alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Scala example source code file (DestructureTypes.scala)

This example Scala source code file (DestructureTypes.scala) is included in my "Source Code Warehouse" project. The intent of this project is to help you more easily find Scala source code examples by using tags.

All credit for the original source code belongs to scala-lang.org; I'm just trying to make examples easier to find. (For my Scala work, see my Scala examples and tutorials.)

Scala tags/keywords

annotationinfo, anyclass, compiler, list, node, nothingclass, nsc, string, symbol, type, typeref, u

The DestructureTypes.scala Scala example source code

/* NSC -- new Scala compiler
* Copyright 2005-2013 LAMP/EPFL
* @author  Paul Phillips
*/

package scala.tools.nsc
package typechecker

/** A generic means of breaking down types into their subcomponents.
 *  Types are decomposed top down, and recognizable substructure is
 *  dispatched via self-apparently named methods.  Those methods can
 *  be overridden for custom behavior, but only the abstract methods
 *  require implementations, each of which must create some unknown
 *  "Node" type from its inputs.
 *
 *  - wrapProduct   create Node from a product of Nodes
 *  - wrapSequence  create Node from a sequence of Nodes
 *  - wrapAtom      create Node from an arbitrary value
 *
 *  This is a work in progress.
 */
trait DestructureTypes {
  val global: Global
  import global._
  import definitions.{ NothingClass, AnyClass }

  trait DestructureType[Node] extends (Type => Node) {
    def withLabel(node: Node, label: String): Node
    def withType(node: Node, typeName: String): Node

    def wrapEmpty: Node
    def wrapPoly(in: Node, out: Node): Node
    def wrapMono(in: Node, out: Node): Node
    def wrapProduct(nodes: List[Node]): Node
    def wrapSequence(nodes: List[Node]): Node
    def wrapAtom[U](value: U): Node

    private val openSymbols = scala.collection.mutable.Set[Symbol]()

    private def nodeList[T](elems: List[T], mkNode: T => Node): Node =
      if (elems.isEmpty) wrapEmpty else list(elems map mkNode)

    private def scopeMemberList(elems: List[Symbol]): Node         = nodeList(elems, wrapAtom)
    private def typeList(elems: List[Type]): Node                  = nodeList(elems, this)
    private def symbolList(elems: List[Symbol]): Node              = nodeList(elems, wrapSymbolInfo)
    private def treeList(elems: List[Tree]): Node                  = nodeList(elems, wrapTree)
    private def annotationList(annots: List[AnnotationInfo]): Node = nodeList(annots, annotation)

    private def assocsNode(ann: AnnotationInfo): Node = {
      val (names, args) = ann.assocs.toIndexedSeq.unzip
      if (names.isEmpty) wrapEmpty
      else node("assocs", nodeList(names.indices.toList, (i: Int) => atom(names(i).toString, args(i))))
    }
    private def typeTypeName(tp: Type) = tp match {
      case mt @ MethodType(_, _) if mt.isImplicit => "ImplicitMethodType"
      case TypeRef(_, sym, _)                     => typeRefType(sym)
      case _                                      => tp.kind
    }

    def wrapTree(tree: Tree): Node = withType(
      tree match {
        case x: NameTree => atom(x.name.toString, x)
        case _           => wrapAtom(tree)
      },
      tree.productPrefix
    )
    def wrapSymbolInfo(sym: Symbol): Node = {
      if ((sym eq NoSymbol) || openSymbols(sym)) wrapEmpty
      else {
        openSymbols += sym
        try product(symbolType(sym), wrapAtom(sym.defString))
        finally openSymbols -= sym
      }
    }

    def list(nodes: List[Node]): Node = wrapSequence(nodes)
    def product(tp: Type, nodes: Node*): Node = product(typeTypeName(tp), nodes: _*)
    def product(typeName: String, nodes: Node*): Node = (
      nodes.toList filterNot (_ == wrapEmpty) match {
        case Nil => wrapEmpty
        case xs  => withType(wrapProduct(xs), typeName)
      }
    )

    def atom[U](label: String, value: U): Node         = node(label, wrapAtom(value))
    def constant(label: String, const: Constant): Node = atom(label, const)

    def scope(decls: Scope): Node          = node("decls", scopeMemberList(decls.toList))

    def resultType(restpe: Type): Node          = this("resultType", restpe)
    def typeParams(tps: List[Symbol]): Node     = node("typeParams", symbolList(tps))
    def valueParams(params: List[Symbol]): Node = node("params", symbolList(params))
    def typeArgs(tps: List[Type]): Node         = node("args", typeList(tps))
    def parentList(tps: List[Type]): Node       = node("parents", typeList(tps))

    def polyFunction(tparams: List[Symbol], restpe: Type): Node = wrapPoly(typeParams(tparams), resultType(restpe))
    def monoFunction(params: List[Symbol], restpe: Type): Node  = wrapMono(valueParams(params), resultType(restpe))
    def nullaryFunction(restpe: Type): Node                     = wrapMono(wrapEmpty, this(restpe))

    def prefix(pre: Type): Node = pre match {
      case NoPrefix => wrapEmpty
      case _        => this("pre", pre)
    }
    def typeBounds(lo0: Type, hi0: Type): Node = {
      val lo = if ((lo0 eq WildcardType) || (lo0.typeSymbol eq NothingClass)) wrapEmpty else this("lo", lo0)
      val hi = if ((hi0 eq WildcardType) || (hi0.typeSymbol eq AnyClass)) wrapEmpty else this("hi", hi0)

      product("TypeBounds", lo, hi)
    }

    def annotation(ann: AnnotationInfo): Node = product(
      "AnnotationInfo",
      this("atp", ann.atp),
      node("args", treeList(ann.args)),
      assocsNode(ann)
    )
    def typeConstraint(constr: TypeConstraint): Node = product(
      "TypeConstraint",
      node("lo", typeList(constr.loBounds)),
      node("hi", typeList(constr.hiBounds)),
      this("inst", constr.inst)
    )
    def annotatedType(annotations: List[AnnotationInfo], underlying: Type) = product(
      "AnnotatedType",
      node("annotations", annotationList(annotations)),
      this("underlying", underlying)
    )

    /** This imposes additional structure beyond that which is visible in
     *  the case class hierarchy.  In particular, (too) many different constructs
     *  are encoded in TypeRefs; here they are partitioned somewhat before
     *  being dispatched.
     *
     *  For example, a typical type parameter is encoded as TypeRef(NoPrefix, sym, Nil)
     *  with its upper and lower bounds stored in the info of the symbol.  Viewing the
     *  TypeRef naively we are treated to both too much information (useless prefix, usually
     *  empty args) and too little (bounds hidden behind indirection.) So drop the prefix
     *  and promote the bounds.
     */
    def typeRef(tp: TypeRef) = {
      val TypeRef(pre, sym, args) = tp
      // Filtered down to elements with "interesting" content
      product(
        tp,
        if (sym.isDefinedInPackage) wrapEmpty else prefix(pre),
        wrapSymbolInfo(sym),
        typeArgs(args),
        if (tp ne tp.normalize) this("normalize", tp.normalize) else wrapEmpty
      )
    }

    def symbolType(sym: Symbol) = (
      if (sym.isRefinementClass) "Refinement"
      else if (sym.isAliasType) "Alias"
      else if (sym.isTypeSkolem) "TypeSkolem"
      else if (sym.isTypeParameter) "TypeParam"
      else if (sym.isAbstractType) "AbstractType"
      else if (sym.isType) "TypeSymbol"
      else "TermSymbol"
    )
    def typeRefType(sym: Symbol) = (
      if (sym.isRefinementClass) "RefinementTypeRef"
      else if (sym.isAliasType) "AliasTypeRef"
      else if (sym.isTypeSkolem) "SkolemTypeRef"
      else if (sym.isTypeParameter) "TypeParamTypeRef"
      else if (sym.isAbstractType) "AbstractTypeRef"
      else "TypeRef"
    ) + ( if (sym.isFBounded) "(F-Bounded)" else "" )

    def node(label: String, node: Node): Node = withLabel(node, label)
    def apply(label: String, tp: Type): Node  = withLabel(this(tp), label)

    def apply(tp: Type): Node = tp match {
      case AntiPolyType(pre, targs)                  => product(tp, prefix(pre), typeArgs(targs))
      case ClassInfoType(parents, decls, clazz)      => product(tp, parentList(parents), scope(decls), wrapAtom(clazz))
      case ConstantType(const)                       => product(tp, constant("value", const))
      case OverloadedType(pre, alts)                 => product(tp, prefix(pre), node("alts", typeList(alts map pre.memberType)))
      case RefinedType(parents, decls)               => product(tp, parentList(parents), scope(decls))
      case SingleType(pre, sym)                      => product(tp, prefix(pre), wrapAtom(sym))
      case SuperType(thistp, supertp)                => product(tp, this("this", thistp), this("super", supertp))
      case ThisType(clazz)                           => product(tp, wrapAtom(clazz))
      case TypeVar(inst, constr)                     => product(tp, this("inst", inst), typeConstraint(constr))
      case AnnotatedType(annotations, underlying)    => annotatedType(annotations, underlying)
      case ExistentialType(tparams, underlying)      => polyFunction(tparams, underlying)
      case PolyType(tparams, restpe)                 => polyFunction(tparams, restpe)
      case MethodType(params, restpe)                => monoFunction(params, restpe)
      case NullaryMethodType(restpe)                 => nullaryFunction(restpe)
      case TypeBounds(lo, hi)                        => typeBounds(lo, hi)
      case tr @ TypeRef(pre, sym, args)              => typeRef(tr)
      case _                                         => wrapAtom(tp) // XXX see what this is
    }
  }
}

Other Scala source code examples

Here is a short list of links related to this Scala DestructureTypes.scala source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.