home | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (RectangularCholeskyDecomposition.java)

This example Java source code file (RectangularCholeskyDecomposition.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

nonpositivedefinitematrixexception, realmatrix, rectangularcholeskydecomposition

The RectangularCholeskyDecomposition.java Java example source code

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.linear;

import org.apache.commons.math3.util.FastMath;

/**
 * Calculates the rectangular Cholesky decomposition of a matrix.
 * <p>The rectangular Cholesky decomposition of a real symmetric positive
 * semidefinite matrix A consists of a rectangular matrix B with the same
 * number of rows such that: A is almost equal to BB<sup>T, depending
 * on a user-defined tolerance. In a sense, this is the square root of A.</p>
 * <p>The difference with respect to the regular {@link CholeskyDecomposition}
 * is that rows/columns may be permuted (hence the rectangular shape instead
 * of the traditional triangular shape) and there is a threshold to ignore
 * small diagonal elements. This is used for example to generate {@link
 * org.apache.commons.math3.random.CorrelatedRandomVectorGenerator correlated
 * random n-dimensions vectors} in a p-dimension subspace (p < n).
 * In other words, it allows generating random vectors from a covariance
 * matrix that is only positive semidefinite, and not positive definite.</p>
 * <p>Rectangular Cholesky decomposition is not suited for solving
 * linear systems, so it does not provide any {@link DecompositionSolver
 * decomposition solver}.</p>
 *
 * @see <a href="http://mathworld.wolfram.com/CholeskyDecomposition.html">MathWorld
 * @see <a href="http://en.wikipedia.org/wiki/Cholesky_decomposition">Wikipedia
 * @since 2.0 (changed to concrete class in 3.0)
 */
public class RectangularCholeskyDecomposition {

    /** Permutated Cholesky root of the symmetric positive semidefinite matrix. */
    private final RealMatrix root;

    /** Rank of the symmetric positive semidefinite matrix. */
    private int rank;

    /**
     * Decompose a symmetric positive semidefinite matrix.
     * <p>
     * <b>Note: this constructor follows the linpack method to detect dependent
     * columns by proceeding with the Cholesky algorithm until a nonpositive diagonal
     * element is encountered.
     *
     * @see <a href="http://eprints.ma.man.ac.uk/1193/01/covered/MIMS_ep2008_56.pdf">
     * Analysis of the Cholesky Decomposition of a Semi-definite Matrix</a>
     *
     * @param matrix Symmetric positive semidefinite matrix.
     * @exception NonPositiveDefiniteMatrixException if the matrix is not
     * positive semidefinite.
     * @since 3.1
     */
    public RectangularCholeskyDecomposition(RealMatrix matrix)
        throws NonPositiveDefiniteMatrixException {
        this(matrix, 0);
    }

    /**
     * Decompose a symmetric positive semidefinite matrix.
     *
     * @param matrix Symmetric positive semidefinite matrix.
     * @param small Diagonal elements threshold under which columns are
     * considered to be dependent on previous ones and are discarded.
     * @exception NonPositiveDefiniteMatrixException if the matrix is not
     * positive semidefinite.
     */
    public RectangularCholeskyDecomposition(RealMatrix matrix, double small)
        throws NonPositiveDefiniteMatrixException {

        final int order = matrix.getRowDimension();
        final double[][] c = matrix.getData();
        final double[][] b = new double[order][order];

        int[] index = new int[order];
        for (int i = 0; i < order; ++i) {
            index[i] = i;
        }

        int r = 0;
        for (boolean loop = true; loop;) {

            // find maximal diagonal element
            int swapR = r;
            for (int i = r + 1; i < order; ++i) {
                int ii  = index[i];
                int isr = index[swapR];
                if (c[ii][ii] > c[isr][isr]) {
                    swapR = i;
                }
            }


            // swap elements
            if (swapR != r) {
                final int tmpIndex    = index[r];
                index[r]              = index[swapR];
                index[swapR]          = tmpIndex;
                final double[] tmpRow = b[r];
                b[r]                  = b[swapR];
                b[swapR]              = tmpRow;
            }

            // check diagonal element
            int ir = index[r];
            if (c[ir][ir] <= small) {

                if (r == 0) {
                    throw new NonPositiveDefiniteMatrixException(c[ir][ir], ir, small);
                }

                // check remaining diagonal elements
                for (int i = r; i < order; ++i) {
                    if (c[index[i]][index[i]] < -small) {
                        // there is at least one sufficiently negative diagonal element,
                        // the symmetric positive semidefinite matrix is wrong
                        throw new NonPositiveDefiniteMatrixException(c[index[i]][index[i]], i, small);
                    }
                }

                // all remaining diagonal elements are close to zero, we consider we have
                // found the rank of the symmetric positive semidefinite matrix
                loop = false;

            } else {

                // transform the matrix
                final double sqrt = FastMath.sqrt(c[ir][ir]);
                b[r][r] = sqrt;
                final double inverse  = 1 / sqrt;
                final double inverse2 = 1 / c[ir][ir];
                for (int i = r + 1; i < order; ++i) {
                    final int ii = index[i];
                    final double e = inverse * c[ii][ir];
                    b[i][r] = e;
                    c[ii][ii] -= c[ii][ir] * c[ii][ir] * inverse2;
                    for (int j = r + 1; j < i; ++j) {
                        final int ij = index[j];
                        final double f = c[ii][ij] - e * b[j][r];
                        c[ii][ij] = f;
                        c[ij][ii] = f;
                    }
                }

                // prepare next iteration
                loop = ++r < order;
            }
        }

        // build the root matrix
        rank = r;
        root = MatrixUtils.createRealMatrix(order, r);
        for (int i = 0; i < order; ++i) {
            for (int j = 0; j < r; ++j) {
                root.setEntry(index[i], j, b[i][j]);
            }
        }

    }

    /** Get the root of the covariance matrix.
     * The root is the rectangular matrix <code>B such that
     * the covariance matrix is equal to <code>B.BT
     * @return root of the square matrix
     * @see #getRank()
     */
    public RealMatrix getRootMatrix() {
        return root;
    }

    /** Get the rank of the symmetric positive semidefinite matrix.
     * The r is the number of independent rows in the symmetric positive semidefinite
     * matrix, it is also the number of columns of the rectangular
     * matrix of the decomposition.
     * @return r of the square matrix.
     * @see #getRootMatrix()
     */
    public int getRank() {
        return rank;
    }

}

Other Java examples (source code examples)

Here is a short list of links related to this Java RectangularCholeskyDecomposition.java source code file:



my book on functional programming

 

new blog posts

 

Copyright 1998-2019 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.