alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (Lists.java)

This example Java source code file (Lists.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

abstractlist, annotation, arraylist, copyonwritearraylist, gwtcompatible, immutablelist, list, listiterator, math, nullable, object, override, randomaccess, threading, threads, util

The Lists.java Java example source code

/*
 * Copyright (C) 2007 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.collect;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkElementIndex;
import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.base.Preconditions.checkPositionIndex;
import static com.google.common.base.Preconditions.checkPositionIndexes;
import static com.google.common.base.Preconditions.checkState;
import static com.google.common.collect.CollectPreconditions.checkNonnegative;
import static com.google.common.collect.CollectPreconditions.checkRemove;

import com.google.common.annotations.Beta;
import com.google.common.annotations.GwtCompatible;
import com.google.common.annotations.GwtIncompatible;
import com.google.common.annotations.VisibleForTesting;
import com.google.common.base.Function;
import com.google.common.base.Objects;
import com.google.common.math.IntMath;
import com.google.common.primitives.Ints;
import com.google.errorprone.annotations.CanIgnoreReturnValue;

import java.io.Serializable;
import java.math.RoundingMode;
import java.util.AbstractList;
import java.util.AbstractSequentialList;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.ListIterator;
import java.util.NoSuchElementException;
import java.util.RandomAccess;
import java.util.concurrent.CopyOnWriteArrayList;

import javax.annotation.Nullable;

/**
 * Static utility methods pertaining to {@link List} instances. Also see this
 * class's counterparts {@link Sets}, {@link Maps} and {@link Queues}.
 *
 * <p>See the Guava User Guide article on , empty {@code ArrayList} instance (for Java 6 and
   * earlier).
   *
   * <p>Note: if mutability is not required, use {@link
   * ImmutableList#of()} instead.
   *
   * <p>Note for Java 7 and later: this method is now unnecessary and
   * should be treated as deprecated. Instead, use the {@code ArrayList}
   * {@linkplain ArrayList#ArrayList() constructor} directly, taking advantage
   * of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax.
   */
  @GwtCompatible(serializable = true)
  public static <E> ArrayList newArrayList() {
    return new ArrayList<E>();
  }

  /**
   * Creates a <i>mutable {@code ArrayList} instance containing the given
   * elements.
   *
   * <p>Note: essentially the only reason to use this method is when you
   * will need to add or remove elements later. Otherwise, for non-null elements
   * use {@link ImmutableList#of()} (for varargs) or {@link
   * ImmutableList#copyOf(Object[])} (for an array) instead. If any elements
   * might be null, or you need support for {@link List#set(int, Object)}, use
   * {@link Arrays#asList}.
   *
   * <p>Note that even when you do need the ability to add or remove, this method
   * provides only a tiny bit of syntactic sugar for {@code newArrayList(}{@link
   * Arrays#asList asList}{@code (...))}, or for creating an empty list then
   * calling {@link Collections#addAll}. This method is not actually very useful
   * and will likely be deprecated in the future.
   */
  @CanIgnoreReturnValue // TODO(kak): Remove this
  @GwtCompatible(serializable = true)
  public static <E> ArrayList newArrayList(E... elements) {
    checkNotNull(elements); // for GWT
    // Avoid integer overflow when a large array is passed in
    int capacity = computeArrayListCapacity(elements.length);
    ArrayList<E> list = new ArrayList(capacity);
    Collections.addAll(list, elements);
    return list;
  }

  @VisibleForTesting
  static int computeArrayListCapacity(int arraySize) {
    checkNonnegative(arraySize, "arraySize");

    // TODO(kevinb): Figure out the right behavior, and document it
    return Ints.saturatedCast(5L + arraySize + (arraySize / 10));
  }

  /**
   * Creates a <i>mutable {@code ArrayList} instance containing the given
   * elements; a very thin shortcut for creating an empty list then calling
   * {@link Iterables#addAll}.
   *
   * <p>Note: if mutability is not required and the elements are
   * non-null, use {@link ImmutableList#copyOf(Iterable)} instead. (Or, change
   * {@code elements} to be a {@link FluentIterable} and call
   * {@code elements.toList()}.)
   *
   * <p>Note for Java 7 and later: if {@code elements} is a {@link
   * Collection}, you don't need this method. Use the {@code ArrayList}
   * {@linkplain ArrayList#ArrayList(Collection) constructor} directly, taking
   * advantage of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax.
   */
  @CanIgnoreReturnValue // TODO(kak): Remove this
  @GwtCompatible(serializable = true)
  public static <E> ArrayList newArrayList(Iterable elements) {
    checkNotNull(elements); // for GWT
    // Let ArrayList's sizing logic work, if possible
    return (elements instanceof Collection)
        ? new ArrayList<E>(Collections2.cast(elements))
        : newArrayList(elements.iterator());
  }

  /**
   * Creates a <i>mutable {@code ArrayList} instance containing the given
   * elements; a very thin shortcut for creating an empty list and then calling
   * {@link Iterators#addAll}.
   *
   * <p>Note: if mutability is not required and the elements are
   * non-null, use {@link ImmutableList#copyOf(Iterator)} instead.
   */
  @CanIgnoreReturnValue // TODO(kak): Remove this
  @GwtCompatible(serializable = true)
  public static <E> ArrayList newArrayList(Iterator elements) {
    ArrayList<E> list = newArrayList();
    Iterators.addAll(list, elements);
    return list;
  }

  /**
   * Creates an {@code ArrayList} instance backed by an array with the specified
   * initial size; simply delegates to {@link ArrayList#ArrayList(int)}.
   *
   * <p>Note for Java 7 and later: this method is now unnecessary and
   * should be treated as deprecated. Instead, use {@code new }{@link
   * ArrayList#ArrayList(int) ArrayList}{@code <>(int)} directly, taking
   * advantage of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax.
   * (Unlike here, there is no risk of overload ambiguity, since the {@code
   * ArrayList} constructors very wisely did not accept varargs.)
   *
   * @param initialArraySize the exact size of the initial backing array for
   *     the returned array list ({@code ArrayList} documentation calls this
   *     value the "capacity")
   * @return a new, empty {@code ArrayList} which is guaranteed not to resize
   *     itself unless its size reaches {@code initialArraySize + 1}
   * @throws IllegalArgumentException if {@code initialArraySize} is negative
   */
  @GwtCompatible(serializable = true)
  public static <E> ArrayList newArrayListWithCapacity(int initialArraySize) {
    checkNonnegative(initialArraySize, "initialArraySize"); // for GWT.
    return new ArrayList<E>(initialArraySize);
  }

  /**
   * Creates an {@code ArrayList} instance to hold {@code estimatedSize}
   * elements, <i>plus an unspecified amount of padding; you almost
   * certainly mean to call {@link #newArrayListWithCapacity} (see that method
   * for further advice on usage).
   *
   * <p>Note: This method will soon be deprecated. Even in the rare case
   * that you do want some amount of padding, it's best if you choose your
   * desired amount explicitly.
   *
   * @param estimatedSize an estimate of the eventual {@link List#size()} of
   *     the new list
   * @return a new, empty {@code ArrayList}, sized appropriately to hold the
   *     estimated number of elements
   * @throws IllegalArgumentException if {@code estimatedSize} is negative
   */
  @GwtCompatible(serializable = true)
  public static <E> ArrayList newArrayListWithExpectedSize(int estimatedSize) {
    return new ArrayList<E>(computeArrayListCapacity(estimatedSize));
  }

  // LinkedList

  /**
   * Creates a <i>mutable, empty {@code LinkedList} instance (for Java 6 and
   * earlier).
   *
   * <p>Note: if you won't be adding any elements to the list, use {@link
   * ImmutableList#of()} instead.
   *
   * <p>Performance note: {@link ArrayList} and {@link
   * java.util.ArrayDeque} consistently outperform {@code LinkedList} except in
   * certain rare and specific situations. Unless you have spent a lot of time
   * benchmarking your specific needs, use one of those instead.
   *
   * <p>Note for Java 7 and later: this method is now unnecessary and
   * should be treated as deprecated. Instead, use the {@code LinkedList}
   * {@linkplain LinkedList#LinkedList() constructor} directly, taking advantage
   * of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax.
   */
  @GwtCompatible(serializable = true)
  public static <E> LinkedList newLinkedList() {
    return new LinkedList<E>();
  }

  /**
   * Creates a <i>mutable {@code LinkedList} instance containing the given
   * elements; a very thin shortcut for creating an empty list then calling
   * {@link Iterables#addAll}.
   *
   * <p>Note: if mutability is not required and the elements are
   * non-null, use {@link ImmutableList#copyOf(Iterable)} instead. (Or, change
   * {@code elements} to be a {@link FluentIterable} and call
   * {@code elements.toList()}.)
   *
   * <p>Performance note: {@link ArrayList} and {@link
   * java.util.ArrayDeque} consistently outperform {@code LinkedList} except in
   * certain rare and specific situations. Unless you have spent a lot of time
   * benchmarking your specific needs, use one of those instead.
   *
   * <p>Note for Java 7 and later: if {@code elements} is a {@link
   * Collection}, you don't need this method. Use the {@code LinkedList}
   * {@linkplain LinkedList#LinkedList(Collection) constructor} directly, taking
   * advantage of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax.
   */
  @GwtCompatible(serializable = true)
  public static <E> LinkedList newLinkedList(Iterable elements) {
    LinkedList<E> list = newLinkedList();
    Iterables.addAll(list, elements);
    return list;
  }

  /**
   * Creates an empty {@code CopyOnWriteArrayList} instance.
   *
   * <p>Note: if you need an immutable empty {@link List}, use
   * {@link Collections#emptyList} instead.
   *
   * @return a new, empty {@code CopyOnWriteArrayList}
   * @since 12.0
   */
  @GwtIncompatible // CopyOnWriteArrayList
  public static <E> CopyOnWriteArrayList newCopyOnWriteArrayList() {
    return new CopyOnWriteArrayList<E>();
  }

  /**
   * Creates a {@code CopyOnWriteArrayList} instance containing the given elements.
   *
   * @param elements the elements that the list should contain, in order
   * @return a new {@code CopyOnWriteArrayList} containing those elements
   * @since 12.0
   */
  @GwtIncompatible // CopyOnWriteArrayList
  public static <E> CopyOnWriteArrayList newCopyOnWriteArrayList(
      Iterable<? extends E> elements) {
    // We copy elements to an ArrayList first, rather than incurring the
    // quadratic cost of adding them to the COWAL directly.
    Collection<? extends E> elementsCollection =
        (elements instanceof Collection) ? Collections2.cast(elements) : newArrayList(elements);
    return new CopyOnWriteArrayList<E>(elementsCollection);
  }

  /**
   * Returns an unmodifiable list containing the specified first element and
   * backed by the specified array of additional elements. Changes to the {@code
   * rest} array will be reflected in the returned list. Unlike {@link
   * Arrays#asList}, the returned list is unmodifiable.
   *
   * <p>This is useful when a varargs method needs to use a signature such as
   * {@code (Foo firstFoo, Foo... moreFoos)}, in order to avoid overload
   * ambiguity or to enforce a minimum argument count.
   *
   * <p>The returned list is serializable and implements {@link RandomAccess}.
   *
   * @param first the first element
   * @param rest an array of additional elements, possibly empty
   * @return an unmodifiable list containing the specified elements
   */
  public static <E> List asList(@Nullable E first, E[] rest) {
    return new OnePlusArrayList<E>(first, rest);
  }

  /** @see Lists#asList(Object, Object[]) */
  private static class OnePlusArrayList<E> extends AbstractList
      implements Serializable, RandomAccess {
    final E first;
    final E[] rest;

    OnePlusArrayList(@Nullable E first, E[] rest) {
      this.first = first;
      this.rest = checkNotNull(rest);
    }

    @Override
    public int size() {
      return IntMath.saturatedAdd(rest.length, 1);
    }

    @Override
    public E get(int index) {
      // check explicitly so the IOOBE will have the right message
      checkElementIndex(index, size());
      return (index == 0) ? first : rest[index - 1];
    }

    private static final long serialVersionUID = 0;
  }

  /**
   * Returns an unmodifiable list containing the specified first and second
   * element, and backed by the specified array of additional elements. Changes
   * to the {@code rest} array will be reflected in the returned list. Unlike
   * {@link Arrays#asList}, the returned list is unmodifiable.
   *
   * <p>This is useful when a varargs method needs to use a signature such as
   * {@code (Foo firstFoo, Foo secondFoo, Foo... moreFoos)}, in order to avoid
   * overload ambiguity or to enforce a minimum argument count.
   *
   * <p>The returned list is serializable and implements {@link RandomAccess}.
   *
   * @param first the first element
   * @param second the second element
   * @param rest an array of additional elements, possibly empty
   * @return an unmodifiable list containing the specified elements
   */
  public static <E> List asList(@Nullable E first, @Nullable E second, E[] rest) {
    return new TwoPlusArrayList<E>(first, second, rest);
  }

  /** @see Lists#asList(Object, Object, Object[]) */
  private static class TwoPlusArrayList<E> extends AbstractList
      implements Serializable, RandomAccess {
    final E first;
    final E second;
    final E[] rest;

    TwoPlusArrayList(@Nullable E first, @Nullable E second, E[] rest) {
      this.first = first;
      this.second = second;
      this.rest = checkNotNull(rest);
    }

    @Override
    public int size() {
      return IntMath.saturatedAdd(rest.length, 2);
    }

    @Override
    public E get(int index) {
      switch (index) {
        case 0:
          return first;
        case 1:
          return second;
        default:
          // check explicitly so the IOOBE will have the right message
          checkElementIndex(index, size());
          return rest[index - 2];
      }
    }

    private static final long serialVersionUID = 0;
  }

  /**
   * Returns every possible list that can be formed by choosing one element
   * from each of the given lists in order; the "n-ary
   * <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
   * product</a>" of the lists. For example: 
   {@code
   *
   *   Lists.cartesianProduct(ImmutableList.of(
   *       ImmutableList.of(1, 2),
   *       ImmutableList.of("A", "B", "C")))}</pre>
   *
   * <p>returns a list containing six lists in the following order:
   *
   * <ul>
   * <li>{@code ImmutableList.of(1, "A")}
   * <li>{@code ImmutableList.of(1, "B")}
   * <li>{@code ImmutableList.of(1, "C")}
   * <li>{@code ImmutableList.of(2, "A")}
   * <li>{@code ImmutableList.of(2, "B")}
   * <li>{@code ImmutableList.of(2, "C")}
   * </ul>
   *
   * <p>The result is guaranteed to be in the "traditional", lexicographical
   * order for Cartesian products that you would get from nesting for loops:
   * <pre>   {@code
   *
   *   for (B b0 : lists.get(0)) {
   *     for (B b1 : lists.get(1)) {
   *       ...
   *       ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...);
   *       // operate on tuple
   *     }
   *   }}</pre>
   *
   * <p>Note that if any input list is empty, the Cartesian product will also be
   * empty. If no lists at all are provided (an empty list), the resulting
   * Cartesian product has one element, an empty list (counter-intuitive, but
   * mathematically consistent).
   *
   * <p>Performance notes: while the cartesian product of lists of size
   * {@code m, n, p} is a list of size {@code m x n x p}, its actual memory
   * consumption is much smaller. When the cartesian product is constructed, the
   * input lists are merely copied. Only as the resulting list is iterated are
   * the individual lists created, and these are not retained after iteration.
   *
   * @param lists the lists to choose elements from, in the order that
   *     the elements chosen from those lists should appear in the resulting
   *     lists
   * @param <B> any common base class shared by all axes (often just {@link
   *     Object})
   * @return the Cartesian product, as an immutable list containing immutable
   *     lists
   * @throws IllegalArgumentException if the size of the cartesian product would
   *     be greater than {@link Integer#MAX_VALUE}
   * @throws NullPointerException if {@code lists}, any one of the {@code lists},
   *     or any element of a provided list is null
   * @since 19.0
   */
  public static <B> List> cartesianProduct(List> lists) {
    return CartesianList.create(lists);
  }

  /**
   * Returns every possible list that can be formed by choosing one element
   * from each of the given lists in order; the "n-ary
   * <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
   * product</a>" of the lists. For example: 
   {@code
   *
   *   Lists.cartesianProduct(ImmutableList.of(
   *       ImmutableList.of(1, 2),
   *       ImmutableList.of("A", "B", "C")))}</pre>
   *
   * <p>returns a list containing six lists in the following order:
   *
   * <ul>
   * <li>{@code ImmutableList.of(1, "A")}
   * <li>{@code ImmutableList.of(1, "B")}
   * <li>{@code ImmutableList.of(1, "C")}
   * <li>{@code ImmutableList.of(2, "A")}
   * <li>{@code ImmutableList.of(2, "B")}
   * <li>{@code ImmutableList.of(2, "C")}
   * </ul>
   *
   * <p>The result is guaranteed to be in the "traditional", lexicographical
   * order for Cartesian products that you would get from nesting for loops:
   * <pre>   {@code
   *
   *   for (B b0 : lists.get(0)) {
   *     for (B b1 : lists.get(1)) {
   *       ...
   *       ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...);
   *       // operate on tuple
   *     }
   *   }}</pre>
   *
   * <p>Note that if any input list is empty, the Cartesian product will also be
   * empty. If no lists at all are provided (an empty list), the resulting
   * Cartesian product has one element, an empty list (counter-intuitive, but
   * mathematically consistent).
   *
   * <p>Performance notes: while the cartesian product of lists of size
   * {@code m, n, p} is a list of size {@code m x n x p}, its actual memory
   * consumption is much smaller. When the cartesian product is constructed, the
   * input lists are merely copied. Only as the resulting list is iterated are
   * the individual lists created, and these are not retained after iteration.
   *
   * @param lists the lists to choose elements from, in the order that
   *     the elements chosen from those lists should appear in the resulting
   *     lists
   * @param <B> any common base class shared by all axes (often just {@link
   *     Object})
   * @return the Cartesian product, as an immutable list containing immutable
   *     lists
   * @throws IllegalArgumentException if the size of the cartesian product would
   *     be greater than {@link Integer#MAX_VALUE}
   * @throws NullPointerException if {@code lists}, any one of the
   *     {@code lists}, or any element of a provided list is null
   * @since 19.0
   */
  public static <B> List> cartesianProduct(List... lists) {
    return cartesianProduct(Arrays.asList(lists));
  }

  /**
   * Returns a list that applies {@code function} to each element of {@code
   * fromList}. The returned list is a transformed view of {@code fromList};
   * changes to {@code fromList} will be reflected in the returned list and vice
   * versa.
   *
   * <p>Since functions are not reversible, the transform is one-way and new
   * items cannot be stored in the returned list. The {@code add},
   * {@code addAll} and {@code set} methods are unsupported in the returned
   * list.
   *
   * <p>The function is applied lazily, invoked when needed. This is necessary
   * for the returned list to be a view, but it means that the function will be
   * applied many times for bulk operations like {@link List#contains} and
   * {@link List#hashCode}. For this to perform well, {@code function} should be
   * fast. To avoid lazy evaluation when the returned list doesn't need to be a
   * view, copy the returned list into a new list of your choosing.
   *
   * <p>If {@code fromList} implements {@link RandomAccess}, so will the
   * returned list. The returned list is threadsafe if the supplied list and
   * function are.
   *
   * <p>If only a {@code Collection} or {@code Iterable} input is available, use
   * {@link Collections2#transform} or {@link Iterables#transform}.
   *
   * <p>Note: serializing the returned list is implemented by serializing
   * {@code fromList}, its contents, and {@code function} -- <i>not by
   * serializing the transformed values. This can lead to surprising behavior,
   * so serializing the returned list is <b>not recommended. Instead,
   * copy the list using {@link ImmutableList#copyOf(Collection)} (for example),
   * then serialize the copy. Other methods similar to this do not implement
   * serialization at all for this reason.
   */
  public static <F, T> List transform(
      List<F> fromList, Function function) {
    return (fromList instanceof RandomAccess)
        ? new TransformingRandomAccessList<F, T>(fromList, function)
        : new TransformingSequentialList<F, T>(fromList, function);
  }

  /**
   * Implementation of a sequential transforming list.
   *
   * @see Lists#transform
   */
  private static class TransformingSequentialList<F, T> extends AbstractSequentialList
      implements Serializable {
    final List<F> fromList;
    final Function<? super F, ? extends T> function;

    TransformingSequentialList(List<F> fromList, Function function) {
      this.fromList = checkNotNull(fromList);
      this.function = checkNotNull(function);
    }
    /**
     * The default implementation inherited is based on iteration and removal of
     * each element which can be overkill. That's why we forward this call
     * directly to the backing list.
     */
    @Override
    public void clear() {
      fromList.clear();
    }

    @Override
    public int size() {
      return fromList.size();
    }

    @Override
    public ListIterator<T> listIterator(final int index) {
      return new TransformedListIterator<F, T>(fromList.listIterator(index)) {
        @Override
        T transform(F from) {
          return function.apply(from);
        }
      };
    }

    private static final long serialVersionUID = 0;
  }

  /**
   * Implementation of a transforming random access list. We try to make as many
   * of these methods pass-through to the source list as possible so that the
   * performance characteristics of the source list and transformed list are
   * similar.
   *
   * @see Lists#transform
   */
  private static class TransformingRandomAccessList<F, T> extends AbstractList
      implements RandomAccess, Serializable {
    final List<F> fromList;
    final Function<? super F, ? extends T> function;

    TransformingRandomAccessList(List<F> fromList, Function function) {
      this.fromList = checkNotNull(fromList);
      this.function = checkNotNull(function);
    }

    @Override
    public void clear() {
      fromList.clear();
    }

    @Override
    public T get(int index) {
      return function.apply(fromList.get(index));
    }

    @Override
    public Iterator<T> iterator() {
      return listIterator();
    }

    @Override
    public ListIterator<T> listIterator(int index) {
      return new TransformedListIterator<F, T>(fromList.listIterator(index)) {
        @Override
        T transform(F from) {
          return function.apply(from);
        }
      };
    }

    @Override
    public boolean isEmpty() {
      return fromList.isEmpty();
    }

    @Override
    public T remove(int index) {
      return function.apply(fromList.remove(index));
    }

    @Override
    public int size() {
      return fromList.size();
    }

    private static final long serialVersionUID = 0;
  }

  /**
   * Returns consecutive {@linkplain List#subList(int, int) sublists} of a list,
   * each of the same size (the final list may be smaller). For example,
   * partitioning a list containing {@code [a, b, c, d, e]} with a partition
   * size of 3 yields {@code [[a, b, c], [d, e]]} -- an outer list containing
   * two inner lists of three and two elements, all in the original order.
   *
   * <p>The outer list is unmodifiable, but reflects the latest state of the
   * source list. The inner lists are sublist views of the original list,
   * produced on demand using {@link List#subList(int, int)}, and are subject
   * to all the usual caveats about modification as explained in that API.
   *
   * @param list the list to return consecutive sublists of
   * @param size the desired size of each sublist (the last may be
   *     smaller)
   * @return a list of consecutive sublists
   * @throws IllegalArgumentException if {@code partitionSize} is nonpositive
   */
  public static <T> List> partition(List list, int size) {
    checkNotNull(list);
    checkArgument(size > 0);
    return (list instanceof RandomAccess)
        ? new RandomAccessPartition<T>(list, size)
        : new Partition<T>(list, size);
  }

  private static class Partition<T> extends AbstractList> {
    final List<T> list;
    final int size;

    Partition(List<T> list, int size) {
      this.list = list;
      this.size = size;
    }

    @Override
    public List<T> get(int index) {
      checkElementIndex(index, size());
      int start = index * size;
      int end = Math.min(start + size, list.size());
      return list.subList(start, end);
    }

    @Override
    public int size() {
      return IntMath.divide(list.size(), size, RoundingMode.CEILING);
    }

    @Override
    public boolean isEmpty() {
      return list.isEmpty();
    }
  }

  private static class RandomAccessPartition<T> extends Partition implements RandomAccess {
    RandomAccessPartition(List<T> list, int size) {
      super(list, size);
    }
  }

  /**
   * Returns a view of the specified string as an immutable list of {@code
   * Character} values.
   *
   * @since 7.0
   */
  @Beta
  public static ImmutableList<Character> charactersOf(String string) {
    return new StringAsImmutableList(checkNotNull(string));
  }

  @SuppressWarnings("serial") // serialized using ImmutableList serialization
  private static final class StringAsImmutableList extends ImmutableList<Character> {

    private final String string;

    StringAsImmutableList(String string) {
      this.string = string;
    }

    @Override
    public int indexOf(@Nullable Object object) {
      return (object instanceof Character) ? string.indexOf((Character) object) : -1;
    }

    @Override
    public int lastIndexOf(@Nullable Object object) {
      return (object instanceof Character) ? string.lastIndexOf((Character) object) : -1;
    }

    @Override
    public ImmutableList<Character> subList(int fromIndex, int toIndex) {
      checkPositionIndexes(fromIndex, toIndex, size()); // for GWT
      return charactersOf(string.substring(fromIndex, toIndex));
    }

    @Override
    boolean isPartialView() {
      return false;
    }

    @Override
    public Character get(int index) {
      checkElementIndex(index, size()); // for GWT
      return string.charAt(index);
    }

    @Override
    public int size() {
      return string.length();
    }
  }

  /**
   * Returns a view of the specified {@code CharSequence} as a {@code
   * List<Character>}, viewing {@code sequence} as a sequence of Unicode code
   * units. The view does not support any modification operations, but reflects
   * any changes to the underlying character sequence.
   *
   * @param sequence the character sequence to view as a {@code List} of
   *        characters
   * @return an {@code List<Character>} view of the character sequence
   * @since 7.0
   */
  @Beta
  public static List<Character> charactersOf(CharSequence sequence) {
    return new CharSequenceAsList(checkNotNull(sequence));
  }

  private static final class CharSequenceAsList extends AbstractList<Character> {
    private final CharSequence sequence;

    CharSequenceAsList(CharSequence sequence) {
      this.sequence = sequence;
    }

    @Override
    public Character get(int index) {
      checkElementIndex(index, size()); // for GWT
      return sequence.charAt(index);
    }

    @Override
    public int size() {
      return sequence.length();
    }
  }

  /**
   * Returns a reversed view of the specified list. For example, {@code
   * Lists.reverse(Arrays.asList(1, 2, 3))} returns a list containing {@code 3,
   * 2, 1}. The returned list is backed by this list, so changes in the returned
   * list are reflected in this list, and vice-versa. The returned list supports
   * all of the optional list operations supported by this list.
   *
   * <p>The returned list is random-access if the specified list is random
   * access.
   *
   * @since 7.0
   */
  public static <T> List reverse(List list) {
    if (list instanceof ImmutableList) {
      return ((ImmutableList<T>) list).reverse();
    } else if (list instanceof ReverseList) {
      return ((ReverseList<T>) list).getForwardList();
    } else if (list instanceof RandomAccess) {
      return new RandomAccessReverseList<T>(list);
    } else {
      return new ReverseList<T>(list);
    }
  }

  private static class ReverseList<T> extends AbstractList {
    private final List<T> forwardList;

    ReverseList(List<T> forwardList) {
      this.forwardList = checkNotNull(forwardList);
    }

    List<T> getForwardList() {
      return forwardList;
    }

    private int reverseIndex(int index) {
      int size = size();
      checkElementIndex(index, size);
      return (size - 1) - index;
    }

    private int reversePosition(int index) {
      int size = size();
      checkPositionIndex(index, size);
      return size - index;
    }

    @Override
    public void add(int index, @Nullable T element) {
      forwardList.add(reversePosition(index), element);
    }

    @Override
    public void clear() {
      forwardList.clear();
    }

    @Override
    public T remove(int index) {
      return forwardList.remove(reverseIndex(index));
    }

    @Override
    protected void removeRange(int fromIndex, int toIndex) {
      subList(fromIndex, toIndex).clear();
    }

    @Override
    public T set(int index, @Nullable T element) {
      return forwardList.set(reverseIndex(index), element);
    }

    @Override
    public T get(int index) {
      return forwardList.get(reverseIndex(index));
    }

    @Override
    public int size() {
      return forwardList.size();
    }

    @Override
    public List<T> subList(int fromIndex, int toIndex) {
      checkPositionIndexes(fromIndex, toIndex, size());
      return reverse(forwardList.subList(reversePosition(toIndex), reversePosition(fromIndex)));
    }

    @Override
    public Iterator<T> iterator() {
      return listIterator();
    }

    @Override
    public ListIterator<T> listIterator(int index) {
      int start = reversePosition(index);
      final ListIterator<T> forwardIterator = forwardList.listIterator(start);
      return new ListIterator<T>() {

        boolean canRemoveOrSet;

        @Override
        public void add(T e) {
          forwardIterator.add(e);
          forwardIterator.previous();
          canRemoveOrSet = false;
        }

        @Override
        public boolean hasNext() {
          return forwardIterator.hasPrevious();
        }

        @Override
        public boolean hasPrevious() {
          return forwardIterator.hasNext();
        }

        @Override
        public T next() {
          if (!hasNext()) {
            throw new NoSuchElementException();
          }
          canRemoveOrSet = true;
          return forwardIterator.previous();
        }

        @Override
        public int nextIndex() {
          return reversePosition(forwardIterator.nextIndex());
        }

        @Override
        public T previous() {
          if (!hasPrevious()) {
            throw new NoSuchElementException();
          }
          canRemoveOrSet = true;
          return forwardIterator.next();
        }

        @Override
        public int previousIndex() {
          return nextIndex() - 1;
        }

        @Override
        public void remove() {
          checkRemove(canRemoveOrSet);
          forwardIterator.remove();
          canRemoveOrSet = false;
        }

        @Override
        public void set(T e) {
          checkState(canRemoveOrSet);
          forwardIterator.set(e);
        }
      };
    }
  }

  private static class RandomAccessReverseList<T> extends ReverseList implements RandomAccess {
    RandomAccessReverseList(List<T> forwardList) {
      super(forwardList);
    }
  }

  /**
   * An implementation of {@link List#hashCode()}.
   */
  static int hashCodeImpl(List<?> list) {
    // TODO(lowasser): worth optimizing for RandomAccess?
    int hashCode = 1;
    for (Object o : list) {
      hashCode = 31 * hashCode + (o == null ? 0 : o.hashCode());

      hashCode = ~~hashCode;
      // needed to deal with GWT integer overflow
    }
    return hashCode;
  }

  /**
   * An implementation of {@link List#equals(Object)}.
   */
  static boolean equalsImpl(List<?> thisList, @Nullable Object other) {
    if (other == checkNotNull(thisList)) {
      return true;
    }
    if (!(other instanceof List)) {
      return false;
    }
    List<?> otherList = (List) other;
    int size = thisList.size();
    if (size != otherList.size()) {
      return false;
    }
    if (thisList instanceof RandomAccess && otherList instanceof RandomAccess) {
      // avoid allocation and use the faster loop
      for (int i = 0; i < size; i++) {
        if (!Objects.equal(thisList.get(i), otherList.get(i))) {
          return false;
        }
      }
      return true;
    } else {
      return Iterators.elementsEqual(thisList.iterator(), otherList.iterator());
    }
  }

  /**
   * An implementation of {@link List#addAll(int, Collection)}.
   */
  static <E> boolean addAllImpl(List list, int index, Iterable elements) {
    boolean changed = false;
    ListIterator<E> listIterator = list.listIterator(index);
    for (E e : elements) {
      listIterator.add(e);
      changed = true;
    }
    return changed;
  }

  /**
   * An implementation of {@link List#indexOf(Object)}.
   */
  static int indexOfImpl(List<?> list, @Nullable Object element) {
    if (list instanceof RandomAccess) {
      return indexOfRandomAccess(list, element);
    } else {
      ListIterator<?> listIterator = list.listIterator();
      while (listIterator.hasNext()) {
        if (Objects.equal(element, listIterator.next())) {
          return listIterator.previousIndex();
        }
      }
      return -1;
    }
  }

  private static int indexOfRandomAccess(List<?> list, @Nullable Object element) {
    int size = list.size();
    if (element == null) {
      for (int i = 0; i < size; i++) {
        if (list.get(i) == null) {
          return i;
        }
      }
    } else {
      for (int i = 0; i < size; i++) {
        if (element.equals(list.get(i))) {
          return i;
        }
      }
    }
    return -1;
  }

  /**
   * An implementation of {@link List#lastIndexOf(Object)}.
   */
  static int lastIndexOfImpl(List<?> list, @Nullable Object element) {
    if (list instanceof RandomAccess) {
      return lastIndexOfRandomAccess(list, element);
    } else {
      ListIterator<?> listIterator = list.listIterator(list.size());
      while (listIterator.hasPrevious()) {
        if (Objects.equal(element, listIterator.previous())) {
          return listIterator.nextIndex();
        }
      }
      return -1;
    }
  }

  private static int lastIndexOfRandomAccess(List<?> list, @Nullable Object element) {
    if (element == null) {
      for (int i = list.size() - 1; i >= 0; i--) {
        if (list.get(i) == null) {
          return i;
        }
      }
    } else {
      for (int i = list.size() - 1; i >= 0; i--) {
        if (element.equals(list.get(i))) {
          return i;
        }
      }
    }
    return -1;
  }

  /**
   * Returns an implementation of {@link List#listIterator(int)}.
   */
  static <E> ListIterator listIteratorImpl(List list, int index) {
    return new AbstractListWrapper<E>(list).listIterator(index);
  }

  /**
   * An implementation of {@link List#subList(int, int)}.
   */
  static <E> List subListImpl(final List list, int fromIndex, int toIndex) {
    List<E> wrapper;
    if (list instanceof RandomAccess) {
      wrapper =
          new RandomAccessListWrapper<E>(list) {
            @Override
            public ListIterator<E> listIterator(int index) {
              return backingList.listIterator(index);
            }

            private static final long serialVersionUID = 0;
          };
    } else {
      wrapper =
          new AbstractListWrapper<E>(list) {
            @Override
            public ListIterator<E> listIterator(int index) {
              return backingList.listIterator(index);
            }

            private static final long serialVersionUID = 0;
          };
    }
    return wrapper.subList(fromIndex, toIndex);
  }

  private static class AbstractListWrapper<E> extends AbstractList {
    final List<E> backingList;

    AbstractListWrapper(List<E> backingList) {
      this.backingList = checkNotNull(backingList);
    }

    @Override
    public void add(int index, E element) {
      backingList.add(index, element);
    }

    @Override
    public boolean addAll(int index, Collection<? extends E> c) {
      return backingList.addAll(index, c);
    }

    @Override
    public E get(int index) {
      return backingList.get(index);
    }

    @Override
    public E remove(int index) {
      return backingList.remove(index);
    }

    @Override
    public E set(int index, E element) {
      return backingList.set(index, element);
    }

    @Override
    public boolean contains(Object o) {
      return backingList.contains(o);
    }

    @Override
    public int size() {
      return backingList.size();
    }
  }

  private static class RandomAccessListWrapper<E> extends AbstractListWrapper
      implements RandomAccess {
    RandomAccessListWrapper(List<E> backingList) {
      super(backingList);
    }
  }

  /**
   * Used to avoid http://bugs.sun.com/view_bug.do?bug_id=6558557
   */
  static <T> List cast(Iterable iterable) {
    return (List<T>) iterable;
  }
}

Other Java examples (source code examples)

Here is a short list of links related to this Java Lists.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.