alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Scala example source code file (HashTable.scala)

This example Scala source code file (HashTable.scala) is included in the DevDaily.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Java - Scala tags/keywords

a, a, array, array, b, entry, entry, hashentry, hashtable, int, int, iterator, null, table

The Scala HashTable.scala source code

/*                     __                                               *\
**     ________ ___   / /  ___     Scala API                            **
**    / __/ __// _ | / /  / _ |    (c) 2003-2011, LAMP/EPFL             **
**  __\ \/ /__/ __ |/ /__/ __ |    http://www.scala-lang.org/           **
** /____/\___/_/ |_/____/_/ | |                                         **
**                          |/                                          **
\*                                                                      */



package scala.collection
package mutable

/** This class can be used to construct data structures that are based
 *  on hashtables. Class `HashTable[A]` implements a hashtable
 *  that maps keys of type `A` to values of the fully abstract
 *  member type `Entry`. Classes that make use of `HashTable`
 *  have to provide an implementation for `Entry`.
 *
 *  There are mainly two parameters that affect the performance of a hashtable:
 *  the <i>initial size and the load factor. The size
 *  refers to the number of <i>buckets in the hashtable, and the load
 *  factor</i> is a measure of how full the hashtable is allowed to get before
 *  its size is automatically doubled. Both parameters may be changed by
 *  overriding the corresponding values in class `HashTable`.
 *
 *  @author  Matthias Zenger
 *  @author  Martin Odersky
 *  @version 2.0, 31/12/2006
 *  @since   1
 *  
 *  @tparam A     type of the elements contained in this hash table.
 */
trait HashTable[A, Entry >: Null <: HashEntry[A, Entry]] extends HashTable.HashUtils[A] {
  import HashTable._
  
  @transient protected var _loadFactor = defaultLoadFactor
  
  /** The actual hash table.
   */
  @transient protected var table: Array[HashEntry[A, Entry]] = new Array(initialCapacity)
  
  /** The number of mappings contained in this hash table.
   */
  @transient protected var tableSize: Int = 0
  
  /** The next size value at which to resize (capacity * load factor).
   */
  @transient protected var threshold: Int = initialThreshold(_loadFactor)
  
  /** The array keeping track of the number of elements in 32 element blocks.
   */
  @transient protected var sizemap: Array[Int] = null
  
  protected def initialSize: Int = HashTable.initialSize
  
  /**
   * Initializes the collection from the input stream. `f` will be called for each key/value pair
   * read from the input stream in the order determined by the stream. This is useful for
   * structures where iteration order is important (e.g. LinkedHashMap).
   */
  private[collection] def init[B](in: java.io.ObjectInputStream, f: (A, B) => Entry) {
    in.defaultReadObject
    
    _loadFactor = in.readInt
    assert(_loadFactor > 0)
    
    val size = in.readInt
    tableSize = 0
    assert(size >= 0)
    
    val smDefined = in.readBoolean
    
    table = new Array(capacity(sizeForThreshold(_loadFactor, size)))
    threshold = newThreshold(_loadFactor, table.size)
    
    if (smDefined) sizeMapInit(table.length) else sizemap = null
    
    var index = 0
    while (index < size) {
      addEntry(f(in.readObject.asInstanceOf[A], in.readObject.asInstanceOf[B]))
      index += 1
    }
  }
  
  /**
   * Serializes the collection to the output stream by saving the load factor, collection
   * size, collection keys and collection values. `value` is responsible for providing a value
   * from an entry.
   * 
   * `foreach` determines the order in which the key/value pairs are saved to the stream. To
   * deserialize, `init` should be used.
   */
  private[collection] def serializeTo[B](out: java.io.ObjectOutputStream, value: Entry => B) {
    out.defaultWriteObject
    out.writeInt(_loadFactor)
    out.writeInt(tableSize)
    out.writeBoolean(isSizeMapDefined)
    foreachEntry { entry =>
      out.writeObject(entry.key)
      out.writeObject(value(entry))
    }
  }
  
  /** Find entry with given key in table, null if not found.
   */
  protected def findEntry(key: A): Entry = {
    val h = index(elemHashCode(key))
    var e = table(h).asInstanceOf[Entry]
    while (e != null && !elemEquals(e.key, key)) e = e.next
    e
  }

  /** Add entry to table
   *  pre: no entry with same key exists
   */
  protected def addEntry(e: Entry) {
    val h = index(elemHashCode(e.key))
    e.next = table(h).asInstanceOf[Entry]
    table(h) = e
    tableSize = tableSize + 1
    nnSizeMapAdd(h)
    if (tableSize > threshold)
      resize(2 * table.length)
  }

  /** Remove entry from table if present.
   */
  protected def removeEntry(key: A) : Entry = {
    val h = index(elemHashCode(key))
    var e = table(h).asInstanceOf[Entry]
    if (e != null) {
      if (elemEquals(e.key, key)) {
        table(h) = e.next
        tableSize = tableSize - 1
        nnSizeMapRemove(h)
        return e
      } else {
        var e1 = e.next
        while (e1 != null && !elemEquals(e1.key, key)) {
          e = e1
          e1 = e1.next
        }
        if (e1 != null) {
          e.next = e1.next
          tableSize = tableSize - 1
          nnSizeMapRemove(h)
          return e1
        }
      }
    }
    null
  }

  /** An iterator returning all entries.
   */
  protected def entriesIterator: Iterator[Entry] = new Iterator[Entry] {
    val iterTable = table
    var idx = table.length - 1
    var es = iterTable(idx).asInstanceOf[Entry]
    scan()
    def hasNext = es != null
    def next() = {
      val res = es
      es = es.next
      scan()
      res
    }
    def scan() {
      while (es == null && idx > 0) {
        idx = idx - 1
        es = iterTable(idx).asInstanceOf[Entry]
      }
    }
  }
  
  /*
   * We should implement this as a primitive operation over the underlying array, but it can
   * cause a behaviour change in edge cases where:
   * - Someone modifies a map during iteration
   * - The insertion point is close to the iteration point.
   * 
   * The reason this happens is that the iterator prefetches the following element before
   * returning from next (to simplify the implementation of hasNext) while the natural
   * implementation of foreach does not.
   * 
   * It should be mentioned that modifying a map during iteration leads to unpredictable
   * results with either implementation.
   */
  protected final def foreachEntry[C](f: Entry => C) { entriesIterator.foreach(f) }

  /** An iterator returning all entries */
  @deprecated("use entriesIterator instead", "2.8.0")
  protected def entries: Iterator[Entry] = entriesIterator

  /** Remove all entries from table
   */
  protected def clearTable() {
    var i = table.length - 1
    while (i >= 0) { table(i) = null; i = i - 1 }
    tableSize = 0
    nnSizeMapReset(0)
  }

  private def resize(newSize: Int) {
    val oldTable = table
    table = new Array(newSize)
    nnSizeMapReset(table.length)
    var i = oldTable.length - 1
    while (i >= 0) {
      var e = oldTable(i)
      while (e != null) {
        val h = index(elemHashCode(e.key))
        val e1 = e.next
        e.next = table(h).asInstanceOf[Entry]
        table(h) = e
        e = e1
        nnSizeMapAdd(h)
      }
      i = i - 1
    }
    threshold = newThreshold(_loadFactor, newSize)
  }
  
  /* Size map handling code */
  
  /* 
   * The following three sizeMap* functions (Add, Remove, Reset)
   * are used to update the size map of the hash table.
   * 
   * The size map logically divides the hash table into `sizeMapBucketSize` element buckets
   * by keeping an integer entry for each such bucket. Each integer entry simply denotes
   * the number of elements in the corresponding bucket.
   * Best understood through an example, see:
   * table   = [/, 1, /, 6, 90, /, -3, 5]    (8 entries)
   * sizemap = [     2     |     3      ]    (2 entries)
   * where sizeMapBucketSize == 4.
   * 
   * By default the size map is not initialized, so these methods don't do anything, thus,
   * their impact on hash table performance is negligible. However, if the hash table
   * is converted into a parallel hash table, the size map is initialized, as it will be needed
   * there.
   */
  protected def nnSizeMapAdd(h: Int) = if (sizemap ne null) {
    sizemap(h >> sizeMapBucketBitSize) += 1
  }
  
  protected def nnSizeMapRemove(h: Int) = if (sizemap ne null) {
    sizemap(h >> sizeMapBucketBitSize) -= 1
  }
  
  protected def nnSizeMapReset(tableLength: Int) = if (sizemap ne null) {
    val nsize = calcSizeMapSize(tableLength)
    if (sizemap.length != nsize) sizemap = new Array[Int](nsize)
    else java.util.Arrays.fill(sizemap, 0)
  }
  
  private[collection] final def totalSizeMapBuckets = if (sizeMapBucketSize < table.length) 1 else table.length / sizeMapBucketSize
  
  protected def calcSizeMapSize(tableLength: Int) = (tableLength >> sizeMapBucketBitSize) + 1
  
  // discards the previous sizemap and only allocates a new one
  protected def sizeMapInit(tableLength: Int) {
    sizemap = new Array[Int](calcSizeMapSize(tableLength))
  }
  
  // discards the previous sizemap and populates the new one
  protected def sizeMapInitAndRebuild() {
    sizeMapInit(table.length)
    
    // go through the buckets, count elements
    var tableidx = 0
    var bucketidx = 0
    val tbl = table
    var tableuntil = 0
    if (tbl.length < sizeMapBucketSize) tableuntil = tbl.length else tableuntil = sizeMapBucketSize
    val totalbuckets = totalSizeMapBuckets
    while (bucketidx < totalbuckets) {
      var currbucketsize = 0
      while (tableidx < tableuntil) {
        var e = tbl(tableidx)
        while (e ne null) {
          currbucketsize += 1
          e = e.next
        }
        tableidx += 1
      }
      sizemap(bucketidx) = currbucketsize
      tableuntil += sizeMapBucketSize
      bucketidx += 1
    }
  }
  
  private[collection] def printSizeMap() {
    println(sizemap.toList)
  }
  
  protected def sizeMapDisable() = sizemap = null
  
  protected def isSizeMapDefined = sizemap ne null
  
  // override to automatically initialize the size map
  protected def alwaysInitSizeMap = false
  
  /* End of size map handling code */
  
  protected def elemEquals(key1: A, key2: A): Boolean = (key1 == key2)
  
  // Note:
  // we take the most significant bits of the hashcode, not the lower ones
  // this is of crucial importance when populating the table in parallel
  protected final def index(hcode: Int) = {
    val ones = table.length - 1
    val improved = improve(hcode)
    val shifted = (improved >> (32 - java.lang.Integer.bitCount(ones))) & ones
    shifted
  }
  
  protected def initWithContents(c: HashTable.Contents[A, Entry]) = {
    if (c != null) {
      _loadFactor = c.loadFactor
      table = c.table
      tableSize = c.tableSize
      threshold = c.threshold
      sizemap = c.sizemap
    }
    if (alwaysInitSizeMap && sizemap == null) sizeMapInitAndRebuild
  }
  
  private[collection] def hashTableContents = new HashTable.Contents(
    _loadFactor,
    table,
    tableSize,
    threshold,
    sizemap
  )
}

private[collection] object HashTable {
  /** The load factor for the hash table (in 0.001 step).
   */
  private[collection] final def defaultLoadFactor: Int = 750 // corresponds to 75%
  private[collection] final def loadFactorDenum = 1000;
  
  /** The initial size of the hash table.
   */
  private[collection] final def initialSize: Int = 16
  
  /** The initial threshold.
   */
  private[collection] final def initialThreshold(_loadFactor: Int): Int = newThreshold(_loadFactor, initialCapacity)
  
  private[collection] final def initialCapacity = capacity(initialSize)
  
  private[collection] final def newThreshold(_loadFactor: Int, size: Int) = ((size.toLong * _loadFactor) / loadFactorDenum).toInt
  
  private[collection] final def sizeForThreshold(_loadFactor: Int, thr: Int) = thr * loadFactorDenum / _loadFactor
  
  private[collection] final def capacity(expectedSize: Int) = if (expectedSize == 0) 1 else powerOfTwo(expectedSize)
  
  trait HashUtils[KeyType] {
    protected final def sizeMapBucketBitSize = 5
    // so that:
    protected final def sizeMapBucketSize = 1 << sizeMapBucketBitSize
    
    protected def elemHashCode(key: KeyType) = key.##
    
    protected final def improve(hcode: Int) = {
      /* Murmur hash
       *  m = 0x5bd1e995
       *  r = 24
       *  note: h = seed = 0 in mmix
       *  mmix(h,k) = k *= m; k ^= k >> r; k *= m; h *= m; h ^= k; */
      // var k = hcode * 0x5bd1e995
      // k ^= k >> 24
      // k *= 0x5bd1e995
      // k
      
      /* Another fast multiplicative hash
       * by Phil Bagwell
       * 
       * Comment:
       * Multiplication doesn't affect all the bits in the same way, so we want to
       * multiply twice, "once from each side".
       * It would be ideal to reverse all the bits after the first multiplication,
       * however, this is more costly. We therefore restrict ourselves only to
       * reversing the bytes before final multiplication. This yields a slightly
       * worse entropy in the lower 8 bits, but that can be improved by adding:
       * 
       * `i ^= i >> 6`
       * 
       * For performance reasons, we avoid this improvement.
       * */
      var i = hcode * 0x9e3775cd
      i = java.lang.Integer.reverseBytes(i)
      i * 0x9e3775cd
      // a slower alternative for byte reversal:
      // i = (i << 16) | (i >> 16)
      // i = ((i >> 8) & 0x00ff00ff) | ((i << 8) & 0xff00ff00)
      
      /* Jenkins hash
       * for range 0-10000, output has the msb set to zero */
      // var h = hcode + (hcode << 12)
      // h ^= (h >> 22)
      // h += (h << 4)
      // h ^= (h >> 9)
      // h += (h << 10)
      // h ^= (h >> 2)
      // h += (h << 7)
      // h ^= (h >> 12)
      // h
      
      /* OLD VERSION
       * quick, but bad for sequence 0-10000 - little enthropy in higher bits
       * since 2003 */
      // var h: Int = hcode + ~(hcode << 9)
      // h = h ^ (h >>> 14)
      // h = h + (h << 4)
      // h ^ (h >>> 10)
    }
  }
  
  /**
   * Returns a power of two >= `target`.
   */
  private[collection] def powerOfTwo(target: Int): Int = {
    /* See http://bits.stephan-brumme.com/roundUpToNextPowerOfTwo.html */
    var c = target - 1;
    c |= c >>>  1;
    c |= c >>>  2;
    c |= c >>>  4;
    c |= c >>>  8;
    c |= c >>> 16;
    c + 1;
  }
  
  class Contents[A, Entry >: Null <: HashEntry[A, Entry]](
    val loadFactor: Int,
    val table: Array[HashEntry[A, Entry]],
    val tableSize: Int,
    val threshold: Int,
    val sizemap: Array[Int]
  ) {
    import collection.DebugUtils._
    private[collection] def debugInformation = buildString {
      append =>
      append("Hash table contents")
      append("-------------------")
      append("Table: [" + arrayString(table, 0, table.length) + "]")
      append("Table size: " + tableSize)
      append("Load factor: " + loadFactor)
      append("Threshold: " + threshold)
      append("Sizemap: [" + arrayString(sizemap, 0, sizemap.length) + "]")
    }
  }
  
}

Other Scala examples (source code examples)

Here is a short list of links related to this Scala HashTable.scala source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.