home | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (ExecuteWorkerFlatMap.java)

This example Java source code file (ExecuteWorkerFlatMap.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

asyncdatasetiterator, executeworkerflatmap, flatmapfunction, iterable, iteratordatasetiterator, multilayernetwork, override, pair, sparktrainingstats, statscalculationhelper, trainingresult, trainingworker, util, workerconfiguration

The ExecuteWorkerFlatMap.java Java example source code

package org.deeplearning4j.spark.api.worker;

import org.apache.spark.api.java.function.FlatMapFunction;
import org.deeplearning4j.berkeley.Pair;
import org.deeplearning4j.datasets.iterator.AsyncDataSetIterator;
import org.deeplearning4j.datasets.iterator.IteratorDataSetIterator;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.spark.api.TrainingResult;
import org.deeplearning4j.spark.api.TrainingWorker;
import org.deeplearning4j.spark.api.WorkerConfiguration;
import org.deeplearning4j.spark.api.stats.SparkTrainingStats;
import org.nd4j.linalg.dataset.DataSet;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;

import java.util.Collections;
import java.util.Iterator;

/**
 * A FlatMapFunction for executing training on DataSets.
 * Used in both SparkDl4jMultiLayer and SparkComputationGraph implementations
 *
 * @author Alex Black
 */
public class ExecuteWorkerFlatMap<R extends TrainingResult> implements FlatMapFunction, R> {

    private final TrainingWorker<R> worker;

    public ExecuteWorkerFlatMap(TrainingWorker<R> worker){
        this.worker = worker;
    }

    @Override
    public Iterable<R> call(Iterator dataSetIterator) throws Exception {
        WorkerConfiguration dataConfig = worker.getDataConfiguration();
        final boolean isGraph = dataConfig.isGraphNetwork();

        boolean stats = dataConfig.isCollectTrainingStats();
        StatsCalculationHelper s = (stats ? new StatsCalculationHelper() : null);
        if(stats) s.logMethodStartTime();

        if(!dataSetIterator.hasNext()){
            if(stats){
                s.logReturnTime();

                Pair<R,SparkTrainingStats> pair = worker.getFinalResultNoDataWithStats();
                pair.getFirst().setStats(s.build(pair.getSecond()));
                return Collections.singletonList(pair.getFirst());
            } else {
                return Collections.singletonList(worker.getFinalResultNoData());
            }
        }

        int batchSize = dataConfig.getBatchSizePerWorker();
        final int prefetchCount = dataConfig.getPrefetchNumBatches();

        DataSetIterator batchedIterator = new IteratorDataSetIterator(dataSetIterator, batchSize);
        if(prefetchCount > 0){
            batchedIterator = new AsyncDataSetIterator(batchedIterator, prefetchCount);
        }

        try {
            MultiLayerNetwork net = null;
            ComputationGraph graph = null;
            if(stats) s.logInitialModelBefore();
            if(isGraph) graph = worker.getInitialModelGraph();
            else net = worker.getInitialModel();
            if(stats) s.logInitialModelAfter();

            int miniBatchCount = 0;
            int maxMinibatches = (dataConfig.getMaxBatchesPerWorker() > 0 ? dataConfig.getMaxBatchesPerWorker() : Integer.MAX_VALUE);

            while (batchedIterator.hasNext() && miniBatchCount++ < maxMinibatches) {
                if(stats) s.logNextDataSetBefore();
                DataSet next = batchedIterator.next();
                if(stats) s.logNextDataSetAfter(next.numExamples());

                if(stats){
                    s.logProcessMinibatchBefore();
                    Pair<R,SparkTrainingStats> result;
                    if(isGraph) result = worker.processMinibatchWithStats(next, graph, !batchedIterator.hasNext());
                    else result = worker.processMinibatchWithStats(next, net, !batchedIterator.hasNext());
                    s.logProcessMinibatchAfter();
                    if(result != null){
                        //Terminate training immediately
                        s.logReturnTime();
                        SparkTrainingStats workerStats = result.getSecond();
                        SparkTrainingStats returnStats = s.build(workerStats);
                        result.getFirst().setStats(returnStats);

                        return Collections.singletonList(result.getFirst());
                    }
                } else {
                    R result;
                    if(isGraph) result = worker.processMinibatch(next, graph, !batchedIterator.hasNext());
                    else result = worker.processMinibatch(next, net, !batchedIterator.hasNext());
                    if(result != null){
                        //Terminate training immediately
                        return Collections.singletonList(result);
                    }
                }
            }

            //For some reason, we didn't return already. Normally this shouldn't happen
            if(stats){
                s.logReturnTime();
                Pair<R,SparkTrainingStats> pair;
                if(isGraph) pair = worker.getFinalResultWithStats(graph);
                else pair = worker.getFinalResultWithStats(net);
                pair.getFirst().setStats(s.build(pair.getSecond()));
                return Collections.singletonList(pair.getFirst());
            } else {
                if(isGraph) return Collections.singletonList(worker.getFinalResult(graph));
                else return Collections.singletonList(worker.getFinalResult(net));
            }
        } finally {
            //Make sure we shut down the async thread properly...
            if(batchedIterator instanceof AsyncDataSetIterator){
                ((AsyncDataSetIterator)batchedIterator).shutdown();
            }
        }
    }
}

Other Java examples (source code examples)

Here is a short list of links related to this Java ExecuteWorkerFlatMap.java source code file:



my book on functional programming

 

new blog posts

 

Copyright 1998-2019 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.