to the given word
     * @param word the word to compare
     * @param n the n to get
     * @return the top n words
     */
    public Collection<String> wordsNearestSum(String word,int n) {
        return modelUtils.wordsNearestSum(word, n);
    }


    /**
     * Accuracy based on questions which are a space separated list of strings
    * where the first word is the query word, the next 2 words are negative,
    * and the last word is the predicted word to be nearest
    * @param questions the questions to ask
    * @return the accuracy based on these questions
    */
    public Map<String,Double> accuracy(List questions) {
        return modelUtils.accuracy(questions);
    }

    @Override
    public int indexOf(String word) {
        return vocab().indexOf(word);
    }


    /**
     * Find all words with a similar characters
     * in the vocab
     * @param word the word to compare
     * @param accuracy the accuracy: 0 to 1
     * @return the list of words that are similar in the vocab
     */
    public List<String> similarWordsInVocabTo(String word,double accuracy) {
        return this.modelUtils.similarWordsInVocabTo(word, accuracy);
    }

    /**
     * Get the word vector for a given matrix
     * @param word the word to get the matrix for
     * @return the ndarray for this word
     */
    public double[] getWordVector(String word) {
        int i = vocab().indexOf(word);
        if(i < 0)
            return null;
        return lookupTable.vector(word).dup().data().asDouble();
    }

    /**
     * Returns the word vector divided by the norm2 of the array
     * @param word the word to get the matrix for
     * @return the looked up matrix
     */
    public INDArray getWordVectorMatrixNormalized(String word) {
        int i = vocab().indexOf(word);

        if(i < 0)
            return null;
        INDArray r =  lookupTable().vector(word);
        return r.div(Nd4j.getBlasWrapper().nrm2(r));
    }

    @Override
    public INDArray getWordVectorMatrix(String word) {
        return lookupTable().vector(word);
    }


    /**
     * Words nearest based on positive and negative words
     *
     * @param positive the positive words
     * @param negative the negative words
     * @param top the top n words
     * @return the words nearest the mean of the words
     */
    @Override
    public Collection<String> wordsNearest(Collection positive, Collection negative, int top) {
        return modelUtils.wordsNearest(positive, negative, top);
    }

    /**
     * Get the top n words most similar to the given word
     * @param word the word to compare
     * @param n the n to get
     * @return the top n words
     */
    public Collection<String> wordsNearest(String word,int n) {
       return modelUtils.wordsNearest(word, n);
    }


    /**
     * Returns similarity of two elements, provided by ModelUtils
     *
     * @param word the first word
     * @param word2 the second word
     * @return a normalized similarity (cosine similarity)
     */
    public double similarity(String word,String word2) {
        return modelUtils.similarity(word, word2);
    }

    @Override
    public VocabCache<T> vocab() {
        return vocab;
    }

    @Override
    public WeightLookupTable lookupTable() {
        return lookupTable;
    }

    @Override
    @SuppressWarnings("unchecked")
    public void setModelUtils(@NonNull ModelUtils modelUtils) {
        if (lookupTable != null) {
            modelUtils.init(lookupTable);
            this.modelUtils = modelUtils;
        }
    }

    public void setLookupTable(@NonNull WeightLookupTable lookupTable) {
        this.lookupTable = lookupTable;
        if (modelUtils == null) this.modelUtils = new BasicModelUtils<T>();

        this.modelUtils.init(lookupTable);
    }

    public void setVocab(VocabCache vocab) {
        this.vocab = vocab;
    }

    protected void update() {
        update(EnvironmentUtils.buildEnvironment(), Event.STANDALONE);
    }

    protected void update(Environment env, Event event) {
        if (!initDone) {
            initDone = true;

            Heartbeat heartbeat = Heartbeat.getInstance();
            Task task = new Task();
            task.setNumFeatures(layerSize);
            if (vocab != null) task.setNumSamples(vocab.numWords());
            task.setNetworkType(Task.NetworkType.DenseNetwork);
            task.setArchitectureType(Task.ArchitectureType.WORDVECTORS);

            heartbeat.reportEvent(event, env, task);
        }
    }
}

Other Java examples (source code examples)

Here is a short list of links related to this Java WordVectorsImpl.java source code file:



my book on functional programming

 

new blog posts

 

Copyright 1998-2019 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.