alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (Queues.java)

This example Java source code file (Queues.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

arraydeque, canignorereturnvalue, collection, comparable, concurrentlinkedqueue, iterable, linkedblockingdeque, linkedblockingqueue, priorityblockingqueue, priorityqueue, queues, synchronousqueue, threading, threads, timeunit, util

The Queues.java Java example source code

/*
 * Copyright (C) 2011 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
 * in compliance with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License
 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing permissions and limitations under
 * the License.
 */

package com.google.common.collect;

import com.google.common.annotations.Beta;
import com.google.common.annotations.GwtIncompatible;
import com.google.common.base.Preconditions;
import com.google.errorprone.annotations.CanIgnoreReturnValue;

import java.util.ArrayDeque;
import java.util.Collection;
import java.util.Deque;
import java.util.PriorityQueue;
import java.util.Queue;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.LinkedBlockingDeque;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.PriorityBlockingQueue;
import java.util.concurrent.SynchronousQueue;
import java.util.concurrent.TimeUnit;

/**
 * Static utility methods pertaining to {@link Queue} and {@link Deque} instances.
 * Also see this class's counterparts {@link Lists}, {@link Sets}, and {@link Maps}.
 *
 * @author Kurt Alfred Kluever
 * @since 11.0
 */
@GwtIncompatible
public final class Queues {
  private Queues() {}

  // ArrayBlockingQueue

  /**
   * Creates an empty {@code ArrayBlockingQueue} with the given (fixed) capacity
   * and nonfair access policy.
   */
  public static <E> ArrayBlockingQueue newArrayBlockingQueue(int capacity) {
    return new ArrayBlockingQueue<E>(capacity);
  }

  // ArrayDeque

  /**
   * Creates an empty {@code ArrayDeque}.
   *
   * @since 12.0
   */
  public static <E> ArrayDeque newArrayDeque() {
    return new ArrayDeque<E>();
  }

  /**
   * Creates an {@code ArrayDeque} containing the elements of the specified iterable,
   * in the order they are returned by the iterable's iterator.
   *
   * @since 12.0
   */
  public static <E> ArrayDeque newArrayDeque(Iterable elements) {
    if (elements instanceof Collection) {
      return new ArrayDeque<E>(Collections2.cast(elements));
    }
    ArrayDeque<E> deque = new ArrayDeque();
    Iterables.addAll(deque, elements);
    return deque;
  }

  // ConcurrentLinkedQueue

  /**
   * Creates an empty {@code ConcurrentLinkedQueue}.
   */
  public static <E> ConcurrentLinkedQueue newConcurrentLinkedQueue() {
    return new ConcurrentLinkedQueue<E>();
  }

  /**
   * Creates a {@code ConcurrentLinkedQueue} containing the elements of the specified iterable,
   * in the order they are returned by the iterable's iterator.
   */
  public static <E> ConcurrentLinkedQueue newConcurrentLinkedQueue(
      Iterable<? extends E> elements) {
    if (elements instanceof Collection) {
      return new ConcurrentLinkedQueue<E>(Collections2.cast(elements));
    }
    ConcurrentLinkedQueue<E> queue = new ConcurrentLinkedQueue();
    Iterables.addAll(queue, elements);
    return queue;
  }

  // LinkedBlockingDeque

  /**
   * Creates an empty {@code LinkedBlockingDeque} with a capacity of {@link Integer#MAX_VALUE}.
   *
   * @since 12.0
   */
  public static <E> LinkedBlockingDeque newLinkedBlockingDeque() {
    return new LinkedBlockingDeque<E>();
  }

  /**
   * Creates an empty {@code LinkedBlockingDeque} with the given (fixed) capacity.
   *
   * @throws IllegalArgumentException if {@code capacity} is less than 1
   * @since 12.0
   */
  public static <E> LinkedBlockingDeque newLinkedBlockingDeque(int capacity) {
    return new LinkedBlockingDeque<E>(capacity);
  }

  /**
   * Creates a {@code LinkedBlockingDeque} with a capacity of {@link Integer#MAX_VALUE},
   * containing the elements of the specified iterable,
   * in the order they are returned by the iterable's iterator.
   *
   * @since 12.0
   */
  public static <E> LinkedBlockingDeque newLinkedBlockingDeque(Iterable elements) {
    if (elements instanceof Collection) {
      return new LinkedBlockingDeque<E>(Collections2.cast(elements));
    }
    LinkedBlockingDeque<E> deque = new LinkedBlockingDeque();
    Iterables.addAll(deque, elements);
    return deque;
  }

  // LinkedBlockingQueue

  /**
   * Creates an empty {@code LinkedBlockingQueue} with a capacity of {@link Integer#MAX_VALUE}.
   */
  public static <E> LinkedBlockingQueue newLinkedBlockingQueue() {
    return new LinkedBlockingQueue<E>();
  }

  /**
   * Creates an empty {@code LinkedBlockingQueue} with the given (fixed) capacity.
   *
   * @throws IllegalArgumentException if {@code capacity} is less than 1
   */
  public static <E> LinkedBlockingQueue newLinkedBlockingQueue(int capacity) {
    return new LinkedBlockingQueue<E>(capacity);
  }

  /**
   * Creates a {@code LinkedBlockingQueue} with a capacity of {@link Integer#MAX_VALUE},
   * containing the elements of the specified iterable,
   * in the order they are returned by the iterable's iterator.
   *
   * @param elements the elements that the queue should contain, in order
   * @return a new {@code LinkedBlockingQueue} containing those elements
   */
  public static <E> LinkedBlockingQueue newLinkedBlockingQueue(Iterable elements) {
    if (elements instanceof Collection) {
      return new LinkedBlockingQueue<E>(Collections2.cast(elements));
    }
    LinkedBlockingQueue<E> queue = new LinkedBlockingQueue();
    Iterables.addAll(queue, elements);
    return queue;
  }

  // LinkedList: see {@link com.google.common.collect.Lists}

  // PriorityBlockingQueue

  /**
   * Creates an empty {@code PriorityBlockingQueue} with the ordering given by its
   * elements' natural ordering.
   *
   * @since 11.0 (requires that {@code E} be {@code Comparable} since 15.0).
   */
  public static <E extends Comparable> PriorityBlockingQueue newPriorityBlockingQueue() {
    return new PriorityBlockingQueue<E>();
  }

  /**
   * Creates a {@code PriorityBlockingQueue} containing the given elements.
   *
   * <b>Note: If the specified iterable is a {@code SortedSet} or a {@code PriorityQueue},
   * this priority queue will be ordered according to the same ordering.
   *
   * @since 11.0 (requires that {@code E} be {@code Comparable} since 15.0).
   */
  public static <E extends Comparable> PriorityBlockingQueue newPriorityBlockingQueue(
      Iterable<? extends E> elements) {
    if (elements instanceof Collection) {
      return new PriorityBlockingQueue<E>(Collections2.cast(elements));
    }
    PriorityBlockingQueue<E> queue = new PriorityBlockingQueue();
    Iterables.addAll(queue, elements);
    return queue;
  }

  // PriorityQueue

  /**
   * Creates an empty {@code PriorityQueue} with the ordering given by its
   * elements' natural ordering.
   *
   * @since 11.0 (requires that {@code E} be {@code Comparable} since 15.0).
   */
  public static <E extends Comparable> PriorityQueue newPriorityQueue() {
    return new PriorityQueue<E>();
  }

  /**
   * Creates a {@code PriorityQueue} containing the given elements.
   *
   * <b>Note: If the specified iterable is a {@code SortedSet} or a {@code PriorityQueue},
   * this priority queue will be ordered according to the same ordering.
   *
   * @since 11.0 (requires that {@code E} be {@code Comparable} since 15.0).
   */
  public static <E extends Comparable> PriorityQueue newPriorityQueue(
      Iterable<? extends E> elements) {
    if (elements instanceof Collection) {
      return new PriorityQueue<E>(Collections2.cast(elements));
    }
    PriorityQueue<E> queue = new PriorityQueue();
    Iterables.addAll(queue, elements);
    return queue;
  }

  // SynchronousQueue

  /**
   * Creates an empty {@code SynchronousQueue} with nonfair access policy.
   */
  public static <E> SynchronousQueue newSynchronousQueue() {
    return new SynchronousQueue<E>();
  }

  /**
   * Drains the queue as {@link BlockingQueue#drainTo(Collection, int)}, but if the requested
   * {@code numElements} elements are not available, it will wait for them up to the specified
   * timeout.
   *
   * @param q the blocking queue to be drained
   * @param buffer where to add the transferred elements
   * @param numElements the number of elements to be waited for
   * @param timeout how long to wait before giving up, in units of {@code unit}
   * @param unit a {@code TimeUnit} determining how to interpret the timeout parameter
   * @return the number of elements transferred
   * @throws InterruptedException if interrupted while waiting
   */
  @Beta
  @CanIgnoreReturnValue
  public static <E> int drain(
      BlockingQueue<E> q,
      Collection<? super E> buffer,
      int numElements,
      long timeout,
      TimeUnit unit)
      throws InterruptedException {
    Preconditions.checkNotNull(buffer);
    /*
     * This code performs one System.nanoTime() more than necessary, and in return, the time to
     * execute Queue#drainTo is not added *on top* of waiting for the timeout (which could make
     * the timeout arbitrarily inaccurate, given a queue that is slow to drain).
     */
    long deadline = System.nanoTime() + unit.toNanos(timeout);
    int added = 0;
    while (added < numElements) {
      // we could rely solely on #poll, but #drainTo might be more efficient when there are multiple
      // elements already available (e.g. LinkedBlockingQueue#drainTo locks only once)
      added += q.drainTo(buffer, numElements - added);
      if (added < numElements) { // not enough elements immediately available; will have to poll
        E e = q.poll(deadline - System.nanoTime(), TimeUnit.NANOSECONDS);
        if (e == null) {
          break; // we already waited enough, and there are no more elements in sight
        }
        buffer.add(e);
        added++;
      }
    }
    return added;
  }

  /**
   * Drains the queue as {@linkplain #drain(BlockingQueue, Collection, int, long, TimeUnit)},
   * but with a different behavior in case it is interrupted while waiting. In that case, the
   * operation will continue as usual, and in the end the thread's interruption status will be set
   * (no {@code InterruptedException} is thrown).
   *
   * @param q the blocking queue to be drained
   * @param buffer where to add the transferred elements
   * @param numElements the number of elements to be waited for
   * @param timeout how long to wait before giving up, in units of {@code unit}
   * @param unit a {@code TimeUnit} determining how to interpret the timeout parameter
   * @return the number of elements transferred
   */
  @Beta
  @CanIgnoreReturnValue
  public static <E> int drainUninterruptibly(
      BlockingQueue<E> q,
      Collection<? super E> buffer,
      int numElements,
      long timeout,
      TimeUnit unit) {
    Preconditions.checkNotNull(buffer);
    long deadline = System.nanoTime() + unit.toNanos(timeout);
    int added = 0;
    boolean interrupted = false;
    try {
      while (added < numElements) {
        // we could rely solely on #poll, but #drainTo might be more efficient when there are
        // multiple elements already available (e.g. LinkedBlockingQueue#drainTo locks only once)
        added += q.drainTo(buffer, numElements - added);
        if (added < numElements) { // not enough elements immediately available; will have to poll
          E e; // written exactly once, by a successful (uninterrupted) invocation of #poll
          while (true) {
            try {
              e = q.poll(deadline - System.nanoTime(), TimeUnit.NANOSECONDS);
              break;
            } catch (InterruptedException ex) {
              interrupted = true; // note interruption and retry
            }
          }
          if (e == null) {
            break; // we already waited enough, and there are no more elements in sight
          }
          buffer.add(e);
          added++;
        }
      }
    } finally {
      if (interrupted) {
        Thread.currentThread().interrupt();
      }
    }
    return added;
  }

  /**
   * Returns a synchronized (thread-safe) queue backed by the specified queue. In order to
   * guarantee serial access, it is critical that <b>all access to the backing queue is
   * accomplished through the returned queue.
   *
   * <p>It is imperative that the user manually synchronize on the returned queue when accessing
   * the queue's iterator: <pre>   {@code
   *
   *   Queue<E> queue = Queues.synchronizedQueue(MinMaxPriorityQueue.create());
   *   ...
   *   queue.add(element);  // Needn't be in synchronized block
   *   ...
   *   synchronized (queue) {  // Must synchronize on queue!
   *     Iterator<E> i = queue.iterator(); // Must be in synchronized block
   *     while (i.hasNext()) {
   *       foo(i.next());
   *     }
   *   }}</pre>
   *
   * <p>Failure to follow this advice may result in non-deterministic behavior.
   *
   * <p>The returned queue will be serializable if the specified queue is serializable.
   *
   * @param queue the queue to be wrapped in a synchronized view
   * @return a synchronized view of the specified queue
   * @since 14.0
   */
  public static <E> Queue synchronizedQueue(Queue queue) {
    return Synchronized.queue(queue, null);
  }

  /**
   * Returns a synchronized (thread-safe) deque backed by the specified deque. In order to
   * guarantee serial access, it is critical that <b>all access to the backing deque is
   * accomplished through the returned deque.
   *
   * <p>It is imperative that the user manually synchronize on the returned deque when accessing
   * any of the deque's iterators: <pre>   {@code
   *
   *   Deque<E> deque = Queues.synchronizedDeque(Queues.newArrayDeque());
   *   ...
   *   deque.add(element);  // Needn't be in synchronized block
   *   ...
   *   synchronized (deque) {  // Must synchronize on deque!
   *     Iterator<E> i = deque.iterator(); // Must be in synchronized block
   *     while (i.hasNext()) {
   *       foo(i.next());
   *     }
   *   }}</pre>
   *
   * <p>Failure to follow this advice may result in non-deterministic behavior.
   *
   * <p>The returned deque will be serializable if the specified deque is serializable.
   *
   * @param deque the deque to be wrapped in a synchronized view
   * @return a synchronized view of the specified deque
   * @since 15.0
   */
  public static <E> Deque synchronizedDeque(Deque deque) {
    return Synchronized.deque(deque, null);
  }
}

Other Java examples (source code examples)

Here is a short list of links related to this Java Queues.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.