alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Lucene example source code file (JaspellTernarySearchTrie.java)

This example Lucene source code file (JaspellTernarySearchTrie.java) is included in the DevDaily.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Java - Lucene tags/keywords

bufferedreader, float, float, io, ioexception, jaspellternarysearchtrie, list, list, object, string, string, stringbuffer, tstnode, tstnode, util, vector, zip

The Lucene JaspellTernarySearchTrie.java source code

package org.apache.lucene.search.suggest.jaspell;

/** 
 * Copyright (c) 2005 Bruno Martins
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without 
 * modification, are permitted provided that the following conditions 
 * are met:
 * 1. Redistributions of source code must retain the above copyright 
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the organization nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */

import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.List;
import java.util.Vector;
import java.util.zip.GZIPInputStream;

/**
 * Implementation of a Ternary Search Trie, a data structure for storing
 * <code>String objects that combines the compact size of a binary search
 * tree with the speed of a digital search trie, and is therefore ideal for
 * practical use in sorting and searching data.</p>
 * <p>
 * 
 * This data structure is faster than hashing for many typical search problems,
 * and supports a broader range of useful problems and operations. Ternary
 * searches are faster than hashing and more powerful, too.
 * </p>
 * <p>
 * 
 * The theory of ternary search trees was described at a symposium in 1997 (see
 * "Fast Algorithms for Sorting and Searching Strings," by J.L. Bentley and R.
 * Sedgewick, Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete
 * Algorithms, January 1997). Algorithms in C, Third Edition, by Robert
 * Sedgewick (Addison-Wesley, 1998) provides yet another view of ternary search
 * trees.
 * 
 * @author Bruno Martins
 * 
 */
public class JaspellTernarySearchTrie {

  /**
   * An inner class of Ternary Search Trie that represents a node in the trie.
   */
  protected final class TSTNode {

    /** Index values for accessing relatives array. */
    protected final static int PARENT = 0, LOKID = 1, EQKID = 2, HIKID = 3;

    /** The key to the node. */
    protected Object data;

    /** The relative nodes. */
    protected TSTNode[] relatives = new TSTNode[4];

    /** The char used in the split. */
    protected char splitchar;

    /**
     * Constructor method.
     * 
     *@param splitchar
     *          The char used in the split.
     *@param parent
     *          The parent node.
     */
    protected TSTNode(char splitchar, TSTNode parent) {
      this.splitchar = splitchar;
      relatives[PARENT] = parent;
    }
  }

  /**
   * Compares characters by alfabetical order.
   * 
   *@param cCompare2
   *          The first char in the comparison.
   *@param cRef
   *          The second char in the comparison.
   *@return A negative number, 0 or a positive number if the second char is
   *         less, equal or greater.
   */
  private static int compareCharsAlphabetically(char cCompare2, char cRef) {
    return Character.toLowerCase(cCompare2) - Character.toLowerCase(cRef);
  }
  
  /* what follows is the original Jaspell code. 
  private static int compareCharsAlphabetically(int cCompare2, int cRef) {
    int cCompare = 0;
    if (cCompare2 >= 65) {
      if (cCompare2 < 89) {
        cCompare = (2 * cCompare2) - 65;
      } else if (cCompare2 < 97) {
        cCompare = cCompare2 + 24;
      } else if (cCompare2 < 121) {
        cCompare = (2 * cCompare2) - 128;
      } else cCompare = cCompare2;
    } else cCompare = cCompare2;
    if (cRef < 65) {
      return cCompare - cRef;
    }
    if (cRef < 89) {
      return cCompare - ((2 * cRef) - 65);
    }
    if (cRef < 97) {
      return cCompare - (cRef + 24);
    }
    if (cRef < 121) {
      return cCompare - ((2 * cRef) - 128);
    }
    return cCompare - cRef;
  }
  */

  /**
   * The default number of values returned by the <code>matchAlmost
   * method.
   */
  private int defaultNumReturnValues = -1;

  /**
   * the number of differences allowed in a call to the
   * <code>matchAlmostKey method.
   */
  private int matchAlmostDiff;

  /** The base node in the trie. */
  private TSTNode rootNode;

  /**
   * Constructs an empty Ternary Search Trie.
   */
  public JaspellTernarySearchTrie() {
  }
  
  // for loading
  void setRoot(TSTNode newRoot) {
    rootNode = newRoot;
  }
  
  // for saving
  TSTNode getRoot() {
    return rootNode;
  }

  /**
   * Constructs a Ternary Search Trie and loads data from a <code>File
   * into the Trie. The file is a normal text document, where each line is of
   * the form word TAB float.
   * 
   *@param file
   *          The <code>File with the data to load into the Trie.
   *@exception IOException
   *              A problem occured while reading the data.
   */
  public JaspellTernarySearchTrie(File file) throws IOException {
    this(file, false);
  }

  /**
   * Constructs a Ternary Search Trie and loads data from a <code>File
   * into the Trie. The file is a normal text document, where each line is of
   * the form "word TAB float".
   * 
   *@param file
   *          The <code>File with the data to load into the Trie.
   *@param compression
   *          If true, the file is compressed with the GZIP algorithm, and if
   *          false, the file is a normal text document.
   *@exception IOException
   *              A problem occured while reading the data.
   */
  public JaspellTernarySearchTrie(File file, boolean compression)
          throws IOException {
    this();
    BufferedReader in;
    if (compression)
      in = new BufferedReader(new InputStreamReader(new GZIPInputStream(
              new FileInputStream(file))));
    else in = new BufferedReader(new InputStreamReader((new FileInputStream(
            file))));
    String word;
    int pos;
    Float occur, one = new Float(1);
    int numWords = 0;
    while ((word = in.readLine()) != null) {
      numWords++;
      pos = word.indexOf("\t");
      occur = one;
      if (pos != -1) {
        occur = Float.parseFloat(word.substring(pos + 1).trim());
        word = word.substring(0, pos);
      }
      String key = word.toLowerCase();
      if (rootNode == null) {
        rootNode = new TSTNode(key.charAt(0), null);
      }
      TSTNode node = null;
      if (key.length() > 0 && rootNode != null) {
        TSTNode currentNode = rootNode;
        int charIndex = 0;
        while (true) {
          if (currentNode == null) break;
          int charComp = compareCharsAlphabetically(key.charAt(charIndex),
                  currentNode.splitchar);
          if (charComp == 0) {
            charIndex++;
            if (charIndex == key.length()) {
              node = currentNode;
              break;
            }
            currentNode = currentNode.relatives[TSTNode.EQKID];
          } else if (charComp < 0) {
            currentNode = currentNode.relatives[TSTNode.LOKID];
          } else {
            currentNode = currentNode.relatives[TSTNode.HIKID];
          }
        }
        Float occur2 = null;
        if (node != null) occur2 = ((Float) (node.data));
        if (occur2 != null) {
          occur += occur2.floatValue();
        }
        currentNode = getOrCreateNode(word.trim().toLowerCase());
        currentNode.data = occur;
      }
    }
    in.close();
  }

  /**
   * Deletes the node passed in as an argument. If this node has non-null data,
   * then both the node and the data will be deleted. It also deletes any other
   * nodes in the trie that are no longer needed after the deletion of the node.
   * 
   *@param nodeToDelete
   *          The node to delete.
   */
  private void deleteNode(TSTNode nodeToDelete) {
    if (nodeToDelete == null) {
      return;
    }
    nodeToDelete.data = null;
    while (nodeToDelete != null) {
      nodeToDelete = deleteNodeRecursion(nodeToDelete);
      // deleteNodeRecursion(nodeToDelete);
    }
  }

  /**
   * Recursively visits each node to be deleted.
   * 
   * To delete a node, first set its data to null, then pass it into this
   * method, then pass the node returned by this method into this method (make
   * sure you don't delete the data of any of the nodes returned from this
   * method!) and continue in this fashion until the node returned by this
   * method is <code>null.
   * 
   * The TSTNode instance returned by this method will be next node to be
   * operated on by <code>deleteNodeRecursion (This emulates recursive
   * method call while avoiding the JVM overhead normally associated with a
   * recursive method.)
   * 
   *@param currentNode
   *          The node to delete.
   *@return The next node to be called in deleteNodeRecursion.
   */
  private TSTNode deleteNodeRecursion(TSTNode currentNode) {
    if (currentNode == null) {
      return null;
    }
    if (currentNode.relatives[TSTNode.EQKID] != null
            || currentNode.data != null) {
      return null;
    }
    // can't delete this node if it has a non-null eq kid or data
    TSTNode currentParent = currentNode.relatives[TSTNode.PARENT];
    boolean lokidNull = currentNode.relatives[TSTNode.LOKID] == null;
    boolean hikidNull = currentNode.relatives[TSTNode.HIKID] == null;
    int childType;
    if (currentParent.relatives[TSTNode.LOKID] == currentNode) {
      childType = TSTNode.LOKID;
    } else if (currentParent.relatives[TSTNode.EQKID] == currentNode) {
      childType = TSTNode.EQKID;
    } else if (currentParent.relatives[TSTNode.HIKID] == currentNode) {
      childType = TSTNode.HIKID;
    } else {
      rootNode = null;
      return null;
    }
    if (lokidNull && hikidNull) {
      currentParent.relatives[childType] = null;
      return currentParent;
    }
    if (lokidNull) {
      currentParent.relatives[childType] = currentNode.relatives[TSTNode.HIKID];
      currentNode.relatives[TSTNode.HIKID].relatives[TSTNode.PARENT] = currentParent;
      return currentParent;
    }
    if (hikidNull) {
      currentParent.relatives[childType] = currentNode.relatives[TSTNode.LOKID];
      currentNode.relatives[TSTNode.LOKID].relatives[TSTNode.PARENT] = currentParent;
      return currentParent;
    }
    int deltaHi = currentNode.relatives[TSTNode.HIKID].splitchar
            - currentNode.splitchar;
    int deltaLo = currentNode.splitchar
            - currentNode.relatives[TSTNode.LOKID].splitchar;
    int movingKid;
    TSTNode targetNode;
    if (deltaHi == deltaLo) {
      if (Math.random() < 0.5) {
        deltaHi++;
      } else {
        deltaLo++;
      }
    }
    if (deltaHi > deltaLo) {
      movingKid = TSTNode.HIKID;
      targetNode = currentNode.relatives[TSTNode.LOKID];
    } else {
      movingKid = TSTNode.LOKID;
      targetNode = currentNode.relatives[TSTNode.HIKID];
    }
    while (targetNode.relatives[movingKid] != null) {
      targetNode = targetNode.relatives[movingKid];
    }
    targetNode.relatives[movingKid] = currentNode.relatives[movingKid];
    currentParent.relatives[childType] = targetNode;
    targetNode.relatives[TSTNode.PARENT] = currentParent;
    if (!lokidNull) {
      currentNode.relatives[TSTNode.LOKID] = null;
    }
    if (!hikidNull) {
      currentNode.relatives[TSTNode.HIKID] = null;
    }
    return currentParent;
  }

  /**
   * Retrieve the object indexed by a key.
   * 
   *@param key
   *          A <code>String index.
   *@return The object retrieved from the Ternary Search Trie.
   */
  public Object get(String key) {
    TSTNode node = getNode(key.trim().toLowerCase());
    if (node == null) {
      return null;
    }
    return node.data;
  }

  /**
   * Retrieve the <code>Float indexed by key, increment it by one unit
   * and store the new <code>Float.
   * 
   *@param key
   *          A <code>String index.
   *@return The <code>Float retrieved from the Ternary Search Trie.
   */
  public Float getAndIncrement(String key) {
    String key2 = key.trim().toLowerCase();
    TSTNode node = getNode(key2);
    if (node == null) {
      return null;
    }
    Float aux = (Float) (node.data);
    if (aux == null) {
      aux = new Float(1);
    } else {
      aux = new Float(aux.intValue() + 1);
    }
    put(key2, aux);
    return aux;
  }

  /**
   * Returns the key that indexes the node argument.
   * 
   *@param node
   *          The node whose index is to be calculated.
   *@return The <code>String that indexes the node argument.
   */
  protected String getKey(TSTNode node) {
    StringBuffer getKeyBuffer = new StringBuffer();
    getKeyBuffer.setLength(0);
    getKeyBuffer.append("" + node.splitchar);
    TSTNode currentNode;
    TSTNode lastNode;
    currentNode = node.relatives[TSTNode.PARENT];
    lastNode = node;
    while (currentNode != null) {
      if (currentNode.relatives[TSTNode.EQKID] == lastNode) {
        getKeyBuffer.append("" + currentNode.splitchar);
      }
      lastNode = currentNode;
      currentNode = currentNode.relatives[TSTNode.PARENT];
    }
    getKeyBuffer.reverse();
    return getKeyBuffer.toString();
  }

  /**
   * Returns the node indexed by key, or <code>null if that node doesn't
   * exist. Search begins at root node.
   * 
   *@param key
   *          A <code>String that indexes the node that is returned.
   *@return The node object indexed by key. This object is an instance of an
   *         inner class named <code>TernarySearchTrie.TSTNode.
   */
  public TSTNode getNode(String key) {
    return getNode(key, rootNode);
  }

  /**
   * Returns the node indexed by key, or <code>null if that node doesn't
   * exist. The search begins at root node.
   * 
   *@param key2
   *          A <code>String that indexes the node that is returned.
   *@param startNode
   *          The top node defining the subtrie to be searched.
   *@return The node object indexed by key. This object is an instance of an
   *         inner class named <code>TernarySearchTrie.TSTNode.
   */
  protected TSTNode getNode(String key2, TSTNode startNode) {
    String key = key2.trim().toLowerCase();
    if (key == null || startNode == null || key.length() == 0) {
      return null;
    }
    TSTNode currentNode = startNode;
    int charIndex = 0;
    while (true) {
      if (currentNode == null) {
        return null;
      }
      int charComp = compareCharsAlphabetically(key.charAt(charIndex),
              currentNode.splitchar);
      if (charComp == 0) {
        charIndex++;
        if (charIndex == key.length()) {
          return currentNode;
        }
        currentNode = currentNode.relatives[TSTNode.EQKID];
      } else if (charComp < 0) {
        currentNode = currentNode.relatives[TSTNode.LOKID];
      } else {
        currentNode = currentNode.relatives[TSTNode.HIKID];
      }
    }
  }

  /**
   * Returns the node indexed by key, creating that node if it doesn't exist,
   * and creating any required intermediate nodes if they don't exist.
   * 
   *@param key
   *          A <code>String that indexes the node that is returned.
   *@return The node object indexed by key. This object is an instance of an
   *         inner class named <code>TernarySearchTrie.TSTNode.
   *@exception NullPointerException
   *              If the key is <code>null.
   *@exception IllegalArgumentException
   *              If the key is an empty <code>String.
   */
  protected TSTNode getOrCreateNode(String key) throws NullPointerException,
          IllegalArgumentException {
    if (key == null) {
      throw new NullPointerException(
              "attempt to get or create node with null key");
    }
    if (key.length() == 0) {
      throw new IllegalArgumentException(
              "attempt to get or create node with key of zero length");
    }
    if (rootNode == null) {
      rootNode = new TSTNode(key.charAt(0), null);
    }
    TSTNode currentNode = rootNode;
    int charIndex = 0;
    while (true) {
      int charComp = compareCharsAlphabetically(key.charAt(charIndex),
              currentNode.splitchar);
      if (charComp == 0) {
        charIndex++;
        if (charIndex == key.length()) {
          return currentNode;
        }
        if (currentNode.relatives[TSTNode.EQKID] == null) {
          currentNode.relatives[TSTNode.EQKID] = new TSTNode(key
                  .charAt(charIndex), currentNode);
        }
        currentNode = currentNode.relatives[TSTNode.EQKID];
      } else if (charComp < 0) {
        if (currentNode.relatives[TSTNode.LOKID] == null) {
          currentNode.relatives[TSTNode.LOKID] = new TSTNode(key
                  .charAt(charIndex), currentNode);
        }
        currentNode = currentNode.relatives[TSTNode.LOKID];
      } else {
        if (currentNode.relatives[TSTNode.HIKID] == null) {
          currentNode.relatives[TSTNode.HIKID] = new TSTNode(key
                  .charAt(charIndex), currentNode);
        }
        currentNode = currentNode.relatives[TSTNode.HIKID];
      }
    }
  }

  /**
   * Returns a <code>List of keys that almost match the argument key.
   * Keys returned will have exactly diff characters that do not match the
   * target key, where diff is equal to the last value passed in as an argument
   * to the <code>setMatchAlmostDiff method.
   * <p>
   * If the <code>matchAlmost method is called before the
   * <code>setMatchAlmostDiff method has been called for the first time,
   * then diff = 0.
   * 
   *@param key
   *          The target key.
   *@return A <code>List with the results.
   */
  public List<String> matchAlmost(String key) {
    return matchAlmost(key, defaultNumReturnValues);
  }

  /**
   * Returns a <code>List of keys that almost match the argument key.
   * Keys returned will have exactly diff characters that do not match the
   * target key, where diff is equal to the last value passed in as an argument
   * to the <code>setMatchAlmostDiff method.
   * <p>
   * If the <code>matchAlmost method is called before the
   * <code>setMatchAlmostDiff method has been called for the first time,
   * then diff = 0.
   * 
   *@param key
   *          The target key.
   *@param numReturnValues
   *          The maximum number of values returned by this method.
   *@return A <code>List with the results
   */
  public List<String> matchAlmost(String key, int numReturnValues) {
    return matchAlmostRecursion(rootNode, 0, matchAlmostDiff, key,
            ((numReturnValues < 0) ? -1 : numReturnValues), new Vector.
   *@param matchAlmostResult2
   *          The results so far.
   *@param upTo
   *          If true all keys having up to and including matchAlmostDiff
   *          mismatched letters will be included in the result (including a key
   *          that is exactly the same as the target string) otherwise keys will
   *          be included in the result only if they have exactly
   *          matchAlmostDiff number of mismatched letters.
   *@param matchAlmostKey
   *          The key being searched.
   *@return A <code>List with the results.
   */
  private List<String> matchAlmostRecursion(TSTNode currentNode, int charIndex,
          int d, String matchAlmostKey, int matchAlmostNumReturnValues,
          List<String> matchAlmostResult2, boolean upTo) {
    if ((currentNode == null)
            || (matchAlmostNumReturnValues != -1 && matchAlmostResult2.size() >= matchAlmostNumReturnValues)
            || (d < 0) || (charIndex >= matchAlmostKey.length())) {
      return matchAlmostResult2;
    }
    int charComp = compareCharsAlphabetically(matchAlmostKey.charAt(charIndex),
            currentNode.splitchar);
    List<String> matchAlmostResult = matchAlmostResult2;
    if ((d > 0) || (charComp < 0)) {
      matchAlmostResult = matchAlmostRecursion(
              currentNode.relatives[TSTNode.LOKID], charIndex, d,
              matchAlmostKey, matchAlmostNumReturnValues, matchAlmostResult,
              upTo);
    }
    int nextD = (charComp == 0) ? d : d - 1;
    boolean cond = (upTo) ? (nextD >= 0) : (nextD == 0);
    if ((matchAlmostKey.length() == charIndex + 1) && cond
            && (currentNode.data != null)) {
      matchAlmostResult.add(getKey(currentNode));
    }
    matchAlmostResult = matchAlmostRecursion(
            currentNode.relatives[TSTNode.EQKID], charIndex + 1, nextD,
            matchAlmostKey, matchAlmostNumReturnValues, matchAlmostResult, upTo);
    if ((d > 0) || (charComp > 0)) {
      matchAlmostResult = matchAlmostRecursion(
              currentNode.relatives[TSTNode.HIKID], charIndex, d,
              matchAlmostKey, matchAlmostNumReturnValues, matchAlmostResult,
              upTo);
    }
    return matchAlmostResult;
  }

  /**
   * Returns an alphabetical <code>List of all keys in the trie that
   * begin with a given prefix. Only keys for nodes having non-null data are
   * included in the <code>List.
   * 
   *@param prefix
   *          Each key returned from this method will begin with the characters
   *          in prefix.
   *@return A <code>List with the results.
   */
  public List<String> matchPrefix(String prefix) {
    return matchPrefix(prefix, defaultNumReturnValues);
  }

  /**
   * Returns an alphabetical <code>List of all keys in the trie that
   * begin with a given prefix. Only keys for nodes having non-null data are
   * included in the <code>List.
   * 
   *@param prefix
   *          Each key returned from this method will begin with the characters
   *          in prefix.
   *@param numReturnValues
   *          The maximum number of values returned from this method.
   *@return A <code>List with the results
   */
  public List<String> matchPrefix(String prefix, int numReturnValues) {
    Vector<String> sortKeysResult = new Vector();
    TSTNode startNode = getNode(prefix);
    if (startNode == null) {
      return sortKeysResult;
    }
    if (startNode.data != null) {
      sortKeysResult.addElement(getKey(startNode));
    }
    return sortKeysRecursion(startNode.relatives[TSTNode.EQKID],
            ((numReturnValues < 0) ? -1 : numReturnValues), sortKeysResult);
  }

  /**
   * Returns the number of nodes in the trie that have non-null data.
   * 
   *@return The number of nodes in the trie that have non-null data.
   */
  public int numDataNodes() {
    return numDataNodes(rootNode);
  }

  /**
   * Returns the number of nodes in the subtrie below and including the starting
   * node. The method counts only nodes that have non-null data.
   * 
   *@param startingNode
   *          The top node of the subtrie. the node that defines the subtrie.
   *@return The total number of nodes in the subtrie.
   */
  protected int numDataNodes(TSTNode startingNode) {
    return recursiveNodeCalculator(startingNode, true, 0);
  }

  /**
   * Returns the total number of nodes in the trie. The method counts nodes
   * whether or not they have data.
   * 
   *@return The total number of nodes in the trie.
   */
  public int numNodes() {
    return numNodes(rootNode);
  }

  /**
   * Returns the total number of nodes in the subtrie below and including the
   * starting Node. The method counts nodes whether or not they have data.
   * 
   *@param startingNode
   *          The top node of the subtrie. The node that defines the subtrie.
   *@return The total number of nodes in the subtrie.
   */
  protected int numNodes(TSTNode startingNode) {
    return recursiveNodeCalculator(startingNode, false, 0);
  }

  /**
   * Stores a value in the trie. The value may be retrieved using the key.
   * 
   *@param key
   *          A <code>String that indexes the object to be stored.
   *@param value
   *          The object to be stored in the Trie.
   */
  public void put(String key, Object value) {
    getOrCreateNode(key.trim().toLowerCase()).data = value;
  }

  /**
   * Recursivelly visists each node to calculate the number of nodes.
   * 
   *@param currentNode
   *          The current node.
   *@param checkData
   *          If true we check the data to be different of <code>null.
   *@param numNodes2
   *          The number of nodes so far.
   *@return The number of nodes accounted.
   */
  private int recursiveNodeCalculator(TSTNode currentNode, boolean checkData,
          int numNodes2) {
    if (currentNode == null) {
      return numNodes2;
    }
    int numNodes = recursiveNodeCalculator(
            currentNode.relatives[TSTNode.LOKID], checkData, numNodes2);
    numNodes = recursiveNodeCalculator(currentNode.relatives[TSTNode.EQKID],
            checkData, numNodes);
    numNodes = recursiveNodeCalculator(currentNode.relatives[TSTNode.HIKID],
            checkData, numNodes);
    if (checkData) {
      if (currentNode.data != null) {
        numNodes++;
      }
    } else {
      numNodes++;
    }
    return numNodes;
  }

  /**
   * Removes the value indexed by key. Also removes all nodes that are rendered
   * unnecessary by the removal of this data.
   * 
   *@param key
   *          A <code>string that indexes the object to be removed from
   *          the Trie.
   */
  public void remove(String key) {
    deleteNode(getNode(key.trim().toLowerCase()));
  }

  /**
   * Sets the number of characters by which words can differ from target word
   * when calling the <code>matchAlmost method.
   * <p>
   * Arguments less than 0 will set the char difference to 0, and arguments
   * greater than 3 will set the char difference to 3.
   * 
   *@param diff
   *          The number of characters by which words can differ from target
   *          word.
   */
  public void setMatchAlmostDiff(int diff) {
    if (diff < 0) {
      matchAlmostDiff = 0;
    } else if (diff > 3) {
      matchAlmostDiff = 3;
    } else {
      matchAlmostDiff = diff;
    }
  }

  /**
   * Sets the default maximum number of values returned from the
   * <code>matchPrefix and matchAlmost methods.
   * <p>
   * The value should be set this to -1 to get an unlimited number of return
   * values. note that the methods mentioned above provide overloaded versions
   * that allow you to specify the maximum number of return values, in which
   * case this value is temporarily overridden.
   * 
   **@param num
   *          The number of values that will be returned when calling the
   *          methods above.
   */
  public void setNumReturnValues(int num) {
    defaultNumReturnValues = (num < 0) ? -1 : num;
  }

  /**
   * Returns keys sorted in alphabetical order. This includes the start Node and
   * all nodes connected to the start Node.
   * <p>
   * The number of keys returned is limited to numReturnValues. To get a list
   * that isn't limited in size, set numReturnValues to -1.
   * 
   *@param startNode
   *          The top node defining the subtrie to be searched.
   *@param numReturnValues
   *          The maximum number of values returned from this method.
   *@return A <code>List with the results.
   */
  protected List<String> sortKeys(TSTNode startNode, int numReturnValues) {
    return sortKeysRecursion(startNode, ((numReturnValues < 0) ? -1
            : numReturnValues), new Vector<String>());
  }

  /**
   * Returns keys sorted in alphabetical order. This includes the current Node
   * and all nodes connected to the current Node.
   * <p>
   * Sorted keys will be appended to the end of the resulting <code>List.
   * The result may be empty when this method is invoked, but may not be
   * <code>null.
   * 
   *@param currentNode
   *          The current node.
   *@param sortKeysNumReturnValues
   *          The maximum number of values in the result.
   *@param sortKeysResult2
   *          The results so far.
   *@return A <code>List with the results.
   */
  private List<String> sortKeysRecursion(TSTNode currentNode,
          int sortKeysNumReturnValues, List<String> sortKeysResult2) {
    if (currentNode == null) {
      return sortKeysResult2;
    }
    List<String> sortKeysResult = sortKeysRecursion(
            currentNode.relatives[TSTNode.LOKID], sortKeysNumReturnValues,
            sortKeysResult2);
    if (sortKeysNumReturnValues != -1
            && sortKeysResult.size() >= sortKeysNumReturnValues) {
      return sortKeysResult;
    }
    if (currentNode.data != null) {
      sortKeysResult.add(getKey(currentNode));
    }
    sortKeysResult = sortKeysRecursion(currentNode.relatives[TSTNode.EQKID],
            sortKeysNumReturnValues, sortKeysResult);
    return sortKeysRecursion(currentNode.relatives[TSTNode.HIKID],
            sortKeysNumReturnValues, sortKeysResult);
  }

}

Other Lucene examples (source code examples)

Here is a short list of links related to this Lucene JaspellTernarySearchTrie.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.