home | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (PolyhedronsSet.java)

This example Java source code file (PolyhedronsSet.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

boundaryattribute, bsptree, default_tolerance, deprecated, list, plane, polyhedronsset, rotationtransform, subhyperplane, subplane, transform, translationtransform, util, vector2d, vector3d

The PolyhedronsSet.java Java example source code

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.geometry.euclidean.threed;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.List;

import org.apache.commons.math3.exception.MathIllegalArgumentException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.geometry.Point;
import org.apache.commons.math3.geometry.euclidean.oned.Euclidean1D;
import org.apache.commons.math3.geometry.euclidean.twod.Euclidean2D;
import org.apache.commons.math3.geometry.euclidean.twod.PolygonsSet;
import org.apache.commons.math3.geometry.euclidean.twod.SubLine;
import org.apache.commons.math3.geometry.euclidean.twod.Vector2D;
import org.apache.commons.math3.geometry.partitioning.AbstractRegion;
import org.apache.commons.math3.geometry.partitioning.BSPTree;
import org.apache.commons.math3.geometry.partitioning.BSPTreeVisitor;
import org.apache.commons.math3.geometry.partitioning.BoundaryAttribute;
import org.apache.commons.math3.geometry.partitioning.Hyperplane;
import org.apache.commons.math3.geometry.partitioning.Region;
import org.apache.commons.math3.geometry.partitioning.RegionFactory;
import org.apache.commons.math3.geometry.partitioning.SubHyperplane;
import org.apache.commons.math3.geometry.partitioning.Transform;
import org.apache.commons.math3.util.FastMath;

/** This class represents a 3D region: a set of polyhedrons.
 * @since 3.0
 */
public class PolyhedronsSet extends AbstractRegion<Euclidean3D, Euclidean2D> {

    /** Default value for tolerance. */
    private static final double DEFAULT_TOLERANCE = 1.0e-10;

    /** Build a polyhedrons set representing the whole real line.
     * @param tolerance tolerance below which points are considered identical
     * @since 3.3
     */
    public PolyhedronsSet(final double tolerance) {
        super(tolerance);
    }

    /** Build a polyhedrons set from a BSP tree.
     * <p>The leaf nodes of the BSP tree must have a
     * {@code Boolean} attribute representing the inside status of
     * the corresponding cell (true for inside cells, false for outside
     * cells). In order to avoid building too many small objects, it is
     * recommended to use the predefined constants
     * {@code Boolean.TRUE} and {@code Boolean.FALSE}</p>
     * <p>
     * This constructor is aimed at expert use, as building the tree may
     * be a difficult task. It is not intended for general use and for
     * performances reasons does not check thoroughly its input, as this would
     * require walking the full tree each time. Failing to provide a tree with
     * the proper attributes, <em>will therefore generate problems like
     * {@link NullPointerException} or {@link ClassCastException} only later on.
     * This limitation is known and explains why this constructor is for expert
     * use only. The caller does have the responsibility to provided correct arguments.
     * </p>
     * @param tree inside/outside BSP tree representing the region
     * @param tolerance tolerance below which points are considered identical
     * @since 3.3
     */
    public PolyhedronsSet(final BSPTree<Euclidean3D> tree, final double tolerance) {
        super(tree, tolerance);
    }

    /** Build a polyhedrons set from a Boundary REPresentation (B-rep) specified by sub-hyperplanes.
     * <p>The boundary is provided as a collection of {@link
     * SubHyperplane sub-hyperplanes}. Each sub-hyperplane has the
     * interior part of the region on its minus side and the exterior on
     * its plus side.</p>
     * <p>The boundary elements can be in any order, and can form
     * several non-connected sets (like for example polyhedrons with holes
     * or a set of disjoint polyhedrons considered as a whole). In
     * fact, the elements do not even need to be connected together
     * (their topological connections are not used here). However, if the
     * boundary does not really separate an inside open from an outside
     * open (open having here its topological meaning), then subsequent
     * calls to the {@link Region#checkPoint(Point) checkPoint} method will
     * not be meaningful anymore.</p>
     * <p>If the boundary is empty, the region will represent the whole
     * space.</p>
     * @param boundary collection of boundary elements, as a
     * collection of {@link SubHyperplane SubHyperplane} objects
     * @param tolerance tolerance below which points are considered identical
     * @since 3.3
     */
    public PolyhedronsSet(final Collection<SubHyperplane boundary,
                          final double tolerance) {
        super(boundary, tolerance);
    }

    /** Build a polyhedrons set from a Boundary REPresentation (B-rep) specified by connected vertices.
     * <p>
     * The boundary is provided as a list of vertices and a list of facets.
     * Each facet is specified as an integer array containing the arrays vertices
     * indices in the vertices list. Each facet normal is oriented by right hand
     * rule to the facet vertices list.
     * </p>
     * <p>
     * Some basic sanity checks are performed but not everything is thoroughly
     * assessed, so it remains under caller responsibility to ensure the vertices
     * and facets are consistent and properly define a polyhedrons set.
     * </p>
     * @param vertices list of polyhedrons set vertices
     * @param facets list of facets, as vertices indices in the vertices list
     * @param tolerance tolerance below which points are considered identical
     * @exception MathIllegalArgumentException if some basic sanity checks fail
     * @since 3.5
     */
    public PolyhedronsSet(final List<Vector3D> vertices, final List facets,
                          final double tolerance) {
        super(buildBoundary(vertices, facets, tolerance), tolerance);
    }

    /** Build a parallellepipedic box.
     * @param xMin low bound along the x direction
     * @param xMax high bound along the x direction
     * @param yMin low bound along the y direction
     * @param yMax high bound along the y direction
     * @param zMin low bound along the z direction
     * @param zMax high bound along the z direction
     * @param tolerance tolerance below which points are considered identical
     * @since 3.3
     */
    public PolyhedronsSet(final double xMin, final double xMax,
                          final double yMin, final double yMax,
                          final double zMin, final double zMax,
                          final double tolerance) {
        super(buildBoundary(xMin, xMax, yMin, yMax, zMin, zMax, tolerance), tolerance);
    }

    /** Build a polyhedrons set representing the whole real line.
     * @deprecated as of 3.3, replaced with {@link #PolyhedronsSet(double)}
     */
    @Deprecated
    public PolyhedronsSet() {
        this(DEFAULT_TOLERANCE);
    }

    /** Build a polyhedrons set from a BSP tree.
     * <p>The leaf nodes of the BSP tree must have a
     * {@code Boolean} attribute representing the inside status of
     * the corresponding cell (true for inside cells, false for outside
     * cells). In order to avoid building too many small objects, it is
     * recommended to use the predefined constants
     * {@code Boolean.TRUE} and {@code Boolean.FALSE}</p>
     * @param tree inside/outside BSP tree representing the region
     * @deprecated as of 3.3, replaced with {@link #PolyhedronsSet(BSPTree, double)}
     */
    @Deprecated
    public PolyhedronsSet(final BSPTree<Euclidean3D> tree) {
        this(tree, DEFAULT_TOLERANCE);
    }

    /** Build a polyhedrons set from a Boundary REPresentation (B-rep).
     * <p>The boundary is provided as a collection of {@link
     * SubHyperplane sub-hyperplanes}. Each sub-hyperplane has the
     * interior part of the region on its minus side and the exterior on
     * its plus side.</p>
     * <p>The boundary elements can be in any order, and can form
     * several non-connected sets (like for example polyhedrons with holes
     * or a set of disjoint polyhedrons considered as a whole). In
     * fact, the elements do not even need to be connected together
     * (their topological connections are not used here). However, if the
     * boundary does not really separate an inside open from an outside
     * open (open having here its topological meaning), then subsequent
     * calls to the {@link Region#checkPoint(Point) checkPoint} method will
     * not be meaningful anymore.</p>
     * <p>If the boundary is empty, the region will represent the whole
     * space.</p>
     * @param boundary collection of boundary elements, as a
     * collection of {@link SubHyperplane SubHyperplane} objects
     * @deprecated as of 3.3, replaced with {@link #PolyhedronsSet(Collection, double)}
     */
    @Deprecated
    public PolyhedronsSet(final Collection<SubHyperplane boundary) {
        this(boundary, DEFAULT_TOLERANCE);
    }

    /** Build a parallellepipedic box.
     * @param xMin low bound along the x direction
     * @param xMax high bound along the x direction
     * @param yMin low bound along the y direction
     * @param yMax high bound along the y direction
     * @param zMin low bound along the z direction
     * @param zMax high bound along the z direction
     * @deprecated as of 3.3, replaced with {@link #PolyhedronsSet(double, double,
     * double, double, double, double, double)}
     */
    @Deprecated
    public PolyhedronsSet(final double xMin, final double xMax,
                          final double yMin, final double yMax,
                          final double zMin, final double zMax) {
        this(xMin, xMax, yMin, yMax, zMin, zMax, DEFAULT_TOLERANCE);
    }

    /** Build a parallellepipedic box boundary.
     * @param xMin low bound along the x direction
     * @param xMax high bound along the x direction
     * @param yMin low bound along the y direction
     * @param yMax high bound along the y direction
     * @param zMin low bound along the z direction
     * @param zMax high bound along the z direction
     * @param tolerance tolerance below which points are considered identical
     * @return boundary tree
     * @since 3.3
     */
    private static BSPTree<Euclidean3D> buildBoundary(final double xMin, final double xMax,
                                                      final double yMin, final double yMax,
                                                      final double zMin, final double zMax,
                                                      final double tolerance) {
        if ((xMin >= xMax - tolerance) || (yMin >= yMax - tolerance) || (zMin >= zMax - tolerance)) {
            // too thin box, build an empty polygons set
            return new BSPTree<Euclidean3D>(Boolean.FALSE);
        }
        final Plane pxMin = new Plane(new Vector3D(xMin, 0,    0),   Vector3D.MINUS_I, tolerance);
        final Plane pxMax = new Plane(new Vector3D(xMax, 0,    0),   Vector3D.PLUS_I,  tolerance);
        final Plane pyMin = new Plane(new Vector3D(0,    yMin, 0),   Vector3D.MINUS_J, tolerance);
        final Plane pyMax = new Plane(new Vector3D(0,    yMax, 0),   Vector3D.PLUS_J,  tolerance);
        final Plane pzMin = new Plane(new Vector3D(0,    0,   zMin), Vector3D.MINUS_K, tolerance);
        final Plane pzMax = new Plane(new Vector3D(0,    0,   zMax), Vector3D.PLUS_K,  tolerance);
        @SuppressWarnings("unchecked")
        final Region<Euclidean3D> boundary =
        new RegionFactory<Euclidean3D>().buildConvex(pxMin, pxMax, pyMin, pyMax, pzMin, pzMax);
        return boundary.getTree(false);
    }

    /** Build boundary from vertices and facets.
     * @param vertices list of polyhedrons set vertices
     * @param facets list of facets, as vertices indices in the vertices list
     * @param tolerance tolerance below which points are considered identical
     * @return boundary as a list of sub-hyperplanes
     * @exception MathIllegalArgumentException if some basic sanity checks fail
     * @since 3.5
     */
    private static List<SubHyperplane buildBoundary(final List vertices,
                                                                  final List<int[]> facets,
                                                                  final double tolerance) {

        // check vertices distances
        for (int i = 0; i < vertices.size() - 1; ++i) {
            final Vector3D vi = vertices.get(i);
            for (int j = i + 1; j < vertices.size(); ++j) {
                if (Vector3D.distance(vi, vertices.get(j)) <= tolerance) {
                    throw new MathIllegalArgumentException(LocalizedFormats.CLOSE_VERTICES,
                                                           vi.getX(), vi.getY(), vi.getZ());
                }
            }
        }

        // find how vertices are referenced by facets
        final int[][] references = findReferences(vertices, facets);

        // find how vertices are linked together by edges along the facets they belong to
        final int[][] successors = successors(vertices, facets, references);

        // check edges orientations
        for (int vA = 0; vA < vertices.size(); ++vA) {
            for (final int vB : successors[vA]) {

                if (vB >= 0) {
                    // when facets are properly oriented, if vB is the successor of vA on facet f1,
                    // then there must be an adjacent facet f2 where vA is the successor of vB
                    boolean found = false;
                    for (final int v : successors[vB]) {
                        found = found || (v == vA);
                    }
                    if (!found) {
                        final Vector3D start = vertices.get(vA);
                        final Vector3D end   = vertices.get(vB);
                        throw new MathIllegalArgumentException(LocalizedFormats.EDGE_CONNECTED_TO_ONE_FACET,
                                                               start.getX(), start.getY(), start.getZ(),
                                                               end.getX(),   end.getY(),   end.getZ());
                    }
                }
            }
        }

        final List<SubHyperplane boundary = new ArrayList>();

        for (final int[] facet : facets) {

            // define facet plane from the first 3 points
            Plane plane = new Plane(vertices.get(facet[0]), vertices.get(facet[1]), vertices.get(facet[2]),
                                    tolerance);

            // check all points are in the plane
            final Vector2D[] two2Points = new Vector2D[facet.length];
            for (int i = 0 ; i < facet.length; ++i) {
                final Vector3D v = vertices.get(facet[i]);
                if (!plane.contains(v)) {
                    throw new MathIllegalArgumentException(LocalizedFormats.OUT_OF_PLANE,
                                                           v.getX(), v.getY(), v.getZ());
                }
                two2Points[i] = plane.toSubSpace(v);
            }

            // create the polygonal facet
            boundary.add(new SubPlane(plane, new PolygonsSet(tolerance, two2Points)));

        }

        return boundary;

    }

    /** Find the facets that reference each edges.
     * @param vertices list of polyhedrons set vertices
     * @param facets list of facets, as vertices indices in the vertices list
     * @return references array such that r[v][k] = f for some k if facet f contains vertex v
     * @exception MathIllegalArgumentException if some facets have fewer than 3 vertices
     * @since 3.5
     */
    private static int[][] findReferences(final List<Vector3D> vertices, final List facets) {

        // find the maximum number of facets a vertex belongs to
        final int[] nbFacets = new int[vertices.size()];
        int maxFacets  = 0;
        for (final int[] facet : facets) {
            if (facet.length < 3) {
                throw new NumberIsTooSmallException(LocalizedFormats.WRONG_NUMBER_OF_POINTS,
                                                    3, facet.length, true);
            }
            for (final int index : facet) {
                maxFacets = FastMath.max(maxFacets, ++nbFacets[index]);
            }
        }

        // set up the references array
        final int[][] references = new int[vertices.size()][maxFacets];
        for (int[] r : references) {
            Arrays.fill(r, -1);
        }
        for (int f = 0; f < facets.size(); ++f) {
            for (final int v : facets.get(f)) {
                // vertex v is referenced by facet f
                int k = 0;
                while (k < maxFacets && references[v][k] >= 0) {
                    ++k;
                }
                references[v][k] = f;
            }
        }

        return references;

    }

    /** Find the successors of all vertices among all facets they belong to.
     * @param vertices list of polyhedrons set vertices
     * @param facets list of facets, as vertices indices in the vertices list
     * @param references facets references array
     * @return indices of vertices that follow vertex v in some facet (the array
     * may contain extra entries at the end, set to negative indices)
     * @exception MathIllegalArgumentException if the same vertex appears more than
     * once in the successors list (which means one facet orientation is wrong)
     * @since 3.5
     */
    private static int[][] successors(final List<Vector3D> vertices, final List facets,
                                      final int[][] references) {

        // create an array large enough
        final int[][] successors = new int[vertices.size()][references[0].length];
        for (final int[] s : successors) {
            Arrays.fill(s, -1);
        }

        for (int v = 0; v < vertices.size(); ++v) {
            for (int k = 0; k < successors[v].length && references[v][k] >= 0; ++k) {

                // look for vertex v
                final int[] facet = facets.get(references[v][k]);
                int i = 0;
                while (i < facet.length && facet[i] != v) {
                    ++i;
                }

                // we have found vertex v, we deduce its successor on current facet
                successors[v][k] = facet[(i + 1) % facet.length];
                for (int l = 0; l < k; ++l) {
                    if (successors[v][l] == successors[v][k]) {
                        final Vector3D start = vertices.get(v);
                        final Vector3D end   = vertices.get(successors[v][k]);
                        throw new MathIllegalArgumentException(LocalizedFormats.FACET_ORIENTATION_MISMATCH,
                                                               start.getX(), start.getY(), start.getZ(),
                                                               end.getX(),   end.getY(),   end.getZ());
                    }
                }

            }
        }

        return successors;

    }

    /** {@inheritDoc} */
    @Override
    public PolyhedronsSet buildNew(final BSPTree<Euclidean3D> tree) {
        return new PolyhedronsSet(tree, getTolerance());
    }

    /** {@inheritDoc} */
    @Override
    protected void computeGeometricalProperties() {

        // compute the contribution of all boundary facets
        getTree(true).visit(new FacetsContributionVisitor());

        if (getSize() < 0) {
            // the polyhedrons set as a finite outside
            // surrounded by an infinite inside
            setSize(Double.POSITIVE_INFINITY);
            setBarycenter((Point<Euclidean3D>) Vector3D.NaN);
        } else {
            // the polyhedrons set is finite, apply the remaining scaling factors
            setSize(getSize() / 3.0);
            setBarycenter((Point<Euclidean3D>) new Vector3D(1.0 / (4 * getSize()), (Vector3D) getBarycenter()));
        }

    }

    /** Visitor computing geometrical properties. */
    private class FacetsContributionVisitor implements BSPTreeVisitor<Euclidean3D> {

        /** Simple constructor. */
        FacetsContributionVisitor() {
            setSize(0);
            setBarycenter((Point<Euclidean3D>) new Vector3D(0, 0, 0));
        }

        /** {@inheritDoc} */
        public Order visitOrder(final BSPTree<Euclidean3D> node) {
            return Order.MINUS_SUB_PLUS;
        }

        /** {@inheritDoc} */
        public void visitInternalNode(final BSPTree<Euclidean3D> node) {
            @SuppressWarnings("unchecked")
            final BoundaryAttribute<Euclidean3D> attribute =
                (BoundaryAttribute<Euclidean3D>) node.getAttribute();
            if (attribute.getPlusOutside() != null) {
                addContribution(attribute.getPlusOutside(), false);
            }
            if (attribute.getPlusInside() != null) {
                addContribution(attribute.getPlusInside(), true);
            }
        }

        /** {@inheritDoc} */
        public void visitLeafNode(final BSPTree<Euclidean3D> node) {
        }

        /** Add he contribution of a boundary facet.
         * @param facet boundary facet
         * @param reversed if true, the facet has the inside on its plus side
         */
        private void addContribution(final SubHyperplane<Euclidean3D> facet, final boolean reversed) {

            final Region<Euclidean2D> polygon = ((SubPlane) facet).getRemainingRegion();
            final double area    = polygon.getSize();

            if (Double.isInfinite(area)) {
                setSize(Double.POSITIVE_INFINITY);
                setBarycenter((Point<Euclidean3D>) Vector3D.NaN);
            } else {

                final Plane    plane  = (Plane) facet.getHyperplane();
                final Vector3D facetB = plane.toSpace(polygon.getBarycenter());
                double   scaled = area * facetB.dotProduct(plane.getNormal());
                if (reversed) {
                    scaled = -scaled;
                }

                setSize(getSize() + scaled);
                setBarycenter((Point<Euclidean3D>) new Vector3D(1.0, (Vector3D) getBarycenter(), scaled, facetB));

            }

        }

    }

    /** Get the first sub-hyperplane crossed by a semi-infinite line.
     * @param point start point of the part of the line considered
     * @param line line to consider (contains point)
     * @return the first sub-hyperplane crossed by the line after the
     * given point, or null if the line does not intersect any
     * sub-hyperplane
     */
    public SubHyperplane<Euclidean3D> firstIntersection(final Vector3D point, final Line line) {
        return recurseFirstIntersection(getTree(true), point, line);
    }

    /** Get the first sub-hyperplane crossed by a semi-infinite line.
     * @param node current node
     * @param point start point of the part of the line considered
     * @param line line to consider (contains point)
     * @return the first sub-hyperplane crossed by the line after the
     * given point, or null if the line does not intersect any
     * sub-hyperplane
     */
    private SubHyperplane<Euclidean3D> recurseFirstIntersection(final BSPTree node,
                                                                final Vector3D point,
                                                                final Line line) {

        final SubHyperplane<Euclidean3D> cut = node.getCut();
        if (cut == null) {
            return null;
        }
        final BSPTree<Euclidean3D> minus = node.getMinus();
        final BSPTree<Euclidean3D> plus  = node.getPlus();
        final Plane                plane = (Plane) cut.getHyperplane();

        // establish search order
        final double offset = plane.getOffset((Point<Euclidean3D>) point);
        final boolean in    = FastMath.abs(offset) < getTolerance();
        final BSPTree<Euclidean3D> near;
        final BSPTree<Euclidean3D> far;
        if (offset < 0) {
            near = minus;
            far  = plus;
        } else {
            near = plus;
            far  = minus;
        }

        if (in) {
            // search in the cut hyperplane
            final SubHyperplane<Euclidean3D> facet = boundaryFacet(point, node);
            if (facet != null) {
                return facet;
            }
        }

        // search in the near branch
        final SubHyperplane<Euclidean3D> crossed = recurseFirstIntersection(near, point, line);
        if (crossed != null) {
            return crossed;
        }

        if (!in) {
            // search in the cut hyperplane
            final Vector3D hit3D = plane.intersection(line);
            if (hit3D != null && line.getAbscissa(hit3D) > line.getAbscissa(point)) {
                final SubHyperplane<Euclidean3D> facet = boundaryFacet(hit3D, node);
                if (facet != null) {
                    return facet;
                }
            }
        }

        // search in the far branch
        return recurseFirstIntersection(far, point, line);

    }

    /** Check if a point belongs to the boundary part of a node.
     * @param point point to check
     * @param node node containing the boundary facet to check
     * @return the boundary facet this points belongs to (or null if it
     * does not belong to any boundary facet)
     */
    private SubHyperplane<Euclidean3D> boundaryFacet(final Vector3D point,
                                                     final BSPTree<Euclidean3D> node) {
        final Vector2D point2D = ((Plane) node.getCut().getHyperplane()).toSubSpace((Point<Euclidean3D>) point);
        @SuppressWarnings("unchecked")
        final BoundaryAttribute<Euclidean3D> attribute =
            (BoundaryAttribute<Euclidean3D>) node.getAttribute();
        if ((attribute.getPlusOutside() != null) &&
            (((SubPlane) attribute.getPlusOutside()).getRemainingRegion().checkPoint(point2D) == Location.INSIDE)) {
            return attribute.getPlusOutside();
        }
        if ((attribute.getPlusInside() != null) &&
            (((SubPlane) attribute.getPlusInside()).getRemainingRegion().checkPoint(point2D) == Location.INSIDE)) {
            return attribute.getPlusInside();
        }
        return null;
    }

    /** Rotate the region around the specified point.
     * <p>The instance is not modified, a new instance is created.

* @param center rotation center * @param rotation vectorial rotation operator * @return a new instance representing the rotated region */ public PolyhedronsSet rotate(final Vector3D center, final Rotation rotation) { return (PolyhedronsSet) applyTransform(new RotationTransform(center, rotation)); } /** 3D rotation as a Transform. */ private static class RotationTransform implements Transform<Euclidean3D, Euclidean2D> { /** Center point of the rotation. */ private Vector3D center; /** Vectorial rotation. */ private Rotation rotation; /** Cached original hyperplane. */ private Plane cachedOriginal; /** Cached 2D transform valid inside the cached original hyperplane. */ private Transform<Euclidean2D, Euclidean1D> cachedTransform; /** Build a rotation transform. * @param center center point of the rotation * @param rotation vectorial rotation */ RotationTransform(final Vector3D center, final Rotation rotation) { this.center = center; this.rotation = rotation; } /** {@inheritDoc} */ public Vector3D apply(final Point<Euclidean3D> point) { final Vector3D delta = ((Vector3D) point).subtract(center); return new Vector3D(1.0, center, 1.0, rotation.applyTo(delta)); } /** {@inheritDoc} */ public Plane apply(final Hyperplane<Euclidean3D> hyperplane) { return ((Plane) hyperplane).rotate(center, rotation); } /** {@inheritDoc} */ public SubHyperplane<Euclidean2D> apply(final SubHyperplane sub, final Hyperplane<Euclidean3D> original, final Hyperplane<Euclidean3D> transformed) { if (original != cachedOriginal) { // we have changed hyperplane, reset the in-hyperplane transform final Plane oPlane = (Plane) original; final Plane tPlane = (Plane) transformed; final Vector3D p00 = oPlane.getOrigin(); final Vector3D p10 = oPlane.toSpace((Point<Euclidean2D>) new Vector2D(1.0, 0.0)); final Vector3D p01 = oPlane.toSpace((Point<Euclidean2D>) new Vector2D(0.0, 1.0)); final Vector2D tP00 = tPlane.toSubSpace((Point<Euclidean3D>) apply(p00)); final Vector2D tP10 = tPlane.toSubSpace((Point<Euclidean3D>) apply(p10)); final Vector2D tP01 = tPlane.toSubSpace((Point<Euclidean3D>) apply(p01)); cachedOriginal = (Plane) original; cachedTransform = org.apache.commons.math3.geometry.euclidean.twod.Line.getTransform(tP10.getX() - tP00.getX(), tP10.getY() - tP00.getY(), tP01.getX() - tP00.getX(), tP01.getY() - tP00.getY(), tP00.getX(), tP00.getY()); } return ((SubLine) sub).applyTransform(cachedTransform); } } /** Translate the region by the specified amount. * <p>The instance is not modified, a new instance is created.

* @param translation translation to apply * @return a new instance representing the translated region */ public PolyhedronsSet translate(final Vector3D translation) { return (PolyhedronsSet) applyTransform(new TranslationTransform(translation)); } /** 3D translation as a transform. */ private static class TranslationTransform implements Transform<Euclidean3D, Euclidean2D> { /** Translation vector. */ private Vector3D translation; /** Cached original hyperplane. */ private Plane cachedOriginal; /** Cached 2D transform valid inside the cached original hyperplane. */ private Transform<Euclidean2D, Euclidean1D> cachedTransform; /** Build a translation transform. * @param translation translation vector */ TranslationTransform(final Vector3D translation) { this.translation = translation; } /** {@inheritDoc} */ public Vector3D apply(final Point<Euclidean3D> point) { return new Vector3D(1.0, (Vector3D) point, 1.0, translation); } /** {@inheritDoc} */ public Plane apply(final Hyperplane<Euclidean3D> hyperplane) { return ((Plane) hyperplane).translate(translation); } /** {@inheritDoc} */ public SubHyperplane<Euclidean2D> apply(final SubHyperplane sub, final Hyperplane<Euclidean3D> original, final Hyperplane<Euclidean3D> transformed) { if (original != cachedOriginal) { // we have changed hyperplane, reset the in-hyperplane transform final Plane oPlane = (Plane) original; final Plane tPlane = (Plane) transformed; final Vector2D shift = tPlane.toSubSpace((Point<Euclidean3D>) apply(oPlane.getOrigin())); cachedOriginal = (Plane) original; cachedTransform = org.apache.commons.math3.geometry.euclidean.twod.Line.getTransform(1, 0, 0, 1, shift.getX(), shift.getY()); } return ((SubLine) sub).applyTransform(cachedTransform); } } }

Other Java examples (source code examples)

Here is a short list of links related to this Java PolyhedronsSet.java source code file:



my book on functional programming

 

new blog posts

 

Copyright 1998-2019 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.