home | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (Combinations.java)

This example Java source code file (Combinations.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

combinations, iterable, iterationorder, iterator, lexicographiccomparator, lexicographiciterator, mathinternalerror, nosuchelementexception, outofrangeexception, serializable, set, should, singletoniterator, unsupportedoperationexception, util

The Combinations.java Java example source code

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.util;

import java.util.Iterator;
import java.util.Comparator;
import java.util.Arrays;
import java.util.NoSuchElementException;
import java.io.Serializable;
import org.apache.commons.math3.exception.MathInternalError;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.OutOfRangeException;

/**
 * Utility to create <a href="http://en.wikipedia.org/wiki/Combination">
 * combinations</a> {@code (n, k)} of {@code k} elements in a set of
 * {@code n} elements.
 *
 * @since 3.3
 */
public class Combinations implements Iterable<int[]> {
    /** Size of the set from which combinations are drawn. */
    private final int n;
    /** Number of elements in each combination. */
    private final int k;
    /** Iteration order. */
    private final IterationOrder iterationOrder;

    /**
     * Describes the type of iteration performed by the
     * {@link #iterator() iterator}.
     */
    private enum IterationOrder {
        /** Lexicographic order. */
        LEXICOGRAPHIC
    }

   /**
     * Creates an instance whose range is the k-element subsets of
     * {0, ..., n - 1} represented as {@code int[]} arrays.
     * <p>
     * The iteration order is lexicographic: the arrays returned by the
     * {@link #iterator() iterator} are sorted in descending order and
     * they are visited in lexicographic order with significance from
     * right to left.
     * For example, {@code new Combinations(4, 2).iterator()} returns
     * an iterator that will generate the following sequence of arrays
     * on successive calls to
     * {@code next()}:<br/>
     * {@code [0, 1], [0, 2], [1, 2], [0, 3], [1, 3], [2, 3]}
     * </p>
     * If {@code k == 0} an iterator containing an empty array is returned;
     * if {@code k == n} an iterator containing [0, ..., n - 1] is returned.
     *
     * @param n Size of the set from which subsets are selected.
     * @param k Size of the subsets to be enumerated.
     * @throws org.apache.commons.math3.exception.NotPositiveException if {@code n < 0}.
     * @throws org.apache.commons.math3.exception.NumberIsTooLargeException if {@code k > n}.
     */
    public Combinations(int n,
                        int k) {
        this(n, k, IterationOrder.LEXICOGRAPHIC);
    }

    /**
     * Creates an instance whose range is the k-element subsets of
     * {0, ..., n - 1} represented as {@code int[]} arrays.
     * <p>
     * If the {@code iterationOrder} argument is set to
     * {@link IterationOrder#LEXICOGRAPHIC}, the arrays returned by the
     * {@link #iterator() iterator} are sorted in descending order and
     * they are visited in lexicographic order with significance from
     * right to left.
     * For example, {@code new Combinations(4, 2).iterator()} returns
     * an iterator that will generate the following sequence of arrays
     * on successive calls to
     * {@code next()}:<br/>
     * {@code [0, 1], [0, 2], [1, 2], [0, 3], [1, 3], [2, 3]}
     * </p>
     * If {@code k == 0} an iterator containing an empty array is returned;
     * if {@code k == n} an iterator containing [0, ..., n - 1] is returned.
     *
     * @param n Size of the set from which subsets are selected.
     * @param k Size of the subsets to be enumerated.
     * @param iterationOrder Specifies the {@link #iterator() iteration order}.
     * @throws org.apache.commons.math3.exception.NotPositiveException if {@code n < 0}.
     * @throws org.apache.commons.math3.exception.NumberIsTooLargeException if {@code k > n}.
     */
    private Combinations(int n,
                         int k,
                         IterationOrder iterationOrder) {
        CombinatoricsUtils.checkBinomial(n, k);
        this.n = n;
        this.k = k;
        this.iterationOrder = iterationOrder;
    }

    /**
     * Gets the size of the set from which combinations are drawn.
     *
     * @return the size of the universe.
     */
    public int getN() {
        return n;
    }

    /**
     * Gets the number of elements in each combination.
     *
     * @return the size of the subsets to be enumerated.
     */
    public int getK() {
        return k;
    }

    /** {@inheritDoc} */
    public Iterator<int[]> iterator() {
        if (k == 0 ||
            k == n) {
            return new SingletonIterator(MathArrays.natural(k));
        }

        switch (iterationOrder) {
        case LEXICOGRAPHIC:
            return new LexicographicIterator(n, k);
        default:
            throw new MathInternalError(); // Should never happen.
        }
    }

    /**
     * Defines a lexicographic ordering of combinations.
     * The returned comparator allows to compare any two combinations
     * that can be produced by this instance's {@link #iterator() iterator}.
     * Its {@code compare(int[],int[])} method will throw exceptions if
     * passed combinations that are inconsistent with this instance:
     * <ul>
     *  <li>{@code DimensionMismatchException} if the array lengths are not
     *      equal to {@code k},</li>
     *  <li>{@code OutOfRangeException} if an element of the array is not
     *      within the interval [0, {@code n}).</li>
     * </ul>
     * @return a lexicographic comparator.
     */
    public Comparator<int[]> comparator() {
        return new LexicographicComparator(n, k);
    }

    /**
     * Lexicographic combinations iterator.
     * <p>
     * Implementation follows Algorithm T in <i>The Art of Computer Programming
     * Internet Draft (PRE-FASCICLE 3A), "A Draft of Section 7.2.1.3 Generating All
     * Combinations</a>, D. Knuth, 2004.

* <p> * The degenerate cases {@code k == 0} and {@code k == n} are NOT handled by this * implementation. If constructor arguments satisfy {@code k == 0} * or {@code k >= n}, no exception is generated, but the iterator is empty. * </p> * */ private static class LexicographicIterator implements Iterator<int[]> { /** Size of subsets returned by the iterator */ private final int k; /** * c[1], ..., c[k] stores the next combination; c[k + 1], c[k + 2] are * sentinels. * <p> * Note that c[0] is "wasted" but this makes it a little easier to * follow the code. * </p> */ private final int[] c; /** Return value for {@link #hasNext()} */ private boolean more = true; /** Marker: smallest index such that c[j + 1] > j */ private int j; /** * Construct a CombinationIterator to enumerate k-sets from n. * <p> * NOTE: If {@code k === 0} or {@code k >= n}, the Iterator will be empty * (that is, {@link #hasNext()} will return {@code false} immediately. * </p> * * @param n size of the set from which subsets are enumerated * @param k size of the subsets to enumerate */ LexicographicIterator(int n, int k) { this.k = k; c = new int[k + 3]; if (k == 0 || k >= n) { more = false; return; } // Initialize c to start with lexicographically first k-set for (int i = 1; i <= k; i++) { c[i] = i - 1; } // Initialize sentinels c[k + 1] = n; c[k + 2] = 0; j = k; // Set up invariant: j is smallest index such that c[j + 1] > j } /** * {@inheritDoc} */ public boolean hasNext() { return more; } /** * {@inheritDoc} */ public int[] next() { if (!more) { throw new NoSuchElementException(); } // Copy return value (prepared by last activation) final int[] ret = new int[k]; System.arraycopy(c, 1, ret, 0, k); // Prepare next iteration // T2 and T6 loop int x = 0; if (j > 0) { x = j; c[j] = x; j--; return ret; } // T3 if (c[1] + 1 < c[2]) { c[1]++; return ret; } else { j = 2; } // T4 boolean stepDone = false; while (!stepDone) { c[j - 1] = j - 2; x = c[j] + 1; if (x == c[j + 1]) { j++; } else { stepDone = true; } } // T5 if (j > k) { more = false; return ret; } // T6 c[j] = x; j--; return ret; } /** * Not supported. */ public void remove() { throw new UnsupportedOperationException(); } } /** * Iterator with just one element to handle degenerate cases (full array, * empty array) for combination iterator. */ private static class SingletonIterator implements Iterator<int[]> { /** Singleton array */ private final int[] singleton; /** True on initialization, false after first call to next */ private boolean more = true; /** * Create a singleton iterator providing the given array. * @param singleton array returned by the iterator */ SingletonIterator(final int[] singleton) { this.singleton = singleton; } /** @return True until next is called the first time, then false */ public boolean hasNext() { return more; } /** @return the singleton in first activation; throws NSEE thereafter */ public int[] next() { if (more) { more = false; return singleton; } else { throw new NoSuchElementException(); } } /** Not supported */ public void remove() { throw new UnsupportedOperationException(); } } /** * Defines the lexicographic ordering of combinations, using * the {@link #lexNorm(int[])} method. */ private static class LexicographicComparator implements Comparator<int[]>, Serializable { /** Serializable version identifier. */ private static final long serialVersionUID = 20130906L; /** Size of the set from which combinations are drawn. */ private final int n; /** Number of elements in each combination. */ private final int k; /** * @param n Size of the set from which subsets are selected. * @param k Size of the subsets to be enumerated. */ LexicographicComparator(int n, int k) { this.n = n; this.k = k; } /** * {@inheritDoc} * * @throws DimensionMismatchException if the array lengths are not * equal to {@code k}. * @throws OutOfRangeException if an element of the array is not * within the interval [0, {@code n}). */ public int compare(int[] c1, int[] c2) { if (c1.length != k) { throw new DimensionMismatchException(c1.length, k); } if (c2.length != k) { throw new DimensionMismatchException(c2.length, k); } // Method "lexNorm" works with ordered arrays. final int[] c1s = MathArrays.copyOf(c1); Arrays.sort(c1s); final int[] c2s = MathArrays.copyOf(c2); Arrays.sort(c2s); final long v1 = lexNorm(c1s); final long v2 = lexNorm(c2s); if (v1 < v2) { return -1; } else if (v1 > v2) { return 1; } else { return 0; } } /** * Computes the value (in base 10) represented by the digit * (interpreted in base {@code n}) in the input array in reverse * order. * For example if {@code c} is {@code {3, 2, 1}}, and {@code n} * is 3, the method will return 18. * * @param c Input array. * @return the lexicographic norm. * @throws OutOfRangeException if an element of the array is not * within the interval [0, {@code n}). */ private long lexNorm(int[] c) { long ret = 0; for (int i = 0; i < c.length; i++) { final int digit = c[i]; if (digit < 0 || digit >= n) { throw new OutOfRangeException(digit, 0, n - 1); } ret += c[i] * ArithmeticUtils.pow(n, i); } return ret; } } }

Other Java examples (source code examples)

Here is a short list of links related to this Java Combinations.java source code file:



my book on functional programming

 

new blog posts

 

Copyright 1998-2019 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.