alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (Sets.java)

This example Java source code file (Sets.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

annotation, collection, enumset, filteredset, filteredsortedset, gwtincompatible, iterator, navigableset, object, override, predicate, set, setview, sortedset, threading, threads, util

The Sets.java Java example source code

/*
 * Copyright (C) 2007 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.collect;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;

import com.google.common.annotations.Beta;
import com.google.common.annotations.GwtCompatible;
import com.google.common.annotations.GwtIncompatible;
import com.google.common.base.Predicate;
import com.google.common.base.Predicates;
import com.google.common.collect.Collections2.FilteredCollection;
import com.google.common.math.IntMath;
import com.google.errorprone.annotations.CanIgnoreReturnValue;

import java.io.Serializable;
import java.util.AbstractSet;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.EnumSet;
import java.util.HashSet;
import java.util.Iterator;
import java.util.LinkedHashSet;
import java.util.List;
import java.util.Map;
import java.util.NavigableSet;
import java.util.NoSuchElementException;
import java.util.Set;
import java.util.SortedSet;
import java.util.TreeSet;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.CopyOnWriteArraySet;

import javax.annotation.Nullable;

/**
 * Static utility methods pertaining to {@link Set} instances. Also see this
 * class's counterparts {@link Lists}, {@link Maps} and {@link Queues}.
 *
 * <p>See the Guava User Guide article on  {
    @Override
    public boolean removeAll(Collection<?> c) {
      return removeAllImpl(this, c);
    }

    @Override
    public boolean retainAll(Collection<?> c) {
      return super.retainAll(checkNotNull(c)); // GWT compatibility
    }
  }

  /**
   * Returns an immutable set instance containing the given enum elements.
   * Internally, the returned set will be backed by an {@link EnumSet}.
   *
   * <p>The iteration order of the returned set follows the enum's iteration
   * order, not the order in which the elements are provided to the method.
   *
   * @param anElement one of the elements the set should contain
   * @param otherElements the rest of the elements the set should contain
   * @return an immutable set containing those elements, minus duplicates
   */
  // http://code.google.com/p/google-web-toolkit/issues/detail?id=3028
  @GwtCompatible(serializable = true)
  public static <E extends Enum ImmutableSet immutableEnumSet(
      E anElement, E... otherElements) {
    return ImmutableEnumSet.asImmutable(EnumSet.of(anElement, otherElements));
  }

  /**
   * Returns an immutable set instance containing the given enum elements.
   * Internally, the returned set will be backed by an {@link EnumSet}.
   *
   * <p>The iteration order of the returned set follows the enum's iteration
   * order, not the order in which the elements appear in the given collection.
   *
   * @param elements the elements, all of the same {@code enum} type, that the
   *     set should contain
   * @return an immutable set containing those elements, minus duplicates
   */
  // http://code.google.com/p/google-web-toolkit/issues/detail?id=3028
  @GwtCompatible(serializable = true)
  public static <E extends Enum ImmutableSet immutableEnumSet(Iterable elements) {
    if (elements instanceof ImmutableEnumSet) {
      return (ImmutableEnumSet<E>) elements;
    } else if (elements instanceof Collection) {
      Collection<E> collection = (Collection) elements;
      if (collection.isEmpty()) {
        return ImmutableSet.of();
      } else {
        return ImmutableEnumSet.asImmutable(EnumSet.copyOf(collection));
      }
    } else {
      Iterator<E> itr = elements.iterator();
      if (itr.hasNext()) {
        EnumSet<E> enumSet = EnumSet.of(itr.next());
        Iterators.addAll(enumSet, itr);
        return ImmutableEnumSet.asImmutable(enumSet);
      } else {
        return ImmutableSet.of();
      }
    }
  }

  /**
   * Returns a new, <i>mutable {@code EnumSet} instance containing the given elements in their
   * natural order. This method behaves identically to {@link EnumSet#copyOf(Collection)}, but also
   * accepts non-{@code Collection} iterables and empty iterables.
   */
  public static <E extends Enum EnumSet newEnumSet(
      Iterable<E> iterable, Class elementType) {
    EnumSet<E> set = EnumSet.noneOf(elementType);
    Iterables.addAll(set, iterable);
    return set;
  }

  // HashSet

  /**
   * Creates a <i>mutable, initially empty {@code HashSet} instance.
   *
   * <p>Note: if mutability is not required, use {@link ImmutableSet#of()} instead. If
   * {@code E} is an {@link Enum} type, use {@link EnumSet#noneOf} instead. Otherwise, strongly
   * consider using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to
   * get deterministic iteration behavior.
   *
   * <p>Note for Java 7 and later: this method is now unnecessary and should be treated as
   * deprecated. Instead, use the {@code HashSet} constructor directly, taking advantage of the new
   * <a href="http://goo.gl/iz2Wi">"diamond" syntax.
   */
  public static <E> HashSet newHashSet() {
    return new HashSet<E>();
  }

  /**
   * Creates a <i>mutable {@code HashSet} instance initially containing the given elements.
   *
   * <p>Note: if elements are non-null and won't be added or removed after this point, use
   * {@link ImmutableSet#of()} or {@link ImmutableSet#copyOf(Object[])} instead. If {@code E} is an
   * {@link Enum} type, use {@link EnumSet#of(Enum, Enum[])} instead. Otherwise, strongly consider
   * using a {@code LinkedHashSet} instead, at the cost of increased memory footprint, to get
   * deterministic iteration behavior.
   *
   * <p>This method is just a small convenience, either for {@code newHashSet(}{@link Arrays#asList
   * asList}{@code (...))}, or for creating an empty set then calling {@link Collections#addAll}.
   * This method is not actually very useful and will likely be deprecated in the future.
   */
  public static <E> HashSet newHashSet(E... elements) {
    HashSet<E> set = newHashSetWithExpectedSize(elements.length);
    Collections.addAll(set, elements);
    return set;
  }

  /**
   * Creates a {@code HashSet} instance, with a high enough initial table size that it <i>should
   * hold {@code expectedSize} elements without resizing. This behavior cannot be broadly
   * guaranteed, but it is observed to be true for OpenJDK 1.7. It also can't be guaranteed that the
   * method isn't inadvertently <i>oversizing the returned set.
   *
   * @param expectedSize the number of elements you expect to add to the
   *        returned set
   * @return a new, empty {@code HashSet} with enough capacity to hold {@code
   *         expectedSize} elements without resizing
   * @throws IllegalArgumentException if {@code expectedSize} is negative
   */
  public static <E> HashSet newHashSetWithExpectedSize(int expectedSize) {
    return new HashSet<E>(Maps.capacity(expectedSize));
  }

  /**
   * Creates a <i>mutable {@code HashSet} instance containing the given elements. A very thin
   * convenience for creating an empty set then calling {@link Collection#addAll} or {@link
   * Iterables#addAll}.
   *
   * <p>Note: if mutability is not required and the elements are non-null, use {@link
   * ImmutableSet#copyOf(Iterable)} instead. (Or, change {@code elements} to be a {@link
   * FluentIterable} and call {@code elements.toSet()}.)
   *
   * <p>Note: if {@code E} is an {@link Enum} type, use {@link #newEnumSet(Iterable, Class)}
   * instead.
   *
   * <p>Note for Java 7 and later: if {@code elements} is a {@link Collection}, you don't
   * need this method. Instead, use the {@code HashSet} constructor directly, taking advantage of
   * the new <a href="http://goo.gl/iz2Wi">"diamond" syntax.
   *
   * <p>Overall, this method is not very useful and will likely be deprecated in the future.
   */
  public static <E> HashSet newHashSet(Iterable elements) {
    return (elements instanceof Collection)
        ? new HashSet<E>(Collections2.cast(elements))
        : newHashSet(elements.iterator());
  }

  /**
   * Creates a <i>mutable {@code HashSet} instance containing the given elements. A very thin
   * convenience for creating an empty set and then calling {@link Iterators#addAll}.
   *
   * <p>Note: if mutability is not required and the elements are non-null, use {@link
   * ImmutableSet#copyOf(Iterator)} instead.
   *
   * <p>Note: if {@code E} is an {@link Enum} type, you should create an {@link EnumSet}
   * instead.
   *
   * <p>Overall, this method is not very useful and will likely be deprecated in the future.
   */
  public static <E> HashSet newHashSet(Iterator elements) {
    HashSet<E> set = newHashSet();
    Iterators.addAll(set, elements);
    return set;
  }

  /**
   * Creates a thread-safe set backed by a hash map. The set is backed by a
   * {@link ConcurrentHashMap} instance, and thus carries the same concurrency
   * guarantees.
   *
   * <p>Unlike {@code HashSet}, this class does NOT allow {@code null} to be
   * used as an element. The set is serializable.
   *
   * @return a new, empty thread-safe {@code Set}
   * @since 15.0
   */
  public static <E> Set newConcurrentHashSet() {
    return Collections.newSetFromMap(new ConcurrentHashMap<E, Boolean>());
  }

  /**
   * Creates a thread-safe set backed by a hash map and containing the given
   * elements. The set is backed by a {@link ConcurrentHashMap} instance, and
   * thus carries the same concurrency guarantees.
   *
   * <p>Unlike {@code HashSet}, this class does NOT allow {@code null} to be
   * used as an element. The set is serializable.
   *
   * @param elements the elements that the set should contain
   * @return a new thread-safe set containing those elements (minus duplicates)
   * @throws NullPointerException if {@code elements} or any of its contents is
   *      null
   * @since 15.0
   */
  public static <E> Set newConcurrentHashSet(Iterable elements) {
    Set<E> set = newConcurrentHashSet();
    Iterables.addAll(set, elements);
    return set;
  }

  // LinkedHashSet

  /**
   * Creates a <i>mutable, empty {@code LinkedHashSet} instance.
   *
   * <p>Note: if mutability is not required, use {@link ImmutableSet#of()} instead.
   *
   * <p>Note for Java 7 and later: this method is now unnecessary and should be treated as
   * deprecated. Instead, use the {@code LinkedHashSet} constructor directly, taking advantage of
   * the new <a href="http://goo.gl/iz2Wi">"diamond" syntax.
   *
   * @return a new, empty {@code LinkedHashSet}
   */
  public static <E> LinkedHashSet newLinkedHashSet() {
    return new LinkedHashSet<E>();
  }

  /**
   * Creates a {@code LinkedHashSet} instance, with a high enough "initial capacity" that it
   * <i>should hold {@code expectedSize} elements without growth. This behavior cannot be
   * broadly guaranteed, but it is observed to be true for OpenJDK 1.7. It also can't be guaranteed
   * that the method isn't inadvertently <i>oversizing the returned set.
   *
   * @param expectedSize the number of elements you expect to add to the returned set
   * @return a new, empty {@code LinkedHashSet} with enough capacity to hold {@code expectedSize}
   *         elements without resizing
   * @throws IllegalArgumentException if {@code expectedSize} is negative
   * @since 11.0
   */
  public static <E> LinkedHashSet newLinkedHashSetWithExpectedSize(int expectedSize) {
    return new LinkedHashSet<E>(Maps.capacity(expectedSize));
  }

  /**
   * Creates a <i>mutable {@code LinkedHashSet} instance containing the given elements in order.
   *
   * <p>Note: if mutability is not required and the elements are non-null, use {@link
   * ImmutableSet#copyOf(Iterable)} instead.
   *
   * <p>Note for Java 7 and later: if {@code elements} is a {@link Collection}, you don't
   * need this method. Instead, use the {@code LinkedHashSet} constructor directly, taking advantage
   * of the new <a href="http://goo.gl/iz2Wi">"diamond" syntax.
   *
   * <p>Overall, this method is not very useful and will likely be deprecated in the future.
   *
   * @param elements the elements that the set should contain, in order
   * @return a new {@code LinkedHashSet} containing those elements (minus duplicates)
   */
  public static <E> LinkedHashSet newLinkedHashSet(Iterable elements) {
    if (elements instanceof Collection) {
      return new LinkedHashSet<E>(Collections2.cast(elements));
    }
    LinkedHashSet<E> set = newLinkedHashSet();
    Iterables.addAll(set, elements);
    return set;
  }

  // TreeSet

  /**
   * Creates a <i>mutable, empty {@code TreeSet} instance sorted by the natural sort ordering of
   * its elements.
   *
   * <p>Note: if mutability is not required, use {@link ImmutableSortedSet#of()} instead.
   *
   * <p>Note for Java 7 and later: this method is now unnecessary and should be treated as
   * deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new
   * <a href="http://goo.gl/iz2Wi">"diamond" syntax.
   *
   * @return a new, empty {@code TreeSet}
   */
  public static <E extends Comparable> TreeSet newTreeSet() {
    return new TreeSet<E>();
  }

  /**
   * Creates a <i>mutable {@code TreeSet} instance containing the given elements sorted by their
   * natural ordering.
   *
   * <p>Note: if mutability is not required, use {@link ImmutableSortedSet#copyOf(Iterable)}
   * instead.
   *
   * <p>Note: If {@code elements} is a {@code SortedSet} with an explicit comparator, this
   * method has different behavior than {@link TreeSet#TreeSet(SortedSet)}, which returns a {@code
   * TreeSet} with that comparator.
   *
   * <p>Note for Java 7 and later: this method is now unnecessary and should be treated as
   * deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new
   * <a href="http://goo.gl/iz2Wi">"diamond" syntax.
   *
   * <p>This method is just a small convenience for creating an empty set and then calling {@link
   * Iterables#addAll}. This method is not very useful and will likely be deprecated in the future.
   *
   * @param elements the elements that the set should contain
   * @return a new {@code TreeSet} containing those elements (minus duplicates)
   */
  public static <E extends Comparable> TreeSet newTreeSet(Iterable elements) {
    TreeSet<E> set = newTreeSet();
    Iterables.addAll(set, elements);
    return set;
  }

  /**
   * Creates a <i>mutable, empty {@code TreeSet} instance with the given comparator.
   *
   * <p>Note: if mutability is not required, use {@code
   * ImmutableSortedSet.orderedBy(comparator).build()} instead.
   *
   * <p>Note for Java 7 and later: this method is now unnecessary and should be treated as
   * deprecated. Instead, use the {@code TreeSet} constructor directly, taking advantage of the new
   * <a href="http://goo.gl/iz2Wi">"diamond" syntax. One caveat to this is that the {@code
   * TreeSet} constructor uses a null {@code Comparator} to mean "natural ordering," whereas this
   * factory rejects null. Clean your code accordingly.
   *
   * @param comparator the comparator to use to sort the set
   * @return a new, empty {@code TreeSet}
   * @throws NullPointerException if {@code comparator} is null
   */
  public static <E> TreeSet newTreeSet(Comparator comparator) {
    return new TreeSet<E>(checkNotNull(comparator));
  }

  /**
   * Creates an empty {@code Set} that uses identity to determine equality. It
   * compares object references, instead of calling {@code equals}, to
   * determine whether a provided object matches an element in the set. For
   * example, {@code contains} returns {@code false} when passed an object that
   * equals a set member, but isn't the same instance. This behavior is similar
   * to the way {@code IdentityHashMap} handles key lookups.
   *
   * @since 8.0
   */
  public static <E> Set newIdentityHashSet() {
    return Collections.newSetFromMap(Maps.<E, Boolean>newIdentityHashMap());
  }

  /**
   * Creates an empty {@code CopyOnWriteArraySet} instance.
   *
   * <p>Note: if you need an immutable empty {@link Set}, use
   * {@link Collections#emptySet} instead.
   *
   * @return a new, empty {@code CopyOnWriteArraySet}
   * @since 12.0
   */
  @GwtIncompatible // CopyOnWriteArraySet
  public static <E> CopyOnWriteArraySet newCopyOnWriteArraySet() {
    return new CopyOnWriteArraySet<E>();
  }

  /**
   * Creates a {@code CopyOnWriteArraySet} instance containing the given elements.
   *
   * @param elements the elements that the set should contain, in order
   * @return a new {@code CopyOnWriteArraySet} containing those elements
   * @since 12.0
   */
  @GwtIncompatible // CopyOnWriteArraySet
  public static <E> CopyOnWriteArraySet newCopyOnWriteArraySet(Iterable elements) {
    // We copy elements to an ArrayList first, rather than incurring the
    // quadratic cost of adding them to the COWAS directly.
    Collection<? extends E> elementsCollection =
        (elements instanceof Collection)
            ? Collections2.cast(elements)
            : Lists.newArrayList(elements);
    return new CopyOnWriteArraySet<E>(elementsCollection);
  }

  /**
   * Creates an {@code EnumSet} consisting of all enum values that are not in
   * the specified collection. If the collection is an {@link EnumSet}, this
   * method has the same behavior as {@link EnumSet#complementOf}. Otherwise,
   * the specified collection must contain at least one element, in order to
   * determine the element type. If the collection could be empty, use
   * {@link #complementOf(Collection, Class)} instead of this method.
   *
   * @param collection the collection whose complement should be stored in the
   *     enum set
   * @return a new, modifiable {@code EnumSet} containing all values of the enum
   *     that aren't present in the given collection
   * @throws IllegalArgumentException if {@code collection} is not an
   *     {@code EnumSet} instance and contains no elements
   */
  public static <E extends Enum EnumSet complementOf(Collection collection) {
    if (collection instanceof EnumSet) {
      return EnumSet.complementOf((EnumSet<E>) collection);
    }
    checkArgument(
        !collection.isEmpty(), "collection is empty; use the other version of this method");
    Class<E> type = collection.iterator().next().getDeclaringClass();
    return makeComplementByHand(collection, type);
  }

  /**
   * Creates an {@code EnumSet} consisting of all enum values that are not in
   * the specified collection. This is equivalent to
   * {@link EnumSet#complementOf}, but can act on any input collection, as long
   * as the elements are of enum type.
   *
   * @param collection the collection whose complement should be stored in the
   *     {@code EnumSet}
   * @param type the type of the elements in the set
   * @return a new, modifiable {@code EnumSet} initially containing all the
   *     values of the enum not present in the given collection
   */
  public static <E extends Enum EnumSet complementOf(
      Collection<E> collection, Class type) {
    checkNotNull(collection);
    return (collection instanceof EnumSet)
        ? EnumSet.complementOf((EnumSet<E>) collection)
        : makeComplementByHand(collection, type);
  }

  private static <E extends Enum EnumSet makeComplementByHand(
      Collection<E> collection, Class type) {
    EnumSet<E> result = EnumSet.allOf(type);
    result.removeAll(collection);
    return result;
  }

  /**
   * Returns a set backed by the specified map. The resulting set displays
   * the same ordering, concurrency, and performance characteristics as the
   * backing map. In essence, this factory method provides a {@link Set}
   * implementation corresponding to any {@link Map} implementation. There is no
   * need to use this method on a {@link Map} implementation that already has a
   * corresponding {@link Set} implementation (such as {@link java.util.HashMap}
   * or {@link java.util.TreeMap}).
   *
   * <p>Each method invocation on the set returned by this method results in
   * exactly one method invocation on the backing map or its {@code keySet}
   * view, with one exception. The {@code addAll} method is implemented as a
   * sequence of {@code put} invocations on the backing map.
   *
   * <p>The specified map must be empty at the time this method is invoked,
   * and should not be accessed directly after this method returns. These
   * conditions are ensured if the map is created empty, passed directly
   * to this method, and no reference to the map is retained, as illustrated
   * in the following code fragment: <pre>  {@code
   *
   *   Set<Object> identityHashSet = Sets.newSetFromMap(
   *       new IdentityHashMap<Object, Boolean>());}
* * <p>The returned set is serializable if the backing map is. * * @param map the backing map * @return the set backed by the map * @throws IllegalArgumentException if {@code map} is not empty * @deprecated Use {@link Collections#newSetFromMap} instead. This method * will be removed in December 2017. */ @Deprecated public static <E> Set newSetFromMap(Map map) { return Collections.newSetFromMap(map); } /** * An unmodifiable view of a set which may be backed by other sets; this view * will change as the backing sets do. Contains methods to copy the data into * a new set which will then remain stable. There is usually no reason to * retain a reference of type {@code SetView}; typically, you either use it * as a plain {@link Set}, or immediately invoke {@link #immutableCopy} or * {@link #copyInto} and forget the {@code SetView} itself. * * @since 2.0 */ public abstract static class SetView<E> extends AbstractSet { private SetView() {} // no subclasses but our own /** * Returns an immutable copy of the current contents of this set view. * Does not support null elements. * * <p>Warning: this may have unexpected results if a backing set of * this view uses a nonstandard notion of equivalence, for example if it is * a {@link TreeSet} using a comparator that is inconsistent with {@link * Object#equals(Object)}. */ public ImmutableSet<E> immutableCopy() { return ImmutableSet.copyOf(this); } /** * Copies the current contents of this set view into an existing set. This * method has equivalent behavior to {@code set.addAll(this)}, assuming that * all the sets involved are based on the same notion of equivalence. * * @return a reference to {@code set}, for convenience */ // Note: S should logically extend Set<? super E> but can't due to either // some javac bug or some weirdness in the spec, not sure which. @CanIgnoreReturnValue public <S extends Set S copyInto(S set) { set.addAll(this); return set; } } /** * Returns an unmodifiable <b>view of the union of two sets. The returned * set contains all elements that are contained in either backing set. * Iterating over the returned set iterates first over all the elements of * {@code set1}, then over each element of {@code set2}, in order, that is not * contained in {@code set1}. * * <p>Results are undefined if {@code set1} and {@code set2} are sets based on * different equivalence relations (as {@link HashSet}, {@link TreeSet}, and * the {@link Map#keySet} of an {@code IdentityHashMap} all are). */ public static <E> SetView union(final Set set1, final Set set2) { checkNotNull(set1, "set1"); checkNotNull(set2, "set2"); final Set<? extends E> set2minus1 = difference(set2, set1); return new SetView<E>() { @Override public int size() { return IntMath.saturatedAdd(set1.size(), set2minus1.size()); } @Override public boolean isEmpty() { return set1.isEmpty() && set2.isEmpty(); } @Override public Iterator<E> iterator() { return Iterators.unmodifiableIterator( Iterators.concat(set1.iterator(), set2minus1.iterator())); } @Override public boolean contains(Object object) { return set1.contains(object) || set2.contains(object); } @Override public <S extends Set S copyInto(S set) { set.addAll(set1); set.addAll(set2); return set; } @Override public ImmutableSet<E> immutableCopy() { return new ImmutableSet.Builder<E>().addAll(set1).addAll(set2).build(); } }; } /** * Returns an unmodifiable <b>view of the intersection of two sets. The * returned set contains all elements that are contained by both backing sets. * The iteration order of the returned set matches that of {@code set1}. * * <p>Results are undefined if {@code set1} and {@code set2} are sets based * on different equivalence relations (as {@code HashSet}, {@code TreeSet}, * and the keySet of an {@code IdentityHashMap} all are). * * <p>Note: The returned view performs slightly better when {@code * set1} is the smaller of the two sets. If you have reason to believe one of * your sets will generally be smaller than the other, pass it first. * Unfortunately, since this method sets the generic type of the returned set * based on the type of the first set passed, this could in rare cases force * you to make a cast, for example: <pre> {@code * * Set<Object> aFewBadObjects = ... * Set<String> manyBadStrings = ... * * // impossible for a non-String to be in the intersection * SuppressWarnings("unchecked") * Set<String> badStrings = (Set) Sets.intersection( * aFewBadObjects, manyBadStrings);}</pre> * * <p>This is unfortunate, but should come up only very rarely. */ public static <E> SetView intersection(final Set set1, final Set set2) { checkNotNull(set1, "set1"); checkNotNull(set2, "set2"); final Predicate<Object> inSet2 = Predicates.in(set2); return new SetView<E>() { @Override public Iterator<E> iterator() { return Iterators.filter(set1.iterator(), inSet2); } @Override public int size() { return Iterators.size(iterator()); } @Override public boolean isEmpty() { return !iterator().hasNext(); } @Override public boolean contains(Object object) { return set1.contains(object) && set2.contains(object); } @Override public boolean containsAll(Collection<?> collection) { return set1.containsAll(collection) && set2.containsAll(collection); } }; } /** * Returns an unmodifiable <b>view of the difference of two sets. The * returned set contains all elements that are contained by {@code set1} and * not contained by {@code set2}. {@code set2} may also contain elements not * present in {@code set1}; these are simply ignored. The iteration order of * the returned set matches that of {@code set1}. * * <p>Results are undefined if {@code set1} and {@code set2} are sets based * on different equivalence relations (as {@code HashSet}, {@code TreeSet}, * and the keySet of an {@code IdentityHashMap} all are). */ public static <E> SetView difference(final Set set1, final Set set2) { checkNotNull(set1, "set1"); checkNotNull(set2, "set2"); final Predicate<Object> notInSet2 = Predicates.not(Predicates.in(set2)); return new SetView<E>() { @Override public Iterator<E> iterator() { return Iterators.filter(set1.iterator(), notInSet2); } @Override public int size() { return Iterators.size(iterator()); } @Override public boolean isEmpty() { return set2.containsAll(set1); } @Override public boolean contains(Object element) { return set1.contains(element) && !set2.contains(element); } }; } /** * Returns an unmodifiable <b>view of the symmetric difference of two * sets. The returned set contains all elements that are contained in either * {@code set1} or {@code set2} but not in both. The iteration order of the * returned set is undefined. * * <p>Results are undefined if {@code set1} and {@code set2} are sets based * on different equivalence relations (as {@code HashSet}, {@code TreeSet}, * and the keySet of an {@code IdentityHashMap} all are). * * @since 3.0 */ public static <E> SetView symmetricDifference( final Set<? extends E> set1, final Set set2) { checkNotNull(set1, "set1"); checkNotNull(set2, "set2"); return new SetView<E>() { @Override public Iterator<E> iterator() { final Iterator<? extends E> itr1 = set1.iterator(); final Iterator<? extends E> itr2 = set2.iterator(); return new AbstractIterator<E>() { @Override public E computeNext() { while (itr1.hasNext()) { E elem1 = itr1.next(); if (!set2.contains(elem1)) { return elem1; } } while (itr2.hasNext()) { E elem2 = itr2.next(); if (!set1.contains(elem2)) { return elem2; } } return endOfData(); } }; } @Override public int size() { return Iterators.size(iterator()); } @Override public boolean isEmpty() { return set1.equals(set2); } @Override public boolean contains(Object element) { return set1.contains(element) ^ set2.contains(element); } }; } /** * Returns the elements of {@code unfiltered} that satisfy a predicate. The * returned set is a live view of {@code unfiltered}; changes to one affect * the other. * * <p>The resulting set's iterator does not support {@code remove()}, but all * other set methods are supported. When given an element that doesn't satisfy * the predicate, the set's {@code add()} and {@code addAll()} methods throw * an {@link IllegalArgumentException}. When methods such as {@code * removeAll()} and {@code clear()} are called on the filtered set, only * elements that satisfy the filter will be removed from the underlying set. * * <p>The returned set isn't threadsafe or serializable, even if * {@code unfiltered} is. * * <p>Many of the filtered set's methods, such as {@code size()}, iterate * across every element in the underlying set and determine which elements * satisfy the filter. When a live view is <i>not needed, it may be faster * to copy {@code Iterables.filter(unfiltered, predicate)} and use the copy. * * <p>Warning: {@code predicate} must be consistent with equals, * as documented at {@link Predicate#apply}. Do not provide a predicate such * as {@code Predicates.instanceOf(ArrayList.class)}, which is inconsistent * with equals. (See {@link Iterables#filter(Iterable, Class)} for related * functionality.) */ // TODO(kevinb): how to omit that last sentence when building GWT javadoc? public static <E> Set filter(Set unfiltered, Predicate predicate) { if (unfiltered instanceof SortedSet) { return filter((SortedSet<E>) unfiltered, predicate); } if (unfiltered instanceof FilteredSet) { // Support clear(), removeAll(), and retainAll() when filtering a filtered // collection. FilteredSet<E> filtered = (FilteredSet) unfiltered; Predicate<E> combinedPredicate = Predicates.and(filtered.predicate, predicate); return new FilteredSet<E>((Set) filtered.unfiltered, combinedPredicate); } return new FilteredSet<E>(checkNotNull(unfiltered), checkNotNull(predicate)); } private static class FilteredSet<E> extends FilteredCollection implements Set { FilteredSet(Set<E> unfiltered, Predicate predicate) { super(unfiltered, predicate); } @Override public boolean equals(@Nullable Object object) { return equalsImpl(this, object); } @Override public int hashCode() { return hashCodeImpl(this); } } /** * Returns the elements of a {@code SortedSet}, {@code unfiltered}, that * satisfy a predicate. The returned set is a live view of {@code unfiltered}; * changes to one affect the other. * * <p>The resulting set's iterator does not support {@code remove()}, but all * other set methods are supported. When given an element that doesn't satisfy * the predicate, the set's {@code add()} and {@code addAll()} methods throw * an {@link IllegalArgumentException}. When methods such as * {@code removeAll()} and {@code clear()} are called on the filtered set, * only elements that satisfy the filter will be removed from the underlying * set. * * <p>The returned set isn't threadsafe or serializable, even if * {@code unfiltered} is. * * <p>Many of the filtered set's methods, such as {@code size()}, iterate across * every element in the underlying set and determine which elements satisfy * the filter. When a live view is <i>not needed, it may be faster to copy * {@code Iterables.filter(unfiltered, predicate)} and use the copy. * * <p>Warning: {@code predicate} must be consistent with equals, * as documented at {@link Predicate#apply}. Do not provide a predicate such as * {@code Predicates.instanceOf(ArrayList.class)}, which is inconsistent with * equals. (See {@link Iterables#filter(Iterable, Class)} for related * functionality.) * * @since 11.0 */ public static <E> SortedSet filter(SortedSet unfiltered, Predicate predicate) { if (unfiltered instanceof FilteredSet) { // Support clear(), removeAll(), and retainAll() when filtering a filtered // collection. FilteredSet<E> filtered = (FilteredSet) unfiltered; Predicate<E> combinedPredicate = Predicates.and(filtered.predicate, predicate); return new FilteredSortedSet<E>((SortedSet) filtered.unfiltered, combinedPredicate); } return new FilteredSortedSet<E>(checkNotNull(unfiltered), checkNotNull(predicate)); } private static class FilteredSortedSet<E> extends FilteredSet implements SortedSet { FilteredSortedSet(SortedSet<E> unfiltered, Predicate predicate) { super(unfiltered, predicate); } @Override public Comparator<? super E> comparator() { return ((SortedSet<E>) unfiltered).comparator(); } @Override public SortedSet<E> subSet(E fromElement, E toElement) { return new FilteredSortedSet<E>( ((SortedSet<E>) unfiltered).subSet(fromElement, toElement), predicate); } @Override public SortedSet<E> headSet(E toElement) { return new FilteredSortedSet<E>(((SortedSet) unfiltered).headSet(toElement), predicate); } @Override public SortedSet<E> tailSet(E fromElement) { return new FilteredSortedSet<E>(((SortedSet) unfiltered).tailSet(fromElement), predicate); } @Override public E first() { return iterator().next(); } @Override public E last() { SortedSet<E> sortedUnfiltered = (SortedSet) unfiltered; while (true) { E element = sortedUnfiltered.last(); if (predicate.apply(element)) { return element; } sortedUnfiltered = sortedUnfiltered.headSet(element); } } } /** * Returns the elements of a {@code NavigableSet}, {@code unfiltered}, that * satisfy a predicate. The returned set is a live view of {@code unfiltered}; * changes to one affect the other. * * <p>The resulting set's iterator does not support {@code remove()}, but all * other set methods are supported. When given an element that doesn't satisfy * the predicate, the set's {@code add()} and {@code addAll()} methods throw * an {@link IllegalArgumentException}. When methods such as * {@code removeAll()} and {@code clear()} are called on the filtered set, * only elements that satisfy the filter will be removed from the underlying * set. * * <p>The returned set isn't threadsafe or serializable, even if * {@code unfiltered} is. * * <p>Many of the filtered set's methods, such as {@code size()}, iterate across * every element in the underlying set and determine which elements satisfy * the filter. When a live view is <i>not needed, it may be faster to copy * {@code Iterables.filter(unfiltered, predicate)} and use the copy. * * <p>Warning: {@code predicate} must be consistent with equals, * as documented at {@link Predicate#apply}. Do not provide a predicate such as * {@code Predicates.instanceOf(ArrayList.class)}, which is inconsistent with * equals. (See {@link Iterables#filter(Iterable, Class)} for related * functionality.) * * @since 14.0 */ @GwtIncompatible // NavigableSet @SuppressWarnings("unchecked") public static <E> NavigableSet filter( NavigableSet<E> unfiltered, Predicate predicate) { if (unfiltered instanceof FilteredSet) { // Support clear(), removeAll(), and retainAll() when filtering a filtered // collection. FilteredSet<E> filtered = (FilteredSet) unfiltered; Predicate<E> combinedPredicate = Predicates.and(filtered.predicate, predicate); return new FilteredNavigableSet<E>((NavigableSet) filtered.unfiltered, combinedPredicate); } return new FilteredNavigableSet<E>(checkNotNull(unfiltered), checkNotNull(predicate)); } @GwtIncompatible // NavigableSet private static class FilteredNavigableSet<E> extends FilteredSortedSet implements NavigableSet<E> { FilteredNavigableSet(NavigableSet<E> unfiltered, Predicate predicate) { super(unfiltered, predicate); } NavigableSet<E> unfiltered() { return (NavigableSet<E>) unfiltered; } @Override @Nullable public E lower(E e) { return Iterators.getNext(headSet(e, false).descendingIterator(), null); } @Override @Nullable public E floor(E e) { return Iterators.getNext(headSet(e, true).descendingIterator(), null); } @Override public E ceiling(E e) { return Iterables.getFirst(tailSet(e, true), null); } @Override public E higher(E e) { return Iterables.getFirst(tailSet(e, false), null); } @Override public E pollFirst() { return Iterables.removeFirstMatching(unfiltered(), predicate); } @Override public E pollLast() { return Iterables.removeFirstMatching(unfiltered().descendingSet(), predicate); } @Override public NavigableSet<E> descendingSet() { return Sets.filter(unfiltered().descendingSet(), predicate); } @Override public Iterator<E> descendingIterator() { return Iterators.filter(unfiltered().descendingIterator(), predicate); } @Override public E last() { return descendingIterator().next(); } @Override public NavigableSet<E> subSet( E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) { return filter( unfiltered().subSet(fromElement, fromInclusive, toElement, toInclusive), predicate); } @Override public NavigableSet<E> headSet(E toElement, boolean inclusive) { return filter(unfiltered().headSet(toElement, inclusive), predicate); } @Override public NavigableSet<E> tailSet(E fromElement, boolean inclusive) { return filter(unfiltered().tailSet(fromElement, inclusive), predicate); } } /** * Returns every possible list that can be formed by choosing one element * from each of the given sets in order; the "n-ary * <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian * product</a>" of the sets. For example:
   {@code
   *
   *   Sets.cartesianProduct(ImmutableList.of(
   *       ImmutableSet.of(1, 2),
   *       ImmutableSet.of("A", "B", "C")))}</pre>
   *
   * <p>returns a set containing six lists:
   *
   * <ul>
   * <li>{@code ImmutableList.of(1, "A")}
   * <li>{@code ImmutableList.of(1, "B")}
   * <li>{@code ImmutableList.of(1, "C")}
   * <li>{@code ImmutableList.of(2, "A")}
   * <li>{@code ImmutableList.of(2, "B")}
   * <li>{@code ImmutableList.of(2, "C")}
   * </ul>
   *
   * <p>The result is guaranteed to be in the "traditional", lexicographical
   * order for Cartesian products that you would get from nesting for loops:
   * <pre>   {@code
   *
   *   for (B b0 : sets.get(0)) {
   *     for (B b1 : sets.get(1)) {
   *       ...
   *       ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...);
   *       // operate on tuple
   *     }
   *   }}</pre>
   *
   * <p>Note that if any input set is empty, the Cartesian product will also be
   * empty. If no sets at all are provided (an empty list), the resulting
   * Cartesian product has one element, an empty list (counter-intuitive, but
   * mathematically consistent).
   *
   * <p>Performance notes: while the cartesian product of sets of size
   * {@code m, n, p} is a set of size {@code m x n x p}, its actual memory
   * consumption is much smaller. When the cartesian set is constructed, the
   * input sets are merely copied. Only as the resulting set is iterated are the
   * individual lists created, and these are not retained after iteration.
   *
   * @param sets the sets to choose elements from, in the order that
   *     the elements chosen from those sets should appear in the resulting
   *     lists
   * @param <B> any common base class shared by all axes (often just {@link
   *     Object})
   * @return the Cartesian product, as an immutable set containing immutable
   *     lists
   * @throws NullPointerException if {@code sets}, any one of the {@code sets},
   *     or any element of a provided set is null
   * @since 2.0
   */
  public static <B> Set> cartesianProduct(List> sets) {
    return CartesianSet.create(sets);
  }

  /**
   * Returns every possible list that can be formed by choosing one element
   * from each of the given sets in order; the "n-ary
   * <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
   * product</a>" of the sets. For example: 
   {@code
   *
   *   Sets.cartesianProduct(
   *       ImmutableSet.of(1, 2),
   *       ImmutableSet.of("A", "B", "C"))}</pre>
   *
   * <p>returns a set containing six lists:
   *
   * <ul>
   * <li>{@code ImmutableList.of(1, "A")}
   * <li>{@code ImmutableList.of(1, "B")}
   * <li>{@code ImmutableList.of(1, "C")}
   * <li>{@code ImmutableList.of(2, "A")}
   * <li>{@code ImmutableList.of(2, "B")}
   * <li>{@code ImmutableList.of(2, "C")}
   * </ul>
   *
   * <p>The result is guaranteed to be in the "traditional", lexicographical
   * order for Cartesian products that you would get from nesting for loops:
   * <pre>   {@code
   *
   *   for (B b0 : sets.get(0)) {
   *     for (B b1 : sets.get(1)) {
   *       ...
   *       ImmutableList<B> tuple = ImmutableList.of(b0, b1, ...);
   *       // operate on tuple
   *     }
   *   }}</pre>
   *
   * <p>Note that if any input set is empty, the Cartesian product will also be
   * empty. If no sets at all are provided (an empty list), the resulting
   * Cartesian product has one element, an empty list (counter-intuitive, but
   * mathematically consistent).
   *
   * <p>Performance notes: while the cartesian product of sets of size
   * {@code m, n, p} is a set of size {@code m x n x p}, its actual memory
   * consumption is much smaller. When the cartesian set is constructed, the
   * input sets are merely copied. Only as the resulting set is iterated are the
   * individual lists created, and these are not retained after iteration.
   *
   * @param sets the sets to choose elements from, in the order that
   *     the elements chosen from those sets should appear in the resulting
   *     lists
   * @param <B> any common base class shared by all axes (often just {@link
   *     Object})
   * @return the Cartesian product, as an immutable set containing immutable
   *     lists
   * @throws NullPointerException if {@code sets}, any one of the {@code sets},
   *     or any element of a provided set is null
   * @since 2.0
   */
  public static <B> Set> cartesianProduct(Set... sets) {
    return cartesianProduct(Arrays.asList(sets));
  }

  private static final class CartesianSet<E> extends ForwardingCollection>
      implements Set<List {
    private final transient ImmutableList<ImmutableSet axes;
    private final transient CartesianList<E> delegate;

    static <E> Set> create(List> sets) {
      ImmutableList.Builder<ImmutableSet axesBuilder =
          new ImmutableList.Builder<ImmutableSet(sets.size());
      for (Set<? extends E> set : sets) {
        ImmutableSet<E> copy = ImmutableSet.copyOf(set);
        if (copy.isEmpty()) {
          return ImmutableSet.of();
        }
        axesBuilder.add(copy);
      }
      final ImmutableList<ImmutableSet axes = axesBuilder.build();
      ImmutableList<List listAxes =
          new ImmutableList<List() {
            @Override
            public int size() {
              return axes.size();
            }

            @Override
            public List<E> get(int index) {
              return axes.get(index).asList();
            }

            @Override
            boolean isPartialView() {
              return true;
            }
          };
      return new CartesianSet<E>(axes, new CartesianList(listAxes));
    }

    private CartesianSet(ImmutableList<ImmutableSet axes, CartesianList delegate) {
      this.axes = axes;
      this.delegate = delegate;
    }

    @Override
    protected Collection<List delegate() {
      return delegate;
    }

    @Override
    public boolean equals(@Nullable Object object) {
      // Warning: this is broken if size() == 0, so it is critical that we
      // substitute an empty ImmutableSet to the user in place of this
      if (object instanceof CartesianSet) {
        CartesianSet<?> that = (CartesianSet) object;
        return this.axes.equals(that.axes);
      }
      return super.equals(object);
    }

    @Override
    public int hashCode() {
      // Warning: this is broken if size() == 0, so it is critical that we
      // substitute an empty ImmutableSet to the user in place of this

      // It's a weird formula, but tests prove it works.
      int adjust = size() - 1;
      for (int i = 0; i < axes.size(); i++) {
        adjust *= 31;
        adjust = ~~adjust;
        // in GWT, we have to deal with integer overflow carefully
      }
      int hash = 1;
      for (Set<E> axis : axes) {
        hash = 31 * hash + (size() / axis.size() * axis.hashCode());

        hash = ~~hash;
      }
      hash += adjust;
      return ~~hash;
    }
  }

  /**
   * Returns the set of all possible subsets of {@code set}. For example,
   * {@code powerSet(ImmutableSet.of(1, 2))} returns the set {@code {{},
   * {1}, {2}, {1, 2}}}.
   *
   * <p>Elements appear in these subsets in the same iteration order as they
   * appeared in the input set. The order in which these subsets appear in the
   * outer set is undefined. Note that the power set of the empty set is not the
   * empty set, but a one-element set containing the empty set.
   *
   * <p>The returned set and its constituent sets use {@code equals} to decide
   * whether two elements are identical, even if the input set uses a different
   * concept of equivalence.
   *
   * <p>Performance notes: while the power set of a set with size {@code
   * n} is of size {@code 2^n}, its memory usage is only {@code O(n)}. When the
   * power set is constructed, the input set is merely copied. Only as the
   * power set is iterated are the individual subsets created, and these subsets
   * themselves occupy only a small constant amount of memory.
   *
   * @param set the set of elements to construct a power set from
   * @return the power set, as an immutable set of immutable sets
   * @throws IllegalArgumentException if {@code set} has more than 30 unique
   *     elements (causing the power set size to exceed the {@code int} range)
   * @throws NullPointerException if {@code set} is or contains {@code null}
   * @see <a href="http://en.wikipedia.org/wiki/Power_set">Power set article at
   *      Wikipedia</a>
   * @since 4.0
   */
  @GwtCompatible(serializable = false)
  public static <E> Set> powerSet(Set set) {
    return new PowerSet<E>(set);
  }

  private static final class SubSet<E> extends AbstractSet {
    private final ImmutableMap<E, Integer> inputSet;
    private final int mask;

    SubSet(ImmutableMap<E, Integer> inputSet, int mask) {
      this.inputSet = inputSet;
      this.mask = mask;
    }

    @Override
    public Iterator<E> iterator() {
      return new UnmodifiableIterator<E>() {
        final ImmutableList<E> elements = inputSet.keySet().asList();
        int remainingSetBits = mask;

        @Override
        public boolean hasNext() {
          return remainingSetBits != 0;
        }

        @Override
        public E next() {
          int index = Integer.numberOfTrailingZeros(remainingSetBits);
          if (index == 32) {
            throw new NoSuchElementException();
          }
          remainingSetBits &= ~(1 << index);
          return elements.get(index);
        }
      };
    }

    @Override
    public int size() {
      return Integer.bitCount(mask);
    }

    @Override
    public boolean contains(@Nullable Object o) {
      Integer index = inputSet.get(o);
      return index != null && (mask & (1 << index)) != 0;
    }
  }

  private static final class PowerSet<E> extends AbstractSet> {
    final ImmutableMap<E, Integer> inputSet;

    PowerSet(Set<E> input) {
      this.inputSet = Maps.indexMap(input);
      checkArgument(
          inputSet.size() <= 30, "Too many elements to create power set: %s > 30", inputSet.size());
    }

    @Override
    public int size() {
      return 1 << inputSet.size();
    }

    @Override
    public boolean isEmpty() {
      return false;
    }

    @Override
    public Iterator<Set iterator() {
      return new AbstractIndexedListIterator<Set(size()) {
        @Override
        protected Set<E> get(final int setBits) {
          return new SubSet<E>(inputSet, setBits);
        }
      };
    }

    @Override
    public boolean contains(@Nullable Object obj) {
      if (obj instanceof Set) {
        Set<?> set = (Set) obj;
        return inputSet.keySet().containsAll(set);
      }
      return false;
    }

    @Override
    public boolean equals(@Nullable Object obj) {
      if (obj instanceof PowerSet) {
        PowerSet<?> that = (PowerSet) obj;
        return inputSet.equals(that.inputSet);
      }
      return super.equals(obj);
    }

    @Override
    public int hashCode() {
      /*
       * The sum of the sums of the hash codes in each subset is just the sum of
       * each input element's hash code times the number of sets that element
       * appears in. Each element appears in exactly half of the 2^n sets, so:
       */
      return inputSet.keySet().hashCode() << (inputSet.size() - 1);
    }

    @Override
    public String toString() {
      return "powerSet(" + inputSet + ")";
    }
  }

  /**
   * An implementation for {@link Set#hashCode()}.
   */
  static int hashCodeImpl(Set<?> s) {
    int hashCode = 0;
    for (Object o : s) {
      hashCode += o != null ? o.hashCode() : 0;

      hashCode = ~~hashCode;
      // Needed to deal with unusual integer overflow in GWT.
    }
    return hashCode;
  }

  /**
   * An implementation for {@link Set#equals(Object)}.
   */
  static boolean equalsImpl(Set<?> s, @Nullable Object object) {
    if (s == object) {
      return true;
    }
    if (object instanceof Set) {
      Set<?> o = (Set) object;

      try {
        return s.size() == o.size() && s.containsAll(o);
      } catch (NullPointerException ignored) {
        return false;
      } catch (ClassCastException ignored) {
        return false;
      }
    }
    return false;
  }

  /**
   * Returns an unmodifiable view of the specified navigable set. This method
   * allows modules to provide users with "read-only" access to internal
   * navigable sets. Query operations on the returned set "read through" to the
   * specified set, and attempts to modify the returned set, whether direct or
   * via its collection views, result in an
   * {@code UnsupportedOperationException}.
   *
   * <p>The returned navigable set will be serializable if the specified
   * navigable set is serializable.
   *
   * @param set the navigable set for which an unmodifiable view is to be
   *        returned
   * @return an unmodifiable view of the specified navigable set
   * @since 12.0
   */
  @GwtIncompatible // NavigableSet
  public static <E> NavigableSet unmodifiableNavigableSet(NavigableSet set) {
    if (set instanceof ImmutableSortedSet || set instanceof UnmodifiableNavigableSet) {
      return set;
    }
    return new UnmodifiableNavigableSet<E>(set);
  }

  @GwtIncompatible // NavigableSet
  static final class UnmodifiableNavigableSet<E> extends ForwardingSortedSet
      implements NavigableSet<E>, Serializable {
    private final NavigableSet<E> delegate;

    UnmodifiableNavigableSet(NavigableSet<E> delegate) {
      this.delegate = checkNotNull(delegate);
    }

    @Override
    protected SortedSet<E> delegate() {
      return Collections.unmodifiableSortedSet(delegate);
    }

    @Override
    public E lower(E e) {
      return delegate.lower(e);
    }

    @Override
    public E floor(E e) {
      return delegate.floor(e);
    }

    @Override
    public E ceiling(E e) {
      return delegate.ceiling(e);
    }

    @Override
    public E higher(E e) {
      return delegate.higher(e);
    }

    @Override
    public E pollFirst() {
      throw new UnsupportedOperationException();
    }

    @Override
    public E pollLast() {
      throw new UnsupportedOperationException();
    }

    private transient UnmodifiableNavigableSet<E> descendingSet;

    @Override
    public NavigableSet<E> descendingSet() {
      UnmodifiableNavigableSet<E> result = descendingSet;
      if (result == null) {
        result = descendingSet = new UnmodifiableNavigableSet<E>(delegate.descendingSet());
        result.descendingSet = this;
      }
      return result;
    }

    @Override
    public Iterator<E> descendingIterator() {
      return Iterators.unmodifiableIterator(delegate.descendingIterator());
    }

    @Override
    public NavigableSet<E> subSet(
        E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) {
      return unmodifiableNavigableSet(
          delegate.subSet(fromElement, fromInclusive, toElement, toInclusive));
    }

    @Override
    public NavigableSet<E> headSet(E toElement, boolean inclusive) {
      return unmodifiableNavigableSet(delegate.headSet(toElement, inclusive));
    }

    @Override
    public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
      return unmodifiableNavigableSet(delegate.tailSet(fromElement, inclusive));
    }

    private static final long serialVersionUID = 0;
  }

  /**
   * Returns a synchronized (thread-safe) navigable set backed by the specified
   * navigable set.  In order to guarantee serial access, it is critical that
   * <b>all access to the backing navigable set is accomplished
   * through the returned navigable set (or its views).
   *
   * <p>It is imperative that the user manually synchronize on the returned
   * sorted set when iterating over it or any of its {@code descendingSet},
   * {@code subSet}, {@code headSet}, or {@code tailSet} views. <pre>   {@code
   *
   *   NavigableSet<E> set = synchronizedNavigableSet(new TreeSet());
   *    ...
   *   synchronized (set) {
   *     // Must be in the synchronized block
   *     Iterator<E> it = set.iterator();
   *     while (it.hasNext()) {
   *       foo(it.next());
   *     }
   *   }}</pre>
   *
   * <p>or: 
   {@code
   *
   *   NavigableSet<E> set = synchronizedNavigableSet(new TreeSet());
   *   NavigableSet<E> set2 = set.descendingSet().headSet(foo);
   *    ...
   *   synchronized (set) { // Note: set, not set2!!!
   *     // Must be in the synchronized block
   *     Iterator<E> it = set2.descendingIterator();
   *     while (it.hasNext())
   *       foo(it.next());
   *     }
   *   }}</pre>
   *
   * <p>Failure to follow this advice may result in non-deterministic behavior.
   *
   * <p>The returned navigable set will be serializable if the specified
   * navigable set is serializable.
   *
   * @param navigableSet the navigable set to be "wrapped" in a synchronized
   *    navigable set.
   * @return a synchronized view of the specified navigable set.
   * @since 13.0
   */
  @GwtIncompatible // NavigableSet
  public static <E> NavigableSet synchronizedNavigableSet(NavigableSet navigableSet) {
    return Synchronized.navigableSet(navigableSet);
  }

  /**
   * Remove each element in an iterable from a set.
   */
  static boolean removeAllImpl(Set<?> set, Iterator iterator) {
    boolean changed = false;
    while (iterator.hasNext()) {
      changed |= set.remove(iterator.next());
    }
    return changed;
  }

  static boolean removeAllImpl(Set<?> set, Collection collection) {
    checkNotNull(collection); // for GWT
    if (collection instanceof Multiset) {
      collection = ((Multiset<?>) collection).elementSet();
    }
    /*
     * AbstractSet.removeAll(List) has quadratic behavior if the list size
     * is just less than the set's size.  We augment the test by
     * assuming that sets have fast contains() performance, and other
     * collections don't.  See
     * http://code.google.com/p/guava-libraries/issues/detail?id=1013
     */
    if (collection instanceof Set && collection.size() > set.size()) {
      return Iterators.removeAll(set.iterator(), collection);
    } else {
      return removeAllImpl(set, collection.iterator());
    }
  }

  @GwtIncompatible // NavigableSet
  static class DescendingSet<E> extends ForwardingNavigableSet {
    private final NavigableSet<E> forward;

    DescendingSet(NavigableSet<E> forward) {
      this.forward = forward;
    }

    @Override
    protected NavigableSet<E> delegate() {
      return forward;
    }

    @Override
    public E lower(E e) {
      return forward.higher(e);
    }

    @Override
    public E floor(E e) {
      return forward.ceiling(e);
    }

    @Override
    public E ceiling(E e) {
      return forward.floor(e);
    }

    @Override
    public E higher(E e) {
      return forward.lower(e);
    }

    @Override
    public E pollFirst() {
      return forward.pollLast();
    }

    @Override
    public E pollLast() {
      return forward.pollFirst();
    }

    @Override
    public NavigableSet<E> descendingSet() {
      return forward;
    }

    @Override
    public Iterator<E> descendingIterator() {
      return forward.iterator();
    }

    @Override
    public NavigableSet<E> subSet(
        E fromElement, boolean fromInclusive, E toElement, boolean toInclusive) {
      return forward.subSet(toElement, toInclusive, fromElement, fromInclusive).descendingSet();
    }

    @Override
    public NavigableSet<E> headSet(E toElement, boolean inclusive) {
      return forward.tailSet(toElement, inclusive).descendingSet();
    }

    @Override
    public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
      return forward.headSet(fromElement, inclusive).descendingSet();
    }

    @SuppressWarnings("unchecked")
    @Override
    public Comparator<? super E> comparator() {
      Comparator<? super E> forwardComparator = forward.comparator();
      if (forwardComparator == null) {
        return (Comparator) Ordering.natural().reverse();
      } else {
        return reverse(forwardComparator);
      }
    }

    // If we inline this, we get a javac error.
    private static <T> Ordering reverse(Comparator forward) {
      return Ordering.from(forward).reverse();
    }

    @Override
    public E first() {
      return forward.last();
    }

    @Override
    public SortedSet<E> headSet(E toElement) {
      return standardHeadSet(toElement);
    }

    @Override
    public E last() {
      return forward.first();
    }

    @Override
    public SortedSet<E> subSet(E fromElement, E toElement) {
      return standardSubSet(fromElement, toElement);
    }

    @Override
    public SortedSet<E> tailSet(E fromElement) {
      return standardTailSet(fromElement);
    }

    @Override
    public Iterator<E> iterator() {
      return forward.descendingIterator();
    }

    @Override
    public Object[] toArray() {
      return standardToArray();
    }

    @Override
    public <T> T[] toArray(T[] array) {
      return standardToArray(array);
    }

    @Override
    public String toString() {
      return standardToString();
    }
  }

  /**
   * Returns a view of the portion of {@code set} whose elements are contained by {@code range}.
   *
   * <p>This method delegates to the appropriate methods of {@link NavigableSet} (namely
   * {@link NavigableSet#subSet(Object, boolean, Object, boolean) subSet()},
   * {@link NavigableSet#tailSet(Object, boolean) tailSet()}, and
   * {@link NavigableSet#headSet(Object, boolean) headSet()}) to actually construct the view.
   * Consult these methods for a full description of the returned view's behavior.
   *
   * <p>Warning: {@code Range}s always represent a range of values using the values' natural
   * ordering. {@code NavigableSet} on the other hand can specify a custom ordering via a
   * {@link Comparator}, which can violate the natural ordering. Using this method (or in general
   * using {@code Range}) with unnaturally-ordered sets can lead to unexpected and undefined
   * behavior.
   *
   * @since 20.0
   */
  @Beta
  @GwtIncompatible // NavigableSet
  public static <K extends Comparable NavigableSet subSet(
      NavigableSet<K> set, Range range) {
    if (set.comparator() != null
        && set.comparator() != Ordering.natural()
        && range.hasLowerBound()
        && range.hasUpperBound()) {
      checkArgument(
          set.comparator().compare(range.lowerEndpoint(), range.upperEndpoint()) <= 0,
          "set is using a custom comparator which is inconsistent with the natural ordering.");
    }
    if (range.hasLowerBound() && range.hasUpperBound()) {
      return set.subSet(
          range.lowerEndpoint(),
          range.lowerBoundType() == BoundType.CLOSED,
          range.upperEndpoint(),
          range.upperBoundType() == BoundType.CLOSED);
    } else if (range.hasLowerBound()) {
      return set.tailSet(range.lowerEndpoint(), range.lowerBoundType() == BoundType.CLOSED);
    } else if (range.hasUpperBound()) {
      return set.headSet(range.upperEndpoint(), range.upperBoundType() == BoundType.CLOSED);
    }
    return checkNotNull(set);
  }
}

Other Java examples (source code examples)

Here is a short list of links related to this Java Sets.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.