home | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (TricubicInterpolatingFunction.java)

This example Java source code file (TricubicInterpolatingFunction.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

ainv, dimensionmismatchexception, nodataexception, nonmonotonicsequenceexception, outofrangeexception, tricubicfunction, tricubicinterpolatingfunction, trivariatefunction

The TricubicInterpolatingFunction.java Java example source code

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.analysis.interpolation;

import org.apache.commons.math3.analysis.TrivariateFunction;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.NoDataException;
import org.apache.commons.math3.exception.NonMonotonicSequenceException;
import org.apache.commons.math3.exception.OutOfRangeException;
import org.apache.commons.math3.util.MathArrays;

/**
 * Function that implements the
 * <a href="http://en.wikipedia.org/wiki/Tricubic_interpolation">
 * tricubic spline interpolation</a>, as proposed in
 * <blockquote>
 *  Tricubic interpolation in three dimensions,
 *  F. Lekien and J. Marsden,
 *  <em>Int. J. Numer. Meth. Eng 2005; 63:455-471
 * </blockquote>
 *
 * @since 3.4.
 */
public class TricubicInterpolatingFunction
    implements TrivariateFunction {
    /**
     * Matrix to compute the spline coefficients from the function values
     * and function derivatives values
     */
    private static final double[][] AINV = {
        { 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
        { 0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
        { -3,3,0,0,0,0,0,0,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
        { 2,-2,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
        { -3,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
        { 0,0,0,0,0,0,0,0,-3,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
        { 9,-9,-9,9,0,0,0,0,6,3,-6,-3,0,0,0,0,6,-6,3,-3,0,0,0,0,0,0,0,0,0,0,0,0,4,2,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
        { -6,6,6,-6,0,0,0,0,-3,-3,3,3,0,0,0,0,-4,4,-2,2,0,0,0,0,0,0,0,0,0,0,0,0,-2,-2,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
        { 2,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
        { 0,0,0,0,0,0,0,0,2,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
        { -6,6,6,-6,0,0,0,0,-4,-2,4,2,0,0,0,0,-3,3,-3,3,0,0,0,0,0,0,0,0,0,0,0,0,-2,-1,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
        { 4,-4,-4,4,0,0,0,0,2,2,-2,-2,0,0,0,0,2,-2,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0 },
        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,3,0,0,0,0,0,0,-2,-1,0,0,0,0,0,0 },
        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,-2,0,0,0,0,0,0,1,1,0,0,0,0,0,0 },
        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0 },
        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,-1,0,0,0,0,0 },
        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,-9,-9,9,0,0,0,0,0,0,0,0,0,0,0,0,6,3,-6,-3,0,0,0,0,6,-6,3,-3,0,0,0,0,4,2,2,1,0,0,0,0 },
        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-6,6,6,-6,0,0,0,0,0,0,0,0,0,0,0,0,-3,-3,3,3,0,0,0,0,-4,4,-2,2,0,0,0,0,-2,-2,-1,-1,0,0,0,0 },
        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0 },
        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0 },
        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-6,6,6,-6,0,0,0,0,0,0,0,0,0,0,0,0,-4,-2,4,2,0,0,0,0,-3,3,-3,3,0,0,0,0,-2,-1,-2,-1,0,0,0,0 },
        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-4,-4,4,0,0,0,0,0,0,0,0,0,0,0,0,2,2,-2,-2,0,0,0,0,2,-2,2,-2,0,0,0,0,1,1,1,1,0,0,0,0 },
        {-3,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
        { 0,0,0,0,0,0,0,0,-3,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
        { 9,-9,0,0,-9,9,0,0,6,3,0,0,-6,-3,0,0,0,0,0,0,0,0,0,0,6,-6,0,0,3,-3,0,0,0,0,0,0,0,0,0,0,4,2,0,0,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
        { -6,6,0,0,6,-6,0,0,-3,-3,0,0,3,3,0,0,0,0,0,0,0,0,0,0,-4,4,0,0,-2,2,0,0,0,0,0,0,0,0,0,0,-2,-2,0,0,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0 },
        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,0,0,-1,0,0,0 },
        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,-9,0,0,-9,9,0,0,0,0,0,0,0,0,0,0,6,3,0,0,-6,-3,0,0,0,0,0,0,0,0,0,0,6,-6,0,0,3,-3,0,0,4,2,0,0,2,1,0,0 },
        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-6,6,0,0,6,-6,0,0,0,0,0,0,0,0,0,0,-3,-3,0,0,3,3,0,0,0,0,0,0,0,0,0,0,-4,4,0,0,-2,2,0,0,-2,-2,0,0,-1,-1,0,0 },
        { 9,0,-9,0,-9,0,9,0,0,0,0,0,0,0,0,0,6,0,3,0,-6,0,-3,0,6,0,-6,0,3,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,2,0,2,0,1,0,0,0,0,0,0,0,0,0 },
        { 0,0,0,0,0,0,0,0,9,0,-9,0,-9,0,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,3,0,-6,0,-3,0,6,0,-6,0,3,0,-3,0,0,0,0,0,0,0,0,0,4,0,2,0,2,0,1,0 },
        { -27,27,27,-27,27,-27,-27,27,-18,-9,18,9,18,9,-18,-9,-18,18,-9,9,18,-18,9,-9,-18,18,18,-18,-9,9,9,-9,-12,-6,-6,-3,12,6,6,3,-12,-6,12,6,-6,-3,6,3,-12,12,-6,6,-6,6,-3,3,-8,-4,-4,-2,-4,-2,-2,-1 },
        { 18,-18,-18,18,-18,18,18,-18,9,9,-9,-9,-9,-9,9,9,12,-12,6,-6,-12,12,-6,6,12,-12,-12,12,6,-6,-6,6,6,6,3,3,-6,-6,-3,-3,6,6,-6,-6,3,3,-3,-3,8,-8,4,-4,4,-4,2,-2,4,4,2,2,2,2,1,1 },
        { -6,0,6,0,6,0,-6,0,0,0,0,0,0,0,0,0,-3,0,-3,0,3,0,3,0,-4,0,4,0,-2,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,-2,0,-1,0,-1,0,0,0,0,0,0,0,0,0 },
        { 0,0,0,0,0,0,0,0,-6,0,6,0,6,0,-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-3,0,-3,0,3,0,3,0,-4,0,4,0,-2,0,2,0,0,0,0,0,0,0,0,0,-2,0,-2,0,-1,0,-1,0 },
        { 18,-18,-18,18,-18,18,18,-18,12,6,-12,-6,-12,-6,12,6,9,-9,9,-9,-9,9,-9,9,12,-12,-12,12,6,-6,-6,6,6,3,6,3,-6,-3,-6,-3,8,4,-8,-4,4,2,-4,-2,6,-6,6,-6,3,-3,3,-3,4,2,4,2,2,1,2,1 },
        { -12,12,12,-12,12,-12,-12,12,-6,-6,6,6,6,6,-6,-6,-6,6,-6,6,6,-6,6,-6,-8,8,8,-8,-4,4,4,-4,-3,-3,-3,-3,3,3,3,3,-4,-4,4,4,-2,-2,2,2,-4,4,-4,4,-2,2,-2,2,-2,-2,-2,-2,-1,-1,-1,-1 },
        { 2,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
        { 0,0,0,0,0,0,0,0,2,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
        { -6,6,0,0,6,-6,0,0,-4,-2,0,0,4,2,0,0,0,0,0,0,0,0,0,0,-3,3,0,0,-3,3,0,0,0,0,0,0,0,0,0,0,-2,-1,0,0,-2,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
        { 4,-4,0,0,-4,4,0,0,2,2,0,0,-2,-2,0,0,0,0,0,0,0,0,0,0,2,-2,0,0,2,-2,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 },
        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0 },
        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0 },
        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-6,6,0,0,6,-6,0,0,0,0,0,0,0,0,0,0,-4,-2,0,0,4,2,0,0,0,0,0,0,0,0,0,0,-3,3,0,0,-3,3,0,0,-2,-1,0,0,-2,-1,0,0 },
        { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,-4,0,0,-4,4,0,0,0,0,0,0,0,0,0,0,2,2,0,0,-2,-2,0,0,0,0,0,0,0,0,0,0,2,-2,0,0,2,-2,0,0,1,1,0,0,1,1,0,0 },
        { -6,0,6,0,6,0,-6,0,0,0,0,0,0,0,0,0,-4,0,-2,0,4,0,2,0,-3,0,3,0,-3,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-2,0,-1,0,-2,0,-1,0,0,0,0,0,0,0,0,0 },
        { 0,0,0,0,0,0,0,0,-6,0,6,0,6,0,-6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,0,-2,0,4,0,2,0,-3,0,3,0,-3,0,3,0,0,0,0,0,0,0,0,0,-2,0,-1,0,-2,0,-1,0 },
        { 18,-18,-18,18,-18,18,18,-18,12,6,-12,-6,-12,-6,12,6,12,-12,6,-6,-12,12,-6,6,9,-9,-9,9,9,-9,-9,9,8,4,4,2,-8,-4,-4,-2,6,3,-6,-3,6,3,-6,-3,6,-6,3,-3,6,-6,3,-3,4,2,2,1,4,2,2,1 },
        { -12,12,12,-12,12,-12,-12,12,-6,-6,6,6,6,6,-6,-6,-8,8,-4,4,8,-8,4,-4,-6,6,6,-6,-6,6,6,-6,-4,-4,-2,-2,4,4,2,2,-3,-3,3,3,-3,-3,3,3,-4,4,-2,2,-4,4,-2,2,-2,-2,-1,-1,-2,-2,-1,-1 },
        { 4,0,-4,0,-4,0,4,0,0,0,0,0,0,0,0,0,2,0,2,0,-2,0,-2,0,2,0,-2,0,2,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0 },
        { 0,0,0,0,0,0,0,0,4,0,-4,0,-4,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,2,0,-2,0,-2,0,2,0,-2,0,2,0,-2,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0 },
        { -12,12,12,-12,12,-12,-12,12,-8,-4,8,4,8,4,-8,-4,-6,6,-6,6,6,-6,6,-6,-6,6,6,-6,-6,6,6,-6,-4,-2,-4,-2,4,2,4,2,-4,-2,4,2,-4,-2,4,2,-3,3,-3,3,-3,3,-3,3,-2,-1,-2,-1,-2,-1,-2,-1 },
        { 8,-8,-8,8,-8,8,8,-8,4,4,-4,-4,-4,-4,4,4,4,-4,4,-4,-4,4,-4,4,4,-4,-4,4,4,-4,-4,4,2,2,2,2,-2,-2,-2,-2,2,2,-2,-2,2,2,-2,-2,2,-2,2,-2,2,-2,2,-2,1,1,1,1,1,1,1,1 }
    };

    /** Samples x-coordinates */
    private final double[] xval;
    /** Samples y-coordinates */
    private final double[] yval;
    /** Samples z-coordinates */
    private final double[] zval;
    /** Set of cubic splines patching the whole data grid */
    private final TricubicFunction[][][] splines;

    /**
     * @param x Sample values of the x-coordinate, in increasing order.
     * @param y Sample values of the y-coordinate, in increasing order.
     * @param z Sample values of the y-coordinate, in increasing order.
     * @param f Values of the function on every grid point.
     * @param dFdX Values of the partial derivative of function with respect to x on every grid point.
     * @param dFdY Values of the partial derivative of function with respect to y on every grid point.
     * @param dFdZ Values of the partial derivative of function with respect to z on every grid point.
     * @param d2FdXdY Values of the cross partial derivative of function on every grid point.
     * @param d2FdXdZ Values of the cross partial derivative of function on every grid point.
     * @param d2FdYdZ Values of the cross partial derivative of function on every grid point.
     * @param d3FdXdYdZ Values of the cross partial derivative of function on every grid point.
     * @throws NoDataException if any of the arrays has zero length.
     * @throws DimensionMismatchException if the various arrays do not contain the expected number of elements.
     * @throws NonMonotonicSequenceException if {@code x}, {@code y} or {@code z} are not strictly increasing.
     */
    public TricubicInterpolatingFunction(double[] x,
                                         double[] y,
                                         double[] z,
                                         double[][][] f,
                                         double[][][] dFdX,
                                         double[][][] dFdY,
                                         double[][][] dFdZ,
                                         double[][][] d2FdXdY,
                                         double[][][] d2FdXdZ,
                                         double[][][] d2FdYdZ,
                                         double[][][] d3FdXdYdZ)
        throws NoDataException,
               DimensionMismatchException,
               NonMonotonicSequenceException {
        final int xLen = x.length;
        final int yLen = y.length;
        final int zLen = z.length;

        if (xLen == 0 || yLen == 0 || z.length == 0 || f.length == 0 || f[0].length == 0) {
            throw new NoDataException();
        }
        if (xLen != f.length) {
            throw new DimensionMismatchException(xLen, f.length);
        }
        if (xLen != dFdX.length) {
            throw new DimensionMismatchException(xLen, dFdX.length);
        }
        if (xLen != dFdY.length) {
            throw new DimensionMismatchException(xLen, dFdY.length);
        }
        if (xLen != dFdZ.length) {
            throw new DimensionMismatchException(xLen, dFdZ.length);
        }
        if (xLen != d2FdXdY.length) {
            throw new DimensionMismatchException(xLen, d2FdXdY.length);
        }
        if (xLen != d2FdXdZ.length) {
            throw new DimensionMismatchException(xLen, d2FdXdZ.length);
        }
        if (xLen != d2FdYdZ.length) {
            throw new DimensionMismatchException(xLen, d2FdYdZ.length);
        }
        if (xLen != d3FdXdYdZ.length) {
            throw new DimensionMismatchException(xLen, d3FdXdYdZ.length);
        }

        MathArrays.checkOrder(x);
        MathArrays.checkOrder(y);
        MathArrays.checkOrder(z);

        xval = x.clone();
        yval = y.clone();
        zval = z.clone();

        final int lastI = xLen - 1;
        final int lastJ = yLen - 1;
        final int lastK = zLen - 1;
        splines = new TricubicFunction[lastI][lastJ][lastK];

        for (int i = 0; i < lastI; i++) {
            if (f[i].length != yLen) {
                throw new DimensionMismatchException(f[i].length, yLen);
            }
            if (dFdX[i].length != yLen) {
                throw new DimensionMismatchException(dFdX[i].length, yLen);
            }
            if (dFdY[i].length != yLen) {
                throw new DimensionMismatchException(dFdY[i].length, yLen);
            }
            if (dFdZ[i].length != yLen) {
                throw new DimensionMismatchException(dFdZ[i].length, yLen);
            }
            if (d2FdXdY[i].length != yLen) {
                throw new DimensionMismatchException(d2FdXdY[i].length, yLen);
            }
            if (d2FdXdZ[i].length != yLen) {
                throw new DimensionMismatchException(d2FdXdZ[i].length, yLen);
            }
            if (d2FdYdZ[i].length != yLen) {
                throw new DimensionMismatchException(d2FdYdZ[i].length, yLen);
            }
            if (d3FdXdYdZ[i].length != yLen) {
                throw new DimensionMismatchException(d3FdXdYdZ[i].length, yLen);
            }

            final int ip1 = i + 1;
            final double xR = xval[ip1] - xval[i];
            for (int j = 0; j < lastJ; j++) {
                if (f[i][j].length != zLen) {
                    throw new DimensionMismatchException(f[i][j].length, zLen);
                }
                if (dFdX[i][j].length != zLen) {
                    throw new DimensionMismatchException(dFdX[i][j].length, zLen);
                }
                if (dFdY[i][j].length != zLen) {
                    throw new DimensionMismatchException(dFdY[i][j].length, zLen);
                }
                if (dFdZ[i][j].length != zLen) {
                    throw new DimensionMismatchException(dFdZ[i][j].length, zLen);
                }
                if (d2FdXdY[i][j].length != zLen) {
                    throw new DimensionMismatchException(d2FdXdY[i][j].length, zLen);
                }
                if (d2FdXdZ[i][j].length != zLen) {
                    throw new DimensionMismatchException(d2FdXdZ[i][j].length, zLen);
                }
                if (d2FdYdZ[i][j].length != zLen) {
                    throw new DimensionMismatchException(d2FdYdZ[i][j].length, zLen);
                }
                if (d3FdXdYdZ[i][j].length != zLen) {
                    throw new DimensionMismatchException(d3FdXdYdZ[i][j].length, zLen);
                }

                final int jp1 = j + 1;
                final double yR = yval[jp1] - yval[j];
                final double xRyR = xR * yR;
                for (int k = 0; k < lastK; k++) {
                    final int kp1 = k + 1;
                    final double zR = zval[kp1] - zval[k];
                    final double xRzR = xR * zR;
                    final double yRzR = yR * zR;
                    final double xRyRzR = xR * yRzR;

                    final double[] beta = new double[] {
                        f[i][j][k], f[ip1][j][k],
                        f[i][jp1][k], f[ip1][jp1][k],
                        f[i][j][kp1], f[ip1][j][kp1],
                        f[i][jp1][kp1], f[ip1][jp1][kp1],

                        dFdX[i][j][k] * xR, dFdX[ip1][j][k] * xR,
                        dFdX[i][jp1][k] * xR, dFdX[ip1][jp1][k] * xR,
                        dFdX[i][j][kp1] * xR, dFdX[ip1][j][kp1] * xR,
                        dFdX[i][jp1][kp1] * xR, dFdX[ip1][jp1][kp1] * xR,

                        dFdY[i][j][k] * yR, dFdY[ip1][j][k] * yR,
                        dFdY[i][jp1][k] * yR, dFdY[ip1][jp1][k] * yR,
                        dFdY[i][j][kp1] * yR, dFdY[ip1][j][kp1] * yR,
                        dFdY[i][jp1][kp1] * yR, dFdY[ip1][jp1][kp1] * yR,

                        dFdZ[i][j][k] * zR, dFdZ[ip1][j][k] * zR,
                        dFdZ[i][jp1][k] * zR, dFdZ[ip1][jp1][k] * zR,
                        dFdZ[i][j][kp1] * zR, dFdZ[ip1][j][kp1] * zR,
                        dFdZ[i][jp1][kp1] * zR, dFdZ[ip1][jp1][kp1] * zR,

                        d2FdXdY[i][j][k] * xRyR, d2FdXdY[ip1][j][k] * xRyR,
                        d2FdXdY[i][jp1][k] * xRyR, d2FdXdY[ip1][jp1][k] * xRyR,
                        d2FdXdY[i][j][kp1] * xRyR, d2FdXdY[ip1][j][kp1] * xRyR,
                        d2FdXdY[i][jp1][kp1] * xRyR, d2FdXdY[ip1][jp1][kp1] * xRyR,

                        d2FdXdZ[i][j][k] * xRzR, d2FdXdZ[ip1][j][k] * xRzR,
                        d2FdXdZ[i][jp1][k] * xRzR, d2FdXdZ[ip1][jp1][k] * xRzR,
                        d2FdXdZ[i][j][kp1] * xRzR, d2FdXdZ[ip1][j][kp1] * xRzR,
                        d2FdXdZ[i][jp1][kp1] * xRzR, d2FdXdZ[ip1][jp1][kp1] * xRzR,

                        d2FdYdZ[i][j][k] * yRzR, d2FdYdZ[ip1][j][k] * yRzR,
                        d2FdYdZ[i][jp1][k] * yRzR, d2FdYdZ[ip1][jp1][k] * yRzR,
                        d2FdYdZ[i][j][kp1] * yRzR, d2FdYdZ[ip1][j][kp1] * yRzR,
                        d2FdYdZ[i][jp1][kp1] * yRzR, d2FdYdZ[ip1][jp1][kp1] * yRzR,

                        d3FdXdYdZ[i][j][k] * xRyRzR, d3FdXdYdZ[ip1][j][k] * xRyRzR,
                        d3FdXdYdZ[i][jp1][k] * xRyRzR, d3FdXdYdZ[ip1][jp1][k] * xRyRzR,
                        d3FdXdYdZ[i][j][kp1] * xRyRzR, d3FdXdYdZ[ip1][j][kp1] * xRyRzR,
                        d3FdXdYdZ[i][jp1][kp1] * xRyRzR, d3FdXdYdZ[ip1][jp1][kp1] * xRyRzR,
                    };

                    splines[i][j][k] = new TricubicFunction(computeCoefficients(beta));
                }
            }
        }
    }

    /**
     * {@inheritDoc}
     *
     * @throws OutOfRangeException if any of the variables is outside its interpolation range.
     */
    public double value(double x, double y, double z)
        throws OutOfRangeException {
        final int i = searchIndex(x, xval);
        if (i == -1) {
            throw new OutOfRangeException(x, xval[0], xval[xval.length - 1]);
        }
        final int j = searchIndex(y, yval);
        if (j == -1) {
            throw new OutOfRangeException(y, yval[0], yval[yval.length - 1]);
        }
        final int k = searchIndex(z, zval);
        if (k == -1) {
            throw new OutOfRangeException(z, zval[0], zval[zval.length - 1]);
        }

        final double xN = (x - xval[i]) / (xval[i + 1] - xval[i]);
        final double yN = (y - yval[j]) / (yval[j + 1] - yval[j]);
        final double zN = (z - zval[k]) / (zval[k + 1] - zval[k]);

        return splines[i][j][k].value(xN, yN, zN);
    }

    /**
     * Indicates whether a point is within the interpolation range.
     *
     * @param x First coordinate.
     * @param y Second coordinate.
     * @param z Third coordinate.
     * @return {@code true} if (x, y, z) is a valid point.
     */
    public boolean isValidPoint(double x, double y, double z) {
        if (x < xval[0] ||
            x > xval[xval.length - 1] ||
            y < yval[0] ||
            y > yval[yval.length - 1] ||
            z < zval[0] ||
            z > zval[zval.length - 1]) {
            return false;
        } else {
            return true;
        }
    }

    /**
     * @param c Coordinate.
     * @param val Coordinate samples.
     * @return the index in {@code val} corresponding to the interval containing {@code c}, or {@code -1}
     *   if {@code c} is out of the range defined by the end values of {@code val}.
     */
    private int searchIndex(double c, double[] val) {
        if (c < val[0]) {
            return -1;
        }

        final int max = val.length;
        for (int i = 1; i < max; i++) {
            if (c <= val[i]) {
                return i - 1;
            }
        }

        return -1;
    }

    /**
     * Compute the spline coefficients from the list of function values and
     * function partial derivatives values at the four corners of a grid
     * element. They must be specified in the following order:
     * <ul>
     *  <li>f(0,0,0)
     *  <li>f(1,0,0)
     *  <li>f(0,1,0)
     *  <li>f(1,1,0)
     *  <li>f(0,0,1)
     *  <li>f(1,0,1)
     *  <li>f(0,1,1)
     *  <li>f(1,1,1)
     *
     *  <li>fx(0,0,0)
     *  <li>... (same order as above)
     *  <li>fx(1,1,1)
     *
     *  <li>fy(0,0,0)
     *  <li>... (same order as above)
     *  <li>fy(1,1,1)
     *
     *  <li>fz(0,0,0)
     *  <li>... (same order as above)
     *  <li>fz(1,1,1)
     *
     *  <li>fxy(0,0,0)
     *  <li>... (same order as above)
     *  <li>fxy(1,1,1)
     *
     *  <li>fxz(0,0,0)
     *  <li>... (same order as above)
     *  <li>fxz(1,1,1)
     *
     *  <li>fyz(0,0,0)
     *  <li>... (same order as above)
     *  <li>fyz(1,1,1)
     *
     *  <li>fxyz(0,0,0)
     *  <li>... (same order as above)
     *  <li>fxyz(1,1,1)
     * </ul>
     * where the subscripts indicate the partial derivative with respect to
     * the corresponding variable(s).
     *
     * @param beta List of function values and function partial derivatives values.
     * @return the spline coefficients.
     */
    private double[] computeCoefficients(double[] beta) {
        final int sz = 64;
        final double[] a = new double[sz];

        for (int i = 0; i < sz; i++) {
            double result = 0;
            final double[] row = AINV[i];
            for (int j = 0; j < sz; j++) {
                result += row[j] * beta[j];
            }
            a[i] = result;
        }

        return a;
    }
}

/**
 * 3D-spline function.
 *
 */
class TricubicFunction
    implements TrivariateFunction {
    /** Number of points. */
    private static final short N = 4;
    /** Coefficients */
    private final double[][][] a = new double[N][N][N];

    /**
     * @param aV List of spline coefficients.
     */
    TricubicFunction(double[] aV) {
        for (int i = 0; i < N; i++) {
            for (int j = 0; j < N; j++) {
                for (int k = 0; k < N; k++) {
                    a[i][j][k] = aV[i + N * (j + N * k)];
                }
            }
        }
    }

    /**
     * @param x x-coordinate of the interpolation point.
     * @param y y-coordinate of the interpolation point.
     * @param z z-coordinate of the interpolation point.
     * @return the interpolated value.
     * @throws OutOfRangeException if {@code x}, {@code y} or
     * {@code z} are not in the interval {@code [0, 1]}.
     */
    public double value(double x, double y, double z)
        throws OutOfRangeException {
        if (x < 0 || x > 1) {
            throw new OutOfRangeException(x, 0, 1);
        }
        if (y < 0 || y > 1) {
            throw new OutOfRangeException(y, 0, 1);
        }
        if (z < 0 || z > 1) {
            throw new OutOfRangeException(z, 0, 1);
        }

        final double x2 = x * x;
        final double x3 = x2 * x;
        final double[] pX = { 1, x, x2, x3 };

        final double y2 = y * y;
        final double y3 = y2 * y;
        final double[] pY = { 1, y, y2, y3 };

        final double z2 = z * z;
        final double z3 = z2 * z;
        final double[] pZ = { 1, z, z2, z3 };

        double result = 0;
        for (int i = 0; i < N; i++) {
            for (int j = 0; j < N; j++) {
                for (int k = 0; k < N; k++) {
                    result += a[i][j][k] * pX[i] * pY[j] * pZ[k];
                }
            }
        }

        return result;
    }
}

Other Java examples (source code examples)

Here is a short list of links related to this Java TricubicInterpolatingFunction.java source code file:



my book on functional programming

 

new blog posts

 

Copyright 1998-2019 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.