alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Android example source code file (GestureUtils.java)

This example Android source code file (GestureUtils.java) is included in the DevDaily.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Android by Example" TM.

Java - Android tags/keywords

android, arraylist, could, drawing, gesturepoint, gesturestroke, gestureutils, graphics, io, ioexception, nonuniform_scale, orientedboundingbox, paint, pi, rectf, scaling_threshold, util

The GestureUtils.java Android example source code

/*
 * Copyright (C) 2008-2009 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package android.gesture;

import android.graphics.RectF;
import android.util.Log;

import java.util.ArrayList;
import java.util.Arrays;
import java.io.Closeable;
import java.io.IOException;

import static android.gesture.GestureConstants.*;

/**
 * Utility functions for gesture processing & analysis, including methods for:
 * <ul> 
 * <li>feature extraction (e.g., samplers and those for calculating bounding
 * boxes and gesture path lengths);
 * <li>geometric transformation (e.g., translation, rotation and scaling);
 * <li>gesture similarity comparison (e.g., calculating Euclidean or Cosine
 * distances between two gestures).
 * </ul>
 */
public final class GestureUtils {
  
    private static final float SCALING_THRESHOLD = 0.26f;
    private static final float NONUNIFORM_SCALE = (float) Math.sqrt(2);
    
    private GestureUtils() {
    }

    /**
     * Closes the specified stream.
     *
     * @param stream The stream to close.
     */
    static void closeStream(Closeable stream) {
        if (stream != null) {
            try {
                stream.close();
            } catch (IOException e) {
                Log.e(LOG_TAG, "Could not close stream", e);
            }
        }
    }
    
    /**
     * Samples the gesture spatially by rendering the gesture into a 2D 
     * grayscale bitmap. Scales the gesture to fit the size of the bitmap. 
     * The scaling does not necessarily keep the aspect ratio of the gesture. 
     * 
     * @param gesture the gesture to be sampled
     * @param bitmapSize the size of the bitmap
     * @return a bitmapSize x bitmapSize grayscale bitmap that is represented 
     *         as a 1D array. The float at index i represents the grayscale 
     *         value at pixel [i%bitmapSize, i/bitmapSize] 
     */
    public static float[] spatialSampling(Gesture gesture, int bitmapSize) {
        return spatialSampling(gesture, bitmapSize, false);
    }

    /**
     * Samples the gesture spatially by rendering the gesture into a 2D 
     * grayscale bitmap. Scales the gesture to fit the size of the bitmap. 
     * 
     * @param gesture the gesture to be sampled
     * @param bitmapSize the size of the bitmap
     * @param keepAspectRatio if the scaling should keep the gesture's 
     *        aspect ratio
     * 
     * @return a bitmapSize x bitmapSize grayscale bitmap that is represented 
     *         as a 1D array. The float at index i represents the grayscale 
     *         value at pixel [i%bitmapSize, i/bitmapSize] 
     */
    public static float[] spatialSampling(Gesture gesture, int bitmapSize, 
            boolean keepAspectRatio) {
        final float targetPatchSize = bitmapSize - 1; 
        float[] sample = new float[bitmapSize * bitmapSize];
        Arrays.fill(sample, 0);
  
        RectF rect = gesture.getBoundingBox();
        final float gestureWidth = rect.width();
        final float gestureHeight = rect.height();
        float sx = targetPatchSize / gestureWidth;
        float sy = targetPatchSize / gestureHeight;
        
        if (keepAspectRatio) {
            float scale = sx < sy ? sx : sy;
            sx = scale;
            sy = scale;
        } else {

            float aspectRatio = gestureWidth / gestureHeight;
            if (aspectRatio > 1) {
                aspectRatio = 1 / aspectRatio;
            }
            if (aspectRatio < SCALING_THRESHOLD) {
                float scale = sx < sy ? sx : sy;
                sx = scale;
                sy = scale;
            } else {
                if (sx > sy) {
                    float scale = sy * NONUNIFORM_SCALE;
                    if (scale < sx) {
                        sx = scale;
                    }
                } else {
                    float scale = sx * NONUNIFORM_SCALE; 
                    if (scale < sy) {
                        sy = scale;
                    }
                }
            }
        }
        float preDx = -rect.centerX();
        float preDy = -rect.centerY();
        float postDx = targetPatchSize / 2;
        float postDy = targetPatchSize / 2;
        final ArrayList<GestureStroke> strokes = gesture.getStrokes();
        final int count = strokes.size();
        int size;
        float xpos;
        float ypos;
        for (int index = 0; index < count; index++) {
            final GestureStroke stroke = strokes.get(index);
            float[] strokepoints = stroke.points;
            size = strokepoints.length;
            final float[] pts = new float[size];
            for (int i = 0; i < size; i += 2) {
                pts[i] = (strokepoints[i] + preDx) * sx + postDx;
                pts[i + 1] = (strokepoints[i + 1] + preDy) * sy + postDy;
            }
            float segmentEndX = -1;
            float segmentEndY = -1;
            for (int i = 0; i < size; i += 2) {
                float segmentStartX = pts[i] < 0 ? 0 : pts[i];
                float segmentStartY = pts[i + 1] < 0 ? 0 : pts[i + 1];
                if (segmentStartX > targetPatchSize) {
                    segmentStartX = targetPatchSize;
                } 
                if (segmentStartY > targetPatchSize) {
                    segmentStartY = targetPatchSize;
                }
                plot(segmentStartX, segmentStartY, sample, bitmapSize);
                if (segmentEndX != -1) {
                    // Evaluate horizontally
                    if (segmentEndX > segmentStartX) {
                        xpos = (float) Math.ceil(segmentStartX);
                        float slope = (segmentEndY - segmentStartY) / 
                                      (segmentEndX - segmentStartX);
                        while (xpos < segmentEndX) {
                            ypos = slope * (xpos - segmentStartX) + segmentStartY;
                            plot(xpos, ypos, sample, bitmapSize); 
                            xpos++;
                        }
                    } else if (segmentEndX < segmentStartX){
                        xpos = (float) Math.ceil(segmentEndX);
                        float slope = (segmentEndY - segmentStartY) / 
                                      (segmentEndX - segmentStartX);
                        while (xpos < segmentStartX) {
                            ypos = slope * (xpos - segmentStartX) + segmentStartY;
                            plot(xpos, ypos, sample, bitmapSize); 
                            xpos++;
                        }
                    }
                    // Evaluate vertically
                    if (segmentEndY > segmentStartY) {
                        ypos = (float) Math.ceil(segmentStartY);
                        float invertSlope = (segmentEndX - segmentStartX) / 
                                            (segmentEndY - segmentStartY);
                        while (ypos < segmentEndY) {
                            xpos = invertSlope * (ypos - segmentStartY) + segmentStartX;
                            plot(xpos, ypos, sample, bitmapSize); 
                            ypos++;
                        }
                    } else if (segmentEndY < segmentStartY) {
                        ypos = (float) Math.ceil(segmentEndY);
                        float invertSlope = (segmentEndX - segmentStartX) / 
                                            (segmentEndY - segmentStartY);
                        while (ypos < segmentStartY) {
                            xpos = invertSlope * (ypos - segmentStartY) + segmentStartX; 
                            plot(xpos, ypos, sample, bitmapSize); 
                            ypos++;
                        }
                    }
                } 
                segmentEndX = segmentStartX;
                segmentEndY = segmentStartY;
            }
        }
        return sample;
    }
  
    private static void plot(float x, float y, float[] sample, int sampleSize) {
        x = x < 0 ? 0 : x;
        y = y < 0 ? 0 : y;
        int xFloor = (int) Math.floor(x);
        int xCeiling = (int) Math.ceil(x);
        int yFloor = (int) Math.floor(y);
        int yCeiling = (int) Math.ceil(y);
        
        // if it's an integer
        if (x == xFloor && y == yFloor) {
            int index = yCeiling * sampleSize + xCeiling;
            if (sample[index] < 1){
                sample[index] = 1;
            }
        } else {
            final double xFloorSq = Math.pow(xFloor - x, 2);
            final double yFloorSq = Math.pow(yFloor - y, 2);
            final double xCeilingSq = Math.pow(xCeiling - x, 2);
            final double yCeilingSq = Math.pow(yCeiling - y, 2);
            float topLeft = (float) Math.sqrt(xFloorSq + yFloorSq);
            float topRight = (float) Math.sqrt(xCeilingSq + yFloorSq);
            float btmLeft = (float) Math.sqrt(xFloorSq + yCeilingSq);
            float btmRight = (float) Math.sqrt(xCeilingSq + yCeilingSq);
            float sum = topLeft + topRight + btmLeft + btmRight;
            
            float value = topLeft / sum;
            int index = yFloor * sampleSize + xFloor;
            if (value > sample[index]){
                sample[index] = value;
            }
            
            value = topRight / sum;
            index = yFloor * sampleSize + xCeiling;
            if (value > sample[index]){
                sample[index] = value;
            }
            
            value = btmLeft / sum;
            index = yCeiling * sampleSize + xFloor;
            if (value > sample[index]){
                sample[index] = value;
            }
            
            value = btmRight / sum;
            index = yCeiling * sampleSize + xCeiling;
            if (value > sample[index]){
                sample[index] = value;
            }
        }
    }

    /**
     * Samples a stroke temporally into a given number of evenly-distributed 
     * points.
     * 
     * @param stroke the gesture stroke to be sampled
     * @param numPoints the number of points
     * @return the sampled points in the form of [x1, y1, x2, y2, ..., xn, yn]
     */
    public static float[] temporalSampling(GestureStroke stroke, int numPoints) {
        final float increment = stroke.length / (numPoints - 1);
        int vectorLength = numPoints * 2;
        float[] vector = new float[vectorLength];
        float distanceSoFar = 0;
        float[] pts = stroke.points;
        float lstPointX = pts[0];
        float lstPointY = pts[1];
        int index = 0;
        float currentPointX = Float.MIN_VALUE;
        float currentPointY = Float.MIN_VALUE;
        vector[index] = lstPointX;
        index++;
        vector[index] = lstPointY;
        index++;
        int i = 0;
        int count = pts.length / 2;
        while (i < count) {
            if (currentPointX == Float.MIN_VALUE) {
                i++;
                if (i >= count) {
                    break;
                }
                currentPointX = pts[i * 2];
                currentPointY = pts[i * 2 + 1];
            }
            float deltaX = currentPointX - lstPointX;
            float deltaY = currentPointY - lstPointY;
            float distance = (float) Math.sqrt(deltaX * deltaX + deltaY * deltaY);
            if (distanceSoFar + distance >= increment) {
                float ratio = (increment - distanceSoFar) / distance;
                float nx = lstPointX + ratio * deltaX;
                float ny = lstPointY + ratio * deltaY;
                vector[index] = nx;
                index++;
                vector[index] = ny;
                index++;
                lstPointX = nx;
                lstPointY = ny;
                distanceSoFar = 0;
            } else {
                lstPointX = currentPointX;
                lstPointY = currentPointY;
                currentPointX = Float.MIN_VALUE;
                currentPointY = Float.MIN_VALUE;
                distanceSoFar += distance;
            }
        }

        for (i = index; i < vectorLength; i += 2) {
            vector[i] = lstPointX;
            vector[i + 1] = lstPointY;
        }
        return vector;
    }

    /**
     * Calculates the centroid of a set of points.
     * 
     * @param points the points in the form of [x1, y1, x2, y2, ..., xn, yn]
     * @return the centroid
     */
    static float[] computeCentroid(float[] points) {
        float centerX = 0;
        float centerY = 0;
        int count = points.length;
        for (int i = 0; i < count; i++) {
            centerX += points[i];
            i++;
            centerY += points[i];
        }
        float[] center = new float[2];
        center[0] = 2 * centerX / count;
        center[1] = 2 * centerY / count;

        return center;
    }

    /**
     * Calculates the variance-covariance matrix of a set of points.
     * 
     * @param points the points in the form of [x1, y1, x2, y2, ..., xn, yn]
     * @return the variance-covariance matrix
     */
    private static float[][] computeCoVariance(float[] points) {
        float[][] array = new float[2][2];
        array[0][0] = 0;
        array[0][1] = 0;
        array[1][0] = 0;
        array[1][1] = 0;
        int count = points.length;
        for (int i = 0; i < count; i++) {
            float x = points[i];
            i++;
            float y = points[i];
            array[0][0] += x * x;
            array[0][1] += x * y;
            array[1][0] = array[0][1];
            array[1][1] += y * y;
        }
        array[0][0] /= (count / 2);
        array[0][1] /= (count / 2);
        array[1][0] /= (count / 2);
        array[1][1] /= (count / 2);

        return array;
    }

    static float computeTotalLength(float[] points) {
        float sum = 0;
        int count = points.length - 4;
        for (int i = 0; i < count; i += 2) {
            float dx = points[i + 2] - points[i];
            float dy = points[i + 3] - points[i + 1];
            sum += Math.sqrt(dx * dx + dy * dy);
        }
        return sum;
    }

    static float computeStraightness(float[] points) {
        float totalLen = computeTotalLength(points);
        float dx = points[2] - points[0];
        float dy = points[3] - points[1];
        return (float) Math.sqrt(dx * dx + dy * dy) / totalLen;
    }

    static float computeStraightness(float[] points, float totalLen) {
        float dx = points[2] - points[0];
        float dy = points[3] - points[1];
        return (float) Math.sqrt(dx * dx + dy * dy) / totalLen;
    }

    /**
     * Calculates the squared Euclidean distance between two vectors.
     * 
     * @param vector1
     * @param vector2
     * @return the distance
     */
    static float squaredEuclideanDistance(float[] vector1, float[] vector2) {
        float squaredDistance = 0;
        int size = vector1.length;
        for (int i = 0; i < size; i++) {
            float difference = vector1[i] - vector2[i];
            squaredDistance += difference * difference;
        }
        return squaredDistance / size;
    }

    /**
     * Calculates the cosine distance between two instances.
     * 
     * @param vector1
     * @param vector2
     * @return the distance between 0 and Math.PI
     */
    static float cosineDistance(float[] vector1, float[] vector2) {
        float sum = 0;
        int len = vector1.length;
        for (int i = 0; i < len; i++) {
            sum += vector1[i] * vector2[i];
        }
        return (float) Math.acos(sum);
    }
    
    /**
     * Calculates the "minimum" cosine distance between two instances.
     * 
     * @param vector1
     * @param vector2
     * @param numOrientations the maximum number of orientation allowed
     * @return the distance between the two instances (between 0 and Math.PI)
     */
    static float minimumCosineDistance(float[] vector1, float[] vector2, int numOrientations) {
        final int len = vector1.length;
        float a = 0;
        float b = 0;
        for (int i = 0; i < len; i += 2) {
            a += vector1[i] * vector2[i] + vector1[i + 1] * vector2[i + 1];
            b += vector1[i] * vector2[i + 1] - vector1[i + 1] * vector2[i];
        }
        if (a != 0) {
            final float tan = b/a;
            final double angle = Math.atan(tan);
            if (numOrientations > 2 && Math.abs(angle) >= Math.PI / numOrientations) {
                return (float) Math.acos(a);
            } else {
                final double cosine = Math.cos(angle);
                final double sine = cosine * tan; 
                return (float) Math.acos(a * cosine + b * sine);
            }
        } else {
            return (float) Math.PI / 2;
        }
    }

    /**
     * Computes an oriented, minimum bounding box of a set of points.
     * 
     * @param originalPoints
     * @return an oriented bounding box
     */
    public static OrientedBoundingBox computeOrientedBoundingBox(ArrayList<GesturePoint> originalPoints) {
        final int count = originalPoints.size();
        float[] points = new float[count * 2];
        for (int i = 0; i < count; i++) {
            GesturePoint point = originalPoints.get(i);
            int index = i * 2;
            points[index] = point.x;
            points[index + 1] = point.y;
        }
        float[] meanVector = computeCentroid(points);
        return computeOrientedBoundingBox(points, meanVector);
    }

    /**
     * Computes an oriented, minimum bounding box of a set of points.
     * 
     * @param originalPoints
     * @return an oriented bounding box
     */
    public static OrientedBoundingBox computeOrientedBoundingBox(float[] originalPoints) {
        int size = originalPoints.length;
        float[] points = new float[size];
        for (int i = 0; i < size; i++) {
            points[i] = originalPoints[i];
        }
        float[] meanVector = computeCentroid(points);
        return computeOrientedBoundingBox(points, meanVector);
    }

    private static OrientedBoundingBox computeOrientedBoundingBox(float[] points, float[] centroid) {
        translate(points, -centroid[0], -centroid[1]);

        float[][] array = computeCoVariance(points);
        float[] targetVector = computeOrientation(array);

        float angle;
        if (targetVector[0] == 0 && targetVector[1] == 0) {
            angle = (float) -Math.PI/2;
        } else { // -PI<alpha

Other Android examples (source code examples)

Here is a short list of links related to this Android GestureUtils.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.