alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (UnsignedLongs.java)

This example Java source code file (UnsignedLongs.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

beta, biginteger, canignorereturnvalue, comparator, equivalent, error, gwtcompatible, instance, lexicographicalcomparator, math, max_value, numberformatexception, override, string, unsignedlongs, util

The UnsignedLongs.java Java example source code

/*
 * Copyright (C) 2011 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
 * in compliance with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License
 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing permissions and limitations under
 * the License.
 */

package com.google.common.primitives;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;

import com.google.common.annotations.Beta;
import com.google.common.annotations.GwtCompatible;
import com.google.errorprone.annotations.CanIgnoreReturnValue;

import java.math.BigInteger;
import java.util.Arrays;
import java.util.Comparator;

/**
 * Static utility methods pertaining to {@code long} primitives that interpret values as
 * <i>unsigned (that is, any negative value {@code x} is treated as the positive value
 * {@code 2^64 + x}). The methods for which signedness is not an issue are in {@link Longs}, as well
 * as signed versions of methods for which signedness is an issue.
 *
 * <p>In addition, this class provides several static methods for converting a {@code long} to a
 * {@code String} and a {@code String} to a {@code long} that treat the {@code long} as an unsigned
 * number.
 *
 * <p>Users of these utilities must be extremely careful not to mix up signed and unsigned
 * {@code long} values. When possible, it is recommended that the {@link UnsignedLong} wrapper class
 * be used, at a small efficiency penalty, to enforce the distinction in the type system.
 *
 * <p>See the Guava User Guide article on
 * <a href="https://github.com/google/guava/wiki/PrimitivesExplained#unsigned-support">unsigned
 * primitive utilities</a>.
 *
 * @author Louis Wasserman
 * @author Brian Milch
 * @author Colin Evans
 * @since 10.0
 */
@Beta
@GwtCompatible
public final class UnsignedLongs {
  private UnsignedLongs() {}

  public static final long MAX_VALUE = -1L; // Equivalent to 2^64 - 1

  /**
   * A (self-inverse) bijection which converts the ordering on unsigned longs to the ordering on
   * longs, that is, {@code a <= b} as unsigned longs if and only if {@code flip(a) <= flip(b)} as
   * signed longs.
   */
  private static long flip(long a) {
    return a ^ Long.MIN_VALUE;
  }

  /**
   * Compares the two specified {@code long} values, treating them as unsigned values between
   * {@code 0} and {@code 2^64 - 1} inclusive.
   *
   * @param a the first unsigned {@code long} to compare
   * @param b the second unsigned {@code long} to compare
   * @return a negative value if {@code a} is less than {@code b}; a positive value if {@code a} is
   *     greater than {@code b}; or zero if they are equal
   */
  public static int compare(long a, long b) {
    return Longs.compare(flip(a), flip(b));
  }

  /**
   * Returns the least value present in {@code array}, treating values as unsigned.
   *
   * @param array a <i>nonempty array of unsigned {@code long} values
   * @return the value present in {@code array} that is less than or equal to every other value in
   *     the array according to {@link #compare}
   * @throws IllegalArgumentException if {@code array} is empty
   */
  public static long min(long... array) {
    checkArgument(array.length > 0);
    long min = flip(array[0]);
    for (int i = 1; i < array.length; i++) {
      long next = flip(array[i]);
      if (next < min) {
        min = next;
      }
    }
    return flip(min);
  }

  /**
   * Returns the greatest value present in {@code array}, treating values as unsigned.
   *
   * @param array a <i>nonempty array of unsigned {@code long} values
   * @return the value present in {@code array} that is greater than or equal to every other value
   *     in the array according to {@link #compare}
   * @throws IllegalArgumentException if {@code array} is empty
   */
  public static long max(long... array) {
    checkArgument(array.length > 0);
    long max = flip(array[0]);
    for (int i = 1; i < array.length; i++) {
      long next = flip(array[i]);
      if (next > max) {
        max = next;
      }
    }
    return flip(max);
  }

  /**
   * Returns a string containing the supplied unsigned {@code long} values separated by
   * {@code separator}. For example, {@code join("-", 1, 2, 3)} returns the string {@code "1-2-3"}.
   *
   * @param separator the text that should appear between consecutive values in the resulting string
   *     (but not at the start or end)
   * @param array an array of unsigned {@code long} values, possibly empty
   */
  public static String join(String separator, long... array) {
    checkNotNull(separator);
    if (array.length == 0) {
      return "";
    }

    // For pre-sizing a builder, just get the right order of magnitude
    StringBuilder builder = new StringBuilder(array.length * 5);
    builder.append(toString(array[0]));
    for (int i = 1; i < array.length; i++) {
      builder.append(separator).append(toString(array[i]));
    }
    return builder.toString();
  }

  /**
   * Returns a comparator that compares two arrays of unsigned {@code long} values <a
   * href="http://en.wikipedia.org/wiki/Lexicographical_order">lexicographically</a>. That is, it
   * compares, using {@link #compare(long, long)}), the first pair of values that follow any common
   * prefix, or when one array is a prefix of the other, treats the shorter array as the lesser. For
   * example, {@code [] < [1L] < [1L, 2L] < [2L] < [1L << 63]}.
   *
   * <p>The returned comparator is inconsistent with {@link Object#equals(Object)} (since arrays
   * support only identity equality), but it is consistent with
   * {@link Arrays#equals(long[], long[])}.
   */
  public static Comparator<long[]> lexicographicalComparator() {
    return LexicographicalComparator.INSTANCE;
  }

  enum LexicographicalComparator implements Comparator<long[]> {
    INSTANCE;

    @Override
    public int compare(long[] left, long[] right) {
      int minLength = Math.min(left.length, right.length);
      for (int i = 0; i < minLength; i++) {
        if (left[i] != right[i]) {
          return UnsignedLongs.compare(left[i], right[i]);
        }
      }
      return left.length - right.length;
    }

    @Override
    public String toString() {
      return "UnsignedLongs.lexicographicalComparator()";
    }
  }

  /**
   * Returns dividend / divisor, where the dividend and divisor are treated as unsigned 64-bit
   * quantities.
   *
   * @param dividend the dividend (numerator)
   * @param divisor the divisor (denominator)
   * @throws ArithmeticException if divisor is 0
   */
  public static long divide(long dividend, long divisor) {
    if (divisor < 0) { // i.e., divisor >= 2^63:
      if (compare(dividend, divisor) < 0) {
        return 0; // dividend < divisor
      } else {
        return 1; // dividend >= divisor
      }
    }

    // Optimization - use signed division if dividend < 2^63
    if (dividend >= 0) {
      return dividend / divisor;
    }

    /*
     * Otherwise, approximate the quotient, check, and correct if necessary. Our approximation is
     * guaranteed to be either exact or one less than the correct value. This follows from fact that
     * floor(floor(x)/i) == floor(x/i) for any real x and integer i != 0. The proof is not quite
     * trivial.
     */
    long quotient = ((dividend >>> 1) / divisor) << 1;
    long rem = dividend - quotient * divisor;
    return quotient + (compare(rem, divisor) >= 0 ? 1 : 0);
  }

  /**
   * Returns dividend % divisor, where the dividend and divisor are treated as unsigned 64-bit
   * quantities.
   *
   * @param dividend the dividend (numerator)
   * @param divisor the divisor (denominator)
   * @throws ArithmeticException if divisor is 0
   * @since 11.0
   */
  public static long remainder(long dividend, long divisor) {
    if (divisor < 0) { // i.e., divisor >= 2^63:
      if (compare(dividend, divisor) < 0) {
        return dividend; // dividend < divisor
      } else {
        return dividend - divisor; // dividend >= divisor
      }
    }

    // Optimization - use signed modulus if dividend < 2^63
    if (dividend >= 0) {
      return dividend % divisor;
    }

    /*
     * Otherwise, approximate the quotient, check, and correct if necessary. Our approximation is
     * guaranteed to be either exact or one less than the correct value. This follows from the fact
     * that floor(floor(x)/i) == floor(x/i) for any real x and integer i != 0. The proof is not
     * quite trivial.
     */
    long quotient = ((dividend >>> 1) / divisor) << 1;
    long rem = dividend - quotient * divisor;
    return rem - (compare(rem, divisor) >= 0 ? divisor : 0);
  }

  /**
   * Returns the unsigned {@code long} value represented by the given decimal string.
   *
   * @throws NumberFormatException if the string does not contain a valid unsigned {@code long}
   *     value
   * @throws NullPointerException if {@code string} is null (in contrast to
   *     {@link Long#parseLong(String)})
   */
  @CanIgnoreReturnValue
  public static long parseUnsignedLong(String string) {
    return parseUnsignedLong(string, 10);
  }

  /**
   * Returns the unsigned {@code long} value represented by the given string.
   *
   * Accepts a decimal, hexadecimal, or octal number given by specifying the following prefix:
   *
   * <ul>
   * <li>{@code 0x}HexDigits
   * <li>{@code 0X}HexDigits
   * <li>{@code #}HexDigits
   * <li>{@code 0}OctalDigits
   * </ul>
   *
   * @throws NumberFormatException if the string does not contain a valid unsigned {@code long}
   *     value
   * @since 13.0
   */
  @CanIgnoreReturnValue
  public static long decode(String stringValue) {
    ParseRequest request = ParseRequest.fromString(stringValue);

    try {
      return parseUnsignedLong(request.rawValue, request.radix);
    } catch (NumberFormatException e) {
      NumberFormatException decodeException =
          new NumberFormatException("Error parsing value: " + stringValue);
      decodeException.initCause(e);
      throw decodeException;
    }
  }

  /**
   * Returns the unsigned {@code long} value represented by a string with the given radix.
   *
   * @param s the string containing the unsigned {@code long} representation to be parsed.
   * @param radix the radix to use while parsing {@code string}
   * @throws NumberFormatException if the string does not contain a valid unsigned {@code long} with
   *     the given radix, or if {@code radix} is not between {@link Character#MIN_RADIX} and
   *     {@link Character#MAX_RADIX}.
   * @throws NullPointerException if {@code string} is null (in contrast to
   *     {@link Long#parseLong(String)})
   */
  @CanIgnoreReturnValue
  public static long parseUnsignedLong(String string, int radix) {
    checkNotNull(string);
    if (string.length() == 0) {
      throw new NumberFormatException("empty string");
    }
    if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX) {
      throw new NumberFormatException("illegal radix: " + radix);
    }

    int maxSafePos = maxSafeDigits[radix] - 1;
    long value = 0;
    for (int pos = 0; pos < string.length(); pos++) {
      int digit = Character.digit(string.charAt(pos), radix);
      if (digit == -1) {
        throw new NumberFormatException(string);
      }
      if (pos > maxSafePos && overflowInParse(value, digit, radix)) {
        throw new NumberFormatException("Too large for unsigned long: " + string);
      }
      value = (value * radix) + digit;
    }

    return value;
  }

  /**
   * Returns true if (current * radix) + digit is a number too large to be represented by an
   * unsigned long. This is useful for detecting overflow while parsing a string representation of a
   * number. Does not verify whether supplied radix is valid, passing an invalid radix will give
   * undefined results or an ArrayIndexOutOfBoundsException.
   */
  private static boolean overflowInParse(long current, int digit, int radix) {
    if (current >= 0) {
      if (current < maxValueDivs[radix]) {
        return false;
      }
      if (current > maxValueDivs[radix]) {
        return true;
      }
      // current == maxValueDivs[radix]
      return (digit > maxValueMods[radix]);
    }

    // current < 0: high bit is set
    return true;
  }

  /**
   * Returns a string representation of x, where x is treated as unsigned.
   */
  public static String toString(long x) {
    return toString(x, 10);
  }

  /**
   * Returns a string representation of {@code x} for the given radix, where {@code x} is treated as
   * unsigned.
   *
   * @param x the value to convert to a string.
   * @param radix the radix to use while working with {@code x}
   * @throws IllegalArgumentException if {@code radix} is not between {@link Character#MIN_RADIX}
   *     and {@link Character#MAX_RADIX}.
   */
  public static String toString(long x, int radix) {
    checkArgument(
        radix >= Character.MIN_RADIX && radix <= Character.MAX_RADIX,
        "radix (%s) must be between Character.MIN_RADIX and Character.MAX_RADIX",
        radix);
    if (x == 0) {
      // Simply return "0"
      return "0";
    } else if (x > 0) {
      return Long.toString(x, radix);
    } else {
      char[] buf = new char[64];
      int i = buf.length;
      if ((radix & (radix - 1)) == 0) {
        // Radix is a power of two so we can avoid division.
        int shift = Integer.numberOfTrailingZeros(radix);
        int mask = radix - 1;
        do {
          buf[--i] = Character.forDigit(((int) x) & mask, radix);
          x >>>= shift;
        } while (x != 0);
      } else {
        // Separate off the last digit using unsigned division. That will leave
        // a number that is nonnegative as a signed integer.
        long quotient;
        if ((radix & 1) == 0) {
          // Fast path for the usual case where the radix is even.
          quotient = (x >>> 1) / (radix >>> 1);
        } else {
          quotient = divide(x, radix);
        }
        long rem = x - quotient * radix;
        buf[--i] = Character.forDigit((int) rem, radix);
        x = quotient;
        // Simple modulo/division approach
        while (x > 0) {
          buf[--i] = Character.forDigit((int) (x % radix), radix);
          x /= radix;
        }
      }
      // Generate string
      return new String(buf, i, buf.length - i);
    }
  }

  // calculated as 0xffffffffffffffff / radix
  private static final long[] maxValueDivs = new long[Character.MAX_RADIX + 1];
  private static final int[] maxValueMods = new int[Character.MAX_RADIX + 1];
  private static final int[] maxSafeDigits = new int[Character.MAX_RADIX + 1];

  static {
    BigInteger overflow = new BigInteger("10000000000000000", 16);
    for (int i = Character.MIN_RADIX; i <= Character.MAX_RADIX; i++) {
      maxValueDivs[i] = divide(MAX_VALUE, i);
      maxValueMods[i] = (int) remainder(MAX_VALUE, i);
      maxSafeDigits[i] = overflow.toString(i).length() - 1;
    }
  }
}

Other Java examples (source code examples)

Here is a short list of links related to this Java UnsignedLongs.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.