alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Scala example source code file (Definitions.scala)

This example Scala source code file (Definitions.scala) is included in my "Source Code Warehouse" project. The intent of this project is to help you more easily find Scala source code examples by using tags.

All credit for the original source code belongs to scala-lang.org; I'm just trying to make examples easier to find. (For my Scala work, see my Scala examples and tutorials.)

Scala tags/keywords

annotation, anytpe, boolean, classsymbol, collection, final, list, name, nil, nosymbol, reflection, symbol, type

The Definitions.scala Scala example source code

/* NSC -- new Scala compiler
 * Copyright 2005-2013 LAMP/EPFL
 * @author  Martin Odersky
 */

package scala
package reflect
package internal

import scala.language.postfixOps
import scala.annotation.{ switch, meta }
import scala.collection.{ mutable, immutable }
import Flags._
import scala.reflect.api.{Universe => ApiUniverse}

trait Definitions extends api.StandardDefinitions {
  self: SymbolTable =>

  import rootMirror.{getModuleByName, getPackage, getClassByName, getRequiredClass, getRequiredModule, getClassIfDefined, getModuleIfDefined, getPackageObject, getPackageIfDefined, getPackageObjectIfDefined, requiredClass, requiredModule}

  object definitions extends DefinitionsClass

  /** Since both the value parameter types and the result type may
   *  require access to the type parameter symbols, we model polymorphic
   *  creation as a function from those symbols to (formal types, result type).
   *  The Option is to distinguish between nullary methods and empty-param-list
   *  methods.
   */
  private type PolyMethodCreator = List[Symbol] => (Option[List[Type]], Type)

  private def enterNewClass(owner: Symbol, name: TypeName, parents: List[Type], flags: Long = 0L): ClassSymbol = {
    val clazz = owner.newClassSymbol(name, NoPosition, flags)
    clazz setInfoAndEnter ClassInfoType(parents, newScope, clazz) markAllCompleted
  }
  private def newMethod(owner: Symbol, name: TermName, formals: List[Type], restpe: Type, flags: Long): MethodSymbol = {
    val msym   = owner.newMethod(name.encode, NoPosition, flags)
    val params = msym.newSyntheticValueParams(formals)
    val info = if (owner.isJavaDefined) JavaMethodType(params, restpe) else MethodType(params, restpe)
    msym setInfo info markAllCompleted
  }
  private def enterNewMethod(owner: Symbol, name: TermName, formals: List[Type], restpe: Type, flags: Long = 0L): MethodSymbol =
    owner.info.decls enter newMethod(owner, name, formals, restpe, flags)

  // the scala value classes
  trait ValueClassDefinitions {
    self: DefinitionsClass =>

    import ClassfileConstants._

    private val nameToWeight = Map[Name, Int](
      tpnme.Byte   -> 2,
      tpnme.Char   -> 3,
      tpnme.Short  -> 4,
      tpnme.Int    -> 12,
      tpnme.Long   -> 24,
      tpnme.Float  -> 48,
      tpnme.Double -> 96
    )

    private val nameToTag = Map[Name, Char](
      tpnme.Byte    -> BYTE_TAG,
      tpnme.Char    -> CHAR_TAG,
      tpnme.Short   -> SHORT_TAG,
      tpnme.Int     -> INT_TAG,
      tpnme.Long    -> LONG_TAG,
      tpnme.Float   -> FLOAT_TAG,
      tpnme.Double  -> DOUBLE_TAG,
      tpnme.Boolean -> BOOL_TAG,
      tpnme.Unit    -> VOID_TAG
    )

    private[Definitions] def catastrophicFailure() =
      abort("Could not find value classes! This is a catastrophic failure.  scala " +
        scala.util.Properties.versionString)

    private def valueClassSymbol(name: TypeName): ClassSymbol = {
      getMember(ScalaPackageClass, name) match {
        case x: ClassSymbol => x
        case _              => catastrophicFailure()
      }
    }

    private[Definitions] def classesMap[T](f: Name => T) = symbolsMap(ScalaValueClassesNoUnit, f)
    private def symbolsMap[T](syms: List[Symbol], f: Name => T): Map[Symbol, T] = mapFrom(syms)(x => f(x.name))
    private def symbolsMapFilt[T](syms: List[Symbol], p: Name => Boolean, f: Name => T) = symbolsMap(syms filter (x => p(x.name)), f)

    private def boxedName(name: Name) = sn.Boxed(name.toTypeName)

    lazy val abbrvTag         = symbolsMap(ScalaValueClasses, nameToTag) withDefaultValue OBJECT_TAG
    lazy val numericWeight    = symbolsMapFilt(ScalaValueClasses, nameToWeight.keySet, nameToWeight)
    lazy val boxedModule      = classesMap(x => getModuleByName(boxedName(x)))
    lazy val boxedClass       = classesMap(x => getClassByName(boxedName(x)))
    lazy val refClass         = classesMap(x => getRequiredClass("scala.runtime." + x + "Ref"))
    lazy val volatileRefClass = classesMap(x => getRequiredClass("scala.runtime.Volatile" + x + "Ref"))

    def isNumericSubClass(sub: Symbol, sup: Symbol) = (
         (numericWeight contains sub)
      && (numericWeight contains sup)
      && (numericWeight(sup) % numericWeight(sub) == 0)
    )

    /** Is symbol a numeric value class? */
    def isNumericValueClass(sym: Symbol) = ScalaNumericValueClasses contains sym

    def isGetClass(sym: Symbol) = (
         sym.name == nme.getClass_ // this condition is for performance only, this is called from `Typer#stabliize`.
      && getClassMethods(sym)
    )

    lazy val UnitClass    = valueClassSymbol(tpnme.Unit)
    lazy val ByteClass    = valueClassSymbol(tpnme.Byte)
    lazy val ShortClass   = valueClassSymbol(tpnme.Short)
    lazy val CharClass    = valueClassSymbol(tpnme.Char)
    lazy val IntClass     = valueClassSymbol(tpnme.Int)
    lazy val LongClass    = valueClassSymbol(tpnme.Long)
    lazy val FloatClass   = valueClassSymbol(tpnme.Float)
    lazy val DoubleClass  = valueClassSymbol(tpnme.Double)
    lazy val BooleanClass = valueClassSymbol(tpnme.Boolean)
          def Boolean_and = getMemberMethod(BooleanClass, nme.ZAND)
          def Boolean_or  = getMemberMethod(BooleanClass, nme.ZOR)
          def Boolean_not = getMemberMethod(BooleanClass, nme.UNARY_!)

    lazy val UnitTpe      = UnitClass.tpe
    lazy val ByteTpe      = ByteClass.tpe
    lazy val ShortTpe     = ShortClass.tpe
    lazy val CharTpe      = CharClass.tpe
    lazy val IntTpe       = IntClass.tpe
    lazy val LongTpe      = LongClass.tpe
    lazy val FloatTpe     = FloatClass.tpe
    lazy val DoubleTpe    = DoubleClass.tpe
    lazy val BooleanTpe   = BooleanClass.tpe

    lazy val ScalaNumericValueClasses = ScalaValueClasses filterNot Set[Symbol](UnitClass, BooleanClass)
    lazy val ScalaValueClassesNoUnit  = ScalaValueClasses filterNot (_ eq UnitClass)
    lazy val ScalaValueClasses: List[ClassSymbol] = List(
      UnitClass,
      BooleanClass,
      ByteClass,
      ShortClass,
      CharClass,
      IntClass,
      LongClass,
      FloatClass,
      DoubleClass
    )
    def ScalaPrimitiveValueClasses: List[ClassSymbol] = ScalaValueClasses

    def underlyingOfValueClass(clazz: Symbol): Type =
      clazz.derivedValueClassUnbox.tpe.resultType

  }

  abstract class DefinitionsClass extends DefinitionsApi with ValueClassDefinitions {
    private var isInitialized = false
    def isDefinitionsInitialized = isInitialized

    // It becomes tricky to create dedicated objects for other symbols because
    // of initialization order issues.
    lazy val JavaLangPackage      = getPackage("java.lang")
    lazy val JavaLangPackageClass = JavaLangPackage.moduleClass.asClass
    lazy val ScalaPackage         = getPackage("scala")
    lazy val ScalaPackageClass    = ScalaPackage.moduleClass.asClass
    lazy val RuntimePackage       = getPackage("scala.runtime")
    lazy val RuntimePackageClass  = RuntimePackage.moduleClass.asClass

    def javaTypeToValueClass(jtype: Class[_]): Symbol = jtype match {
      case java.lang.Void.TYPE      => UnitClass
      case java.lang.Byte.TYPE      => ByteClass
      case java.lang.Character.TYPE => CharClass
      case java.lang.Short.TYPE     => ShortClass
      case java.lang.Integer.TYPE   => IntClass
      case java.lang.Long.TYPE      => LongClass
      case java.lang.Float.TYPE     => FloatClass
      case java.lang.Double.TYPE    => DoubleClass
      case java.lang.Boolean.TYPE   => BooleanClass
      case _                        => NoSymbol
    }
    def valueClassToJavaType(sym: Symbol): Class[_] = sym match {
      case UnitClass    => java.lang.Void.TYPE
      case ByteClass    => java.lang.Byte.TYPE
      case CharClass    => java.lang.Character.TYPE
      case ShortClass   => java.lang.Short.TYPE
      case IntClass     => java.lang.Integer.TYPE
      case LongClass    => java.lang.Long.TYPE
      case FloatClass   => java.lang.Float.TYPE
      case DoubleClass  => java.lang.Double.TYPE
      case BooleanClass => java.lang.Boolean.TYPE
      case _            => null
    }

    /** Fully initialize the symbol, type, or scope.
     */
    def fullyInitializeSymbol(sym: Symbol): Symbol = {
      sym.initialize
      // Watch out for those darn raw types on method parameters
      if (sym.owner.initialize.isJavaDefined)
        sym.cookJavaRawInfo()

      fullyInitializeType(sym.info)
      fullyInitializeType(sym.tpe_*)
      sym
    }
    def fullyInitializeType(tp: Type): Type = {
      tp.typeParams foreach fullyInitializeSymbol
      mforeach(tp.paramss)(fullyInitializeSymbol)
      tp
    }
    def fullyInitializeScope(scope: Scope): Scope = {
      scope.sorted foreach fullyInitializeSymbol
      scope
    }
    /** Is this symbol a member of Object or Any? */
    def isUniversalMember(sym: Symbol) = ObjectClass isSubClass sym.owner

    /** Is this symbol unimportable? Unimportable symbols include:
     *  - constructors, because <init> is not a real name
     *  - private[this] members, which cannot be referenced from anywhere else
     *  - members of Any or Object, because every instance will inherit a
     *    definition which supersedes the imported one
     */
    def isUnimportable(sym: Symbol) = (
         (sym eq NoSymbol)
      || sym.isConstructor
      || sym.isPrivateLocal
    )
    def isUnimportableUnlessRenamed(sym: Symbol) = isUnimportable(sym) || isUniversalMember(sym)
    def isImportable(sym: Symbol) = !isUnimportable(sym)

    /** Is this type equivalent to Any, AnyVal, or AnyRef? */
    def isTrivialTopType(tp: Type) = (
         tp =:= AnyTpe
      || tp =:= AnyValTpe
      || tp =:= AnyRefTpe
    )

    def hasMultipleNonImplicitParamLists(member: Symbol): Boolean = hasMultipleNonImplicitParamLists(member.info)
    def hasMultipleNonImplicitParamLists(info: Type): Boolean = info match {
      case PolyType(_, restpe)                                   => hasMultipleNonImplicitParamLists(restpe)
      case MethodType(_, MethodType(p :: _, _)) if !p.isImplicit => true
      case _                                                     => false
    }

    private def fixupAsAnyTrait(tpe: Type): Type = tpe match {
      case ClassInfoType(parents, decls, clazz) =>
        if (parents.head.typeSymbol == AnyClass) tpe
        else {
          assert(parents.head.typeSymbol == ObjectClass, parents)
          ClassInfoType(AnyTpe :: parents.tail, decls, clazz)
        }
      case PolyType(tparams, restpe) =>
        PolyType(tparams, fixupAsAnyTrait(restpe))
    }

    // top types
    lazy val AnyClass    = enterNewClass(ScalaPackageClass, tpnme.Any, Nil, ABSTRACT) markAllCompleted
    lazy val AnyRefClass = newAlias(ScalaPackageClass, tpnme.AnyRef, ObjectTpe) markAllCompleted
    lazy val ObjectClass = getRequiredClass(sn.Object.toString)

    // Cached types for core monomorphic classes
    lazy val AnyRefTpe       = AnyRefClass.tpe
    lazy val AnyTpe          = AnyClass.tpe
    lazy val AnyValTpe       = AnyValClass.tpe
    lazy val BoxedUnitTpe    = BoxedUnitClass.tpe
    lazy val NothingTpe      = NothingClass.tpe
    lazy val NullTpe         = NullClass.tpe
    lazy val ObjectTpe       = ObjectClass.tpe
    lazy val SerializableTpe = SerializableClass.tpe
    lazy val StringTpe       = StringClass.tpe
    lazy val ThrowableTpe    = ThrowableClass.tpe

    lazy val ConstantTrue  = ConstantType(Constant(true))
    lazy val ConstantFalse = ConstantType(Constant(false))
    lazy val ConstantNull  = ConstantType(Constant(null))

    lazy val AnyValClass: ClassSymbol = (ScalaPackageClass.info member tpnme.AnyVal orElse {
      val anyval    = enterNewClass(ScalaPackageClass, tpnme.AnyVal, AnyTpe :: Nil, ABSTRACT)
      val av_constr = anyval.newClassConstructor(NoPosition)
      anyval.info.decls enter av_constr
      anyval markAllCompleted
    }).asInstanceOf[ClassSymbol]
      def AnyVal_getClass = getMemberMethod(AnyValClass, nme.getClass_)

    // bottom types
    lazy val RuntimeNothingClass  = getClassByName(fulltpnme.RuntimeNothing)
    lazy val RuntimeNullClass     = getClassByName(fulltpnme.RuntimeNull)

    sealed abstract class BottomClassSymbol(name: TypeName, parent: Symbol) extends ClassSymbol(ScalaPackageClass, NoPosition, name) {
      locally {
        this initFlags ABSTRACT | FINAL
        this setInfoAndEnter ClassInfoType(List(parent.tpe), newScope, this)
        this markAllCompleted
      }
      final override def isBottomClass = true
      final override def isThreadsafe(purpose: SymbolOps): Boolean = true
    }
    final object NothingClass extends BottomClassSymbol(tpnme.Nothing, AnyClass) {
      override def isSubClass(that: Symbol) = true
    }
    final object NullClass extends BottomClassSymbol(tpnme.Null, AnyRefClass) {
      override def isSubClass(that: Symbol) = (
           (that eq AnyClass)
        || (that ne NothingClass) && (that isSubClass ObjectClass)
      )
    }

    // exceptions and other throwables
    lazy val ClassCastExceptionClass        = requiredClass[ClassCastException]
    lazy val IndexOutOfBoundsExceptionClass = getClassByName(sn.IOOBException)
    lazy val InvocationTargetExceptionClass = getClassByName(sn.InvTargetException)
    lazy val MatchErrorClass                = requiredClass[MatchError]
    lazy val NonLocalReturnControlClass     = requiredClass[scala.runtime.NonLocalReturnControl[_]]
    lazy val NullPointerExceptionClass      = getClassByName(sn.NPException)
    lazy val ThrowableClass                 = getClassByName(sn.Throwable)
    lazy val UninitializedErrorClass        = requiredClass[UninitializedFieldError]

    lazy val UninitializedFieldConstructor = UninitializedErrorClass.primaryConstructor

    // fundamental reference classes
    lazy val PartialFunctionClass       = requiredClass[PartialFunction[_,_]]
    lazy val AbstractPartialFunctionClass = requiredClass[scala.runtime.AbstractPartialFunction[_,_]]
    lazy val SymbolClass                = requiredClass[scala.Symbol]
    lazy val StringClass                = requiredClass[java.lang.String]
    lazy val StringModule               = StringClass.linkedClassOfClass
    lazy val ClassClass                 = requiredClass[java.lang.Class[_]]
      def Class_getMethod               = getMemberMethod(ClassClass, nme.getMethod_)
    lazy val DynamicClass               = requiredClass[Dynamic]

    // fundamental modules
    lazy val SysPackage = getPackageObject("scala.sys")
      def Sys_error    = getMemberMethod(SysPackage, nme.error)

    // Modules whose members are in the default namespace
    // SI-5941: ScalaPackage and JavaLangPackage are never ever shared between mirrors
    // as a result, `Int` becomes `scala.Int` and `String` becomes `java.lang.String`
    // I could just change `isOmittablePrefix`, but there's more to it, so I'm leaving this as a todo for now
    lazy val UnqualifiedModules = List(PredefModule, ScalaPackage, JavaLangPackage)
    // Those modules and their module classes
    lazy val UnqualifiedOwners  = UnqualifiedModules.toSet ++ UnqualifiedModules.map(_.moduleClass)

    lazy val PredefModule               = requiredModule[scala.Predef.type]
         def Predef_wrapArray(tp: Type) = getMemberMethod(PredefModule, wrapArrayMethodName(tp))
         def Predef_???                 = getMemberMethod(PredefModule, nme.???)
    def isPredefMemberNamed(sym: Symbol, name: Name) = (
      (sym.name == name) && (sym.owner == PredefModule.moduleClass)
    )

    /** Specialization.
     */
    lazy val SpecializableModule  = requiredModule[Specializable]

    lazy val ScalaRunTimeModule = requiredModule[scala.runtime.ScalaRunTime.type]
    lazy val SymbolModule       = requiredModule[scala.Symbol.type]
         def Symbol_apply       = getMemberMethod(SymbolModule, nme.apply)

    // classes with special meanings
    lazy val StringAddClass             = requiredClass[scala.runtime.StringAdd]
    lazy val ScalaNumberClass           = requiredClass[scala.math.ScalaNumber]
    lazy val TraitSetterAnnotationClass = requiredClass[scala.runtime.TraitSetter]
    lazy val DelayedInitClass           = requiredClass[scala.DelayedInit]
      def delayedInitMethod = getMemberMethod(DelayedInitClass, nme.delayedInit)

    lazy val TypeConstraintClass   = requiredClass[scala.annotation.TypeConstraint]
    lazy val SingletonClass        = enterNewClass(ScalaPackageClass, tpnme.Singleton, AnyTpe :: Nil, ABSTRACT | TRAIT | FINAL) markAllCompleted
    lazy val SerializableClass     = requiredClass[scala.Serializable]
    lazy val JavaSerializableClass = requiredClass[java.io.Serializable] modifyInfo fixupAsAnyTrait
    lazy val ComparableClass       = requiredClass[java.lang.Comparable[_]] modifyInfo fixupAsAnyTrait
    lazy val JavaCloneableClass    = requiredClass[java.lang.Cloneable]
    lazy val JavaNumberClass       = requiredClass[java.lang.Number]
    lazy val JavaEnumClass         = requiredClass[java.lang.Enum[_]]
    lazy val RemoteInterfaceClass  = requiredClass[java.rmi.Remote]
    lazy val RemoteExceptionClass  = requiredClass[java.rmi.RemoteException]

    lazy val ByNameParamClass       = specialPolyClass(tpnme.BYNAME_PARAM_CLASS_NAME, COVARIANT)(_ => AnyTpe)
    lazy val JavaRepeatedParamClass = specialPolyClass(tpnme.JAVA_REPEATED_PARAM_CLASS_NAME, COVARIANT)(tparam => arrayType(tparam.tpe))
    lazy val RepeatedParamClass     = specialPolyClass(tpnme.REPEATED_PARAM_CLASS_NAME, COVARIANT)(tparam => seqType(tparam.tpe))

    def isByNameParamType(tp: Type)        = tp.typeSymbol == ByNameParamClass
    def isScalaRepeatedParamType(tp: Type) = tp.typeSymbol == RepeatedParamClass
    def isJavaRepeatedParamType(tp: Type)  = tp.typeSymbol == JavaRepeatedParamClass
    def isRepeatedParamType(tp: Type)      = isScalaRepeatedParamType(tp) || isJavaRepeatedParamType(tp)
    def isRepeated(param: Symbol)          = isRepeatedParamType(param.tpe_*)
    def isByName(param: Symbol)            = isByNameParamType(param.tpe_*)
    def isCastSymbol(sym: Symbol)          = sym == Any_asInstanceOf || sym == Object_asInstanceOf

    def isJavaVarArgsMethod(m: Symbol)      = m.isMethod && isJavaVarArgs(m.info.params)
    def isJavaVarArgs(params: Seq[Symbol])  = params.nonEmpty && isJavaRepeatedParamType(params.last.tpe)
    def isScalaVarArgs(params: Seq[Symbol]) = params.nonEmpty && isScalaRepeatedParamType(params.last.tpe)
    def isVarArgsList(params: Seq[Symbol])  = params.nonEmpty && isRepeatedParamType(params.last.tpe)
    def isVarArgTypes(formals: Seq[Type])   = formals.nonEmpty && isRepeatedParamType(formals.last)

    def firstParamType(tpe: Type): Type = tpe.paramTypes match {
      case p :: _ => p
      case _      => NoType
    }
    def isImplicitParamss(paramss: List[List[Symbol]]) = paramss match {
      case (p :: _) :: _ => p.isImplicit
      case _             => false
    }

    def hasRepeatedParam(tp: Type): Boolean = tp match {
      case MethodType(formals, restpe) => isScalaVarArgs(formals) || hasRepeatedParam(restpe)
      case PolyType(_, restpe)         => hasRepeatedParam(restpe)
      case _                           => false
    }

    // wrapping and unwrapping
    def dropByName(tp: Type): Type = elementExtract(ByNameParamClass, tp) orElse tp
    def dropRepeated(tp: Type): Type = (
      if (isJavaRepeatedParamType(tp)) elementExtract(JavaRepeatedParamClass, tp) orElse tp
      else if (isScalaRepeatedParamType(tp)) elementExtract(RepeatedParamClass, tp) orElse tp
      else tp
    )
    def repeatedToSingle(tp: Type): Type                     = elementExtract(RepeatedParamClass, tp) orElse elementExtract(JavaRepeatedParamClass, tp) orElse tp
     // We don't need to deal with JavaRepeatedParamClass here, as `repeatedToSeq` is only called in the patmat translation for Scala sources.
    def repeatedToSeq(tp: Type): Type                        = elementTransform(RepeatedParamClass, tp)(seqType) orElse tp
    def seqToRepeated(tp: Type): Type                        = elementTransform(SeqClass, tp)(scalaRepeatedType) orElse tp
    def isReferenceArray(tp: Type)                           = elementTest(ArrayClass, tp)(_ <:< AnyRefTpe)
    def isArrayOfSymbol(tp: Type, elem: Symbol)              = elementTest(ArrayClass, tp)(_.typeSymbol == elem)
    def elementType(container: Symbol, tp: Type): Type       = elementExtract(container, tp)

    // collections classes
    lazy val ConsClass          = requiredClass[scala.collection.immutable.::[_]]
    lazy val IteratorClass      = requiredClass[scala.collection.Iterator[_]]
    lazy val IterableClass      = requiredClass[scala.collection.Iterable[_]]
    lazy val ListClass          = requiredClass[scala.collection.immutable.List[_]]
    lazy val SeqClass           = requiredClass[scala.collection.Seq[_]]
    lazy val StringBuilderClass = requiredClass[scala.collection.mutable.StringBuilder]
    lazy val TraversableClass   = requiredClass[scala.collection.Traversable[_]]

    lazy val ListModule       = requiredModule[scala.collection.immutable.List.type]
         def List_apply       = getMemberMethod(ListModule, nme.apply)
    lazy val NilModule        = requiredModule[scala.collection.immutable.Nil.type]
    lazy val SeqModule        = requiredModule[scala.collection.Seq.type]

    // arrays and their members
    lazy val ArrayModule                   = requiredModule[scala.Array.type]
      lazy val ArrayModule_overloadedApply = getMemberMethod(ArrayModule, nme.apply)
           def ArrayModule_genericApply    = ArrayModule_overloadedApply.suchThat(_.paramss.flatten.last.tpe.typeSymbol == ClassTagClass) // [T: ClassTag](xs: T*): Array[T]
           def ArrayModule_apply(tp: Type) = ArrayModule_overloadedApply.suchThat(_.tpe.resultType =:= arrayType(tp)) // (p1: AnyVal1, ps: AnyVal1*): Array[AnyVal1]
    lazy val ArrayClass                    = getRequiredClass("scala.Array") // requiredClass[scala.Array[_]]
      lazy val Array_apply                 = getMemberMethod(ArrayClass, nme.apply)
      lazy val Array_update                = getMemberMethod(ArrayClass, nme.update)
      lazy val Array_length                = getMemberMethod(ArrayClass, nme.length)
      lazy val Array_clone                 = getMemberMethod(ArrayClass, nme.clone_)

    // reflection / structural types
    lazy val SoftReferenceClass     = requiredClass[java.lang.ref.SoftReference[_]]
    lazy val MethodClass            = getClassByName(sn.MethodAsObject)
    lazy val EmptyMethodCacheClass  = requiredClass[scala.runtime.EmptyMethodCache]
    lazy val MethodCacheClass       = requiredClass[scala.runtime.MethodCache]
      def methodCache_find          = getMemberMethod(MethodCacheClass, nme.find_)
      def methodCache_add           = getMemberMethod(MethodCacheClass, nme.add_)

    // XML
    lazy val ScalaXmlTopScope = getModuleIfDefined("scala.xml.TopScope")
    lazy val ScalaXmlPackage  = getPackageIfDefined("scala.xml")

    // scala.reflect
    lazy val ReflectPackage              = requiredModule[scala.reflect.`package`.type]
    lazy val ReflectApiPackage           = getPackageObjectIfDefined("scala.reflect.api") // defined in scala-reflect.jar, so we need to be careful
    lazy val ReflectRuntimePackage       = getPackageObjectIfDefined("scala.reflect.runtime") // defined in scala-reflect.jar, so we need to be careful
         def ReflectRuntimeUniverse      = ReflectRuntimePackage.map(sym => getMemberValue(sym, nme.universe))
         def ReflectRuntimeCurrentMirror = ReflectRuntimePackage.map(sym => getMemberMethod(sym, nme.currentMirror))

    lazy val UniverseClass    = getClassIfDefined("scala.reflect.api.Universe") // defined in scala-reflect.jar, so we need to be careful
         def UniverseInternal = getMemberValue(UniverseClass, nme.internal)

    lazy val PartialManifestModule = requiredModule[scala.reflect.ClassManifestFactory.type]
    lazy val FullManifestClass     = requiredClass[scala.reflect.Manifest[_]]
    lazy val FullManifestModule    = requiredModule[scala.reflect.ManifestFactory.type]
    lazy val OptManifestClass      = requiredClass[scala.reflect.OptManifest[_]]
    lazy val NoManifest            = requiredModule[scala.reflect.NoManifest.type]

    lazy val TreesClass            = getClassIfDefined("scala.reflect.api.Trees") // defined in scala-reflect.jar, so we need to be careful

    lazy val ExprsClass            = getClassIfDefined("scala.reflect.api.Exprs") // defined in scala-reflect.jar, so we need to be careful
         def ExprClass             = ExprsClass.map(sym => getMemberClass(sym, tpnme.Expr))
         def ExprSplice            = ExprClass.map(sym => getMemberMethod(sym, nme.splice))
         def ExprValue             = ExprClass.map(sym => getMemberMethod(sym, nme.value))

    lazy val ClassTagModule         = requiredModule[scala.reflect.ClassTag[_]]
    lazy val ClassTagClass          = requiredClass[scala.reflect.ClassTag[_]]
    lazy val TypeTagsClass          = getClassIfDefined("scala.reflect.api.TypeTags") // defined in scala-reflect.jar, so we need to be careful

    lazy val ApiUniverseClass      = getClassIfDefined("scala.reflect.api.Universe") // defined in scala-reflect.jar, so we need to be careful
    lazy val JavaUniverseClass     = getClassIfDefined("scala.reflect.api.JavaUniverse") // defined in scala-reflect.jar, so we need to be careful

    lazy val MirrorClass           = getClassIfDefined("scala.reflect.api.Mirror") // defined in scala-reflect.jar, so we need to be careful

    lazy val TypeCreatorClass      = getClassIfDefined("scala.reflect.api.TypeCreator") // defined in scala-reflect.jar, so we need to be careful
    lazy val TreeCreatorClass      = getClassIfDefined("scala.reflect.api.TreeCreator") // defined in scala-reflect.jar, so we need to be careful

    private def Context_210               = if (settings.isScala211) NoSymbol else getClassIfDefined("scala.reflect.macros.Context") // needed under -Xsource:2.10
    lazy val BlackboxContextClass         = getClassIfDefined("scala.reflect.macros.blackbox.Context").orElse(Context_210) // defined in scala-reflect.jar, so we need to be careful

    lazy val WhiteboxContextClass         = getClassIfDefined("scala.reflect.macros.whitebox.Context").orElse(Context_210) // defined in scala-reflect.jar, so we need to be careful
         def MacroContextPrefix           = BlackboxContextClass.map(sym => getMemberMethod(sym, nme.prefix))
         def MacroContextPrefixType       = BlackboxContextClass.map(sym => getTypeMember(sym, tpnme.PrefixType))
         def MacroContextUniverse         = BlackboxContextClass.map(sym => getMemberMethod(sym, nme.universe))
         def MacroContextExprClass        = BlackboxContextClass.map(sym => getTypeMember(sym, tpnme.Expr))
         def MacroContextWeakTypeTagClass = BlackboxContextClass.map(sym => getTypeMember(sym, tpnme.WeakTypeTag))
         def MacroContextTreeType         = BlackboxContextClass.map(sym => getTypeMember(sym, tpnme.Tree))
    lazy val MacroImplAnnotation          = requiredClass[scala.reflect.macros.internal.macroImpl]

    lazy val StringContextClass           = requiredClass[scala.StringContext]

    // SI-8392 a reflection universe on classpath may not have
    // quasiquotes, if e.g. crosstyping with -Xsource on
    lazy val QuasiquoteClass             = if (ApiUniverseClass != NoSymbol) getMemberIfDefined(ApiUniverseClass, tpnme.Quasiquote) else NoSymbol
    lazy val QuasiquoteClass_api         = if (QuasiquoteClass != NoSymbol) getMember(QuasiquoteClass, tpnme.api) else NoSymbol
    lazy val QuasiquoteClass_api_apply   = if (QuasiquoteClass_api != NoSymbol) getMember(QuasiquoteClass_api, nme.apply) else NoSymbol
    lazy val QuasiquoteClass_api_unapply = if (QuasiquoteClass_api != NoSymbol) getMember(QuasiquoteClass_api, nme.unapply) else NoSymbol

    lazy val ScalaSignatureAnnotation = requiredClass[scala.reflect.ScalaSignature]
    lazy val ScalaLongSignatureAnnotation = requiredClass[scala.reflect.ScalaLongSignature]

    // Option classes
    lazy val OptionClass: ClassSymbol   = requiredClass[Option[_]]
    lazy val OptionModule: ModuleSymbol = requiredModule[scala.Option.type]
    lazy val SomeClass: ClassSymbol     = requiredClass[Some[_]]
    lazy val NoneModule: ModuleSymbol   = requiredModule[scala.None.type]
    lazy val SomeModule: ModuleSymbol   = requiredModule[scala.Some.type]

    def compilerTypeFromTag(tt: ApiUniverse # WeakTypeTag[_]): Type = tt.in(rootMirror).tpe
    def compilerSymbolFromTag(tt: ApiUniverse # WeakTypeTag[_]): Symbol = tt.in(rootMirror).tpe.typeSymbol

    // The given symbol is a method with the right name and signature to be a runnable java program.
    def isJavaMainMethod(sym: Symbol) = (sym.name == nme.main) && (sym.info match {
      case MethodType(p :: Nil, restpe) => isArrayOfSymbol(p.tpe, StringClass) && restpe.typeSymbol == UnitClass
      case _                            => false
    })
    // The given class has a main method.
    def hasJavaMainMethod(sym: Symbol): Boolean =
      (sym.tpe member nme.main).alternatives exists isJavaMainMethod

    class VarArityClass(name: String, maxArity: Int, countFrom: Int = 0, init: Option[ClassSymbol] = None) extends VarArityClassApi {
      private val offset = countFrom - init.size
      private def isDefinedAt(i: Int) = i < seq.length + offset && i >= offset
      val seq: IndexedSeq[ClassSymbol] = (init ++: countFrom.to(maxArity).map { i => getRequiredClass("scala." + name + i) }).toVector
      def apply(i: Int) = if (isDefinedAt(i)) seq(i - offset) else NoSymbol
      def specificType(args: List[Type], others: Type*): Type = {
        val arity = args.length
        if (!isDefinedAt(arity)) NoType
        else appliedType(apply(arity), args ++ others: _*)
      }
    }
    // would be created synthetically for the default args. We call all objects in this method from the generated code
    // in JavaUniverseForce, so it is clearer to define this explicitly define this in source.
    object VarArityClass

    val MaxTupleArity, MaxProductArity, MaxFunctionArity = 22

    lazy val ProductClass          = new VarArityClass("Product", MaxProductArity, countFrom = 1, init = Some(UnitClass))
    lazy val TupleClass            = new VarArityClass("Tuple", MaxTupleArity, countFrom = 1)
    lazy val FunctionClass         = new VarArityClass("Function", MaxFunctionArity)
    lazy val AbstractFunctionClass = new VarArityClass("runtime.AbstractFunction", MaxFunctionArity)

    /** Creators for TupleN, ProductN, FunctionN. */
    def tupleType(elems: List[Type])                            = TupleClass.specificType(elems)
    def functionType(formals: List[Type], restpe: Type)         = FunctionClass.specificType(formals, restpe)
    def abstractFunctionType(formals: List[Type], restpe: Type) = AbstractFunctionClass.specificType(formals, restpe)

    def wrapArrayMethodName(elemtp: Type): TermName = elemtp.typeSymbol match {
      case ByteClass    => nme.wrapByteArray
      case ShortClass   => nme.wrapShortArray
      case CharClass    => nme.wrapCharArray
      case IntClass     => nme.wrapIntArray
      case LongClass    => nme.wrapLongArray
      case FloatClass   => nme.wrapFloatArray
      case DoubleClass  => nme.wrapDoubleArray
      case BooleanClass => nme.wrapBooleanArray
      case UnitClass    => nme.wrapUnitArray
      case _        =>
        if ((elemtp <:< AnyRefTpe) && !isPhantomClass(elemtp.typeSymbol)) nme.wrapRefArray
        else nme.genericWrapArray
    }

    def isTupleSymbol(sym: Symbol) = TupleClass.seq contains unspecializedSymbol(sym)
    def isFunctionSymbol(sym: Symbol) = FunctionClass.seq contains unspecializedSymbol(sym)
    def isProductNSymbol(sym: Symbol) = ProductClass.seq contains unspecializedSymbol(sym)

    def unspecializedSymbol(sym: Symbol): Symbol = {
      if (sym hasFlag SPECIALIZED) {
        // add initialization from its generic class constructor
        val genericName = nme.unspecializedName(sym.name)
        val member = sym.owner.info.decl(genericName.toTypeName)
        member
      }
      else sym
    }
    def unspecializedTypeArgs(tp: Type): List[Type] =
      (tp baseType unspecializedSymbol(tp.typeSymbolDirect)).typeArgs

    object MacroContextType {
      def unapply(tp: Type) = {
        def isOneOfContextTypes(tp: Type) =
          tp =:= BlackboxContextClass.tpe || tp =:= WhiteboxContextClass.tpe
        def isPrefix(sym: Symbol) =
          sym.allOverriddenSymbols.contains(MacroContextPrefixType)

        tp.dealias match {
          case RefinedType(List(tp), Scope(sym)) if isOneOfContextTypes(tp) && isPrefix(sym) => Some(tp)
          case tp if isOneOfContextTypes(tp) => Some(tp)
          case _ => None
        }
      }
    }

    def isMacroContextType(tp: Type) = MacroContextType.unapply(tp).isDefined

    def isWhiteboxContextType(tp: Type) =
      isMacroContextType(tp) && (tp <:< WhiteboxContextClass.tpe)

    private def macroBundleParamInfo(tp: Type) = {
      val ctor = tp.erasure.typeSymbol.primaryConstructor
      ctor.paramss match {
        case List(List(c)) =>
          val sym = c.info.typeSymbol
          val isContextCompatible = sym.isNonBottomSubClass(BlackboxContextClass) || sym.isNonBottomSubClass(WhiteboxContextClass)
          if (isContextCompatible) c.info else NoType
        case _ =>
          NoType
      }
    }

    def looksLikeMacroBundleType(tp: Type) =
      macroBundleParamInfo(tp) != NoType

    def isMacroBundleType(tp: Type) = {
      val isMonomorphic = tp.typeSymbol.typeParams.isEmpty
      val isContextCompatible = isMacroContextType(macroBundleParamInfo(tp))
      val hasSingleConstructor = !tp.declaration(nme.CONSTRUCTOR).isOverloaded
      val nonAbstract = !tp.erasure.typeSymbol.isAbstractClass
      isMonomorphic && isContextCompatible && hasSingleConstructor && nonAbstract
    }

    def isBlackboxMacroBundleType(tp: Type) = {
      val isBundle = isMacroBundleType(tp)
      val unwrappedContext = MacroContextType.unapply(macroBundleParamInfo(tp)).getOrElse(NoType)
      val isBlackbox = unwrappedContext =:= BlackboxContextClass.tpe
      isBundle && isBlackbox
    }

    def isListType(tp: Type)     = tp <:< classExistentialType(ListClass)
    def isIterableType(tp: Type) = tp <:< classExistentialType(IterableClass)

    // These "direct" calls perform no dealiasing. They are most needed when
    // printing types when one wants to preserve the true nature of the type.
    def isFunctionTypeDirect(tp: Type) = !tp.isHigherKinded && isFunctionSymbol(tp.typeSymbolDirect)
    def isTupleTypeDirect(tp: Type)    = !tp.isHigherKinded && isTupleSymbol(tp.typeSymbolDirect)

    // Note that these call .dealiasWiden and not .normalize, the latter of which
    // tends to change the course of events by forcing types.
    def isFunctionType(tp: Type)       = isFunctionTypeDirect(tp.dealiasWiden)
    def isTupleType(tp: Type)          = isTupleTypeDirect(tp.dealiasWiden)

    lazy val ProductRootClass: ClassSymbol = requiredClass[scala.Product]
      def Product_productArity          = getMemberMethod(ProductRootClass, nme.productArity)
      def Product_productElement        = getMemberMethod(ProductRootClass, nme.productElement)
      def Product_iterator              = getMemberMethod(ProductRootClass, nme.productIterator)
      def Product_productPrefix         = getMemberMethod(ProductRootClass, nme.productPrefix)
      def Product_canEqual              = getMemberMethod(ProductRootClass, nme.canEqual_)

      def productProj(z:Symbol, j: Int): TermSymbol = getMemberValue(z, nme.productAccessorName(j))

    /** if tpe <: ProductN[T1,...,TN], returns List(T1,...,TN) else Nil */
    @deprecated("No longer used", "2.11.0") def getProductArgs(tpe: Type): List[Type] = tpe.baseClasses find isProductNSymbol match {
      case Some(x)  => tpe.baseType(x).typeArgs
      case _        => Nil
    }

    @deprecated("No longer used", "2.11.0") def unapplyUnwrap(tpe:Type) = tpe.finalResultType.dealiasWiden match {
      case RefinedType(p :: _, _) => p.dealiasWiden
      case tp                     => tp
    }

    def getterMemberTypes(tpe: Type, getters: List[Symbol]): List[Type] =
      getters map (m => dropNullaryMethod(tpe memberType m))

    def dropNullaryMethod(tp: Type) = tp match {
      case NullaryMethodType(restpe) => restpe
      case _                         => tp
    }

    /** An implementation of finalResultType which does only what
     *  finalResultType is documented to do. Defining it externally to
     *  Type helps ensure people can't come to depend on accidental
     *  aspects of its behavior. This is all of it!
     */
    def finalResultType(tp: Type): Type = tp match {
      case PolyType(_, restpe)       => finalResultType(restpe)
      case MethodType(_, restpe)     => finalResultType(restpe)
      case NullaryMethodType(restpe) => finalResultType(restpe)
      case _                         => tp
    }
    /** Similarly, putting all the isStable logic in one place.
     *  This makes it like 1000x easier to see the overall logic
     *  of the method.
     */
    def isStable(tp: Type): Boolean = tp match {
      case _: SingletonType                             => true
      case NoPrefix                                     => true
      case TypeRef(_, NothingClass | SingletonClass, _) => true
      case TypeRef(_, sym, _) if sym.isAbstractType     => tp.bounds.hi.typeSymbol isSubClass SingletonClass
      case TypeRef(pre, sym, _) if sym.isModuleClass    => isStable(pre)
      case TypeRef(_, _, _) if tp ne tp.dealias         => isStable(tp.dealias)
      case TypeVar(origin, _)                           => isStable(origin)
      case AnnotatedType(_, atp)                        => isStable(atp)    // Really?
      case _: SimpleTypeProxy                           => isStable(tp.underlying)
      case _                                            => false
    }
    def isVolatile(tp: Type): Boolean = {
      // need to be careful not to fall into an infinite recursion here
      // because volatile checking is done before all cycles are detected.
      // the case to avoid is an abstract type directly or
      // indirectly upper-bounded by itself. See #2918
      def isVolatileAbstractType: Boolean = {
        def sym = tp.typeSymbol
        def volatileUpperBound = isVolatile(tp.bounds.hi)
        def safeIsVolatile = (
          if (volatileRecursions < TypeConstants.LogVolatileThreshold)
            volatileUpperBound
          // we can return true when pendingVolatiles contains sym, because
          // a cycle will be detected afterwards and an error will result anyway.
          else pendingVolatiles(sym) || {
            pendingVolatiles += sym
            try volatileUpperBound finally pendingVolatiles -= sym
          }
        )
        volatileRecursions += 1
        try safeIsVolatile finally volatileRecursions -= 1
      }
      /** A refined type P1 with ... with Pn { decls } is volatile if
       *  one of the parent types Pi is an abstract type, and
       *  either i > 1, or decls or a following parent Pj, j > 1, contributes
       *  an abstract member.
       *  A type contributes an abstract member if it has an abstract member which
       *  is also a member of the whole refined type. A scope `decls` contributes
       *  an abstract member if it has an abstract definition which is also
       *  a member of the whole type.
       */
      def isVolatileRefinedType: Boolean = {
        val RefinedType(parents, decls)         = tp
        def isVisibleDeferred(m: Symbol)        = m.isDeferred && ((tp nonPrivateMember m.name).alternatives contains m)
        def contributesAbstractMembers(p: Type) = p.deferredMembers exists isVisibleDeferred
        def dropConcreteParents                 = parents dropWhile (p => !p.typeSymbol.isAbstractType)

        (parents exists isVolatile) || {
          dropConcreteParents match {
            case Nil => false
            case ps  => (ps ne parents) || (ps.tail exists contributesAbstractMembers) || (decls exists isVisibleDeferred)
          }
        }
      }

      tp match {
        case ThisType(_)                              => false
        case SingleType(_, sym)                       => isVolatile(tp.underlying) && (sym.hasVolatileType || !sym.isStable)
        case NullaryMethodType(restpe)                => isVolatile(restpe)
        case PolyType(_, restpe)                      => isVolatile(restpe)
        case TypeRef(_, _, _) if tp ne tp.dealias     => isVolatile(tp.dealias)
        case TypeRef(_, sym, _) if sym.isAbstractType => isVolatileAbstractType
        case RefinedType(_, _)                        => isVolatileRefinedType
        case TypeVar(origin, _)                       => isVolatile(origin)
        case _: SimpleTypeProxy                       => isVolatile(tp.underlying)
        case _                                        => false
      }
    }

    private[this] var volatileRecursions: Int = 0
    private[this] val pendingVolatiles = mutable.HashSet[Symbol]()
    def abstractFunctionForFunctionType(tp: Type) = {
      assert(isFunctionType(tp), tp)
      abstractFunctionType(tp.typeArgs.init, tp.typeArgs.last)
    }
    def functionNBaseType(tp: Type): Type = tp.baseClasses find isFunctionSymbol match {
      case Some(sym) => tp baseType unspecializedSymbol(sym)
      case _         => tp
    }

    def isPartialFunctionType(tp: Type): Boolean = {
      val sym = tp.typeSymbol
      (sym eq PartialFunctionClass) || (sym eq AbstractPartialFunctionClass)
    }

    /** The single abstract method declared by type `tp` (or `NoSymbol` if it cannot be found).
     *
     * The method must be monomorphic and have exactly one parameter list.
     * The class defining the method is a supertype of `tp` that
     * has a public no-arg primary constructor.
     */
    def samOf(tp: Type): Symbol = {
      // if tp has a constructor, it must be public and must not take any arguments
      // (not even an implicit argument list -- to keep it simple for now)
      val tpSym  = tp.typeSymbol
      val ctor   = tpSym.primaryConstructor
      val ctorOk = !ctor.exists || (!ctor.isOverloaded && ctor.isPublic && ctor.info.params.isEmpty && ctor.info.paramSectionCount <= 1)

      if (tpSym.exists && ctorOk) {
        // find the single abstract member, if there is one
        // don't go out requiring DEFERRED members, as you will get them even if there's a concrete override:
        //    scala> abstract class X { def m: Int }
        //    scala> class Y extends X { def m: Int = 1}
        //    scala> typeOf[Y].deferredMembers
        //    Scopes(method m, method getClass)
        //
        //    scala> typeOf[Y].members.filter(_.isDeferred)
        //    Scopes()
        // must filter out "universal" members (getClass is deferred for some reason)
        val deferredMembers = (
          tp membersBasedOnFlags (excludedFlags = BridgeAndPrivateFlags, requiredFlags = METHOD)
          filter (mem => mem.isDeferredNotDefault && !isUniversalMember(mem)) // TODO: test
        )

        // if there is only one, it's monomorphic and has a single argument list
        if (deferredMembers.size == 1 &&
            deferredMembers.head.typeParams.isEmpty &&
            deferredMembers.head.info.paramSectionCount == 1)
          deferredMembers.head
        else NoSymbol
      } else NoSymbol
    }

    def arrayType(arg: Type)         = appliedType(ArrayClass, arg)
    def byNameType(arg: Type)        = appliedType(ByNameParamClass, arg)
    def iteratorOfType(tp: Type)     = appliedType(IteratorClass, tp)
    def javaRepeatedType(arg: Type)  = appliedType(JavaRepeatedParamClass, arg)
    def optionType(tp: Type)         = appliedType(OptionClass, tp)
    def scalaRepeatedType(arg: Type) = appliedType(RepeatedParamClass, arg)
    def seqType(arg: Type)           = appliedType(SeqClass, arg)

    // FYI the long clunky name is because it's really hard to put "get" into the
    // name of a method without it sounding like the method "get"s something, whereas
    // this method is about a type member which just happens to be named get.
    def typeOfMemberNamedGet(tp: Type)   = typeArgOfBaseTypeOr(tp, OptionClass)(resultOfMatchingMethod(tp, nme.get)())
    def typeOfMemberNamedHead(tp: Type)  = typeArgOfBaseTypeOr(tp, SeqClass)(resultOfMatchingMethod(tp, nme.head)())
    def typeOfMemberNamedApply(tp: Type) = typeArgOfBaseTypeOr(tp, SeqClass)(resultOfMatchingMethod(tp, nme.apply)(IntTpe))
    def typeOfMemberNamedDrop(tp: Type)  = typeArgOfBaseTypeOr(tp, SeqClass)(resultOfMatchingMethod(tp, nme.drop)(IntTpe))
    def typesOfSelectors(tp: Type)       = getterMemberTypes(tp, productSelectors(tp))
    // SI-8128 Still using the type argument of the base type at Seq/Option if this is an old-style (2.10 compatible)
    //         extractor to limit exposure to regressions like the reported problem with existentials.
    //         TODO fix the existential problem in the general case, see test/pending/pos/t8128.scala
    private def typeArgOfBaseTypeOr(tp: Type, baseClass: Symbol)(or: => Type): Type = (tp baseType baseClass).typeArgs match {
      case x :: Nil => x
      case _        => or
    }

    // Can't only check for _1 thanks to pos/t796.
    def hasSelectors(tp: Type) = (
         (tp.members containsName nme._1)
      && (tp.members containsName nme._2)
    )

    /** Returns the method symbols for members _1, _2, ..., _N
     *  which exist in the given type.
     */
    def productSelectors(tpe: Type): List[Symbol] = {
      def loop(n: Int): List[Symbol] = tpe member TermName("_" + n) match {
        case NoSymbol                => Nil
        case m if m.paramss.nonEmpty => Nil
        case m                       => m :: loop(n + 1)
      }
      // Since ErrorType always returns a symbol from a call to member, we
      // had better not start looking for _1, _2, etc. expecting it to run out.
      if (tpe.isErroneous) Nil else loop(1)
    }

    /** If `tp` has a term member `name`, the first parameter list of which
     *  matches `paramTypes`, and which either has no further parameter
     *  lists or only an implicit one, then the result type of the matching
     *  method. Otherwise, NoType.
     */
    def resultOfMatchingMethod(tp: Type, name: TermName)(paramTypes: Type*): Type = {
      def matchesParams(member: Symbol) = member.paramss match {
        case Nil        => paramTypes.isEmpty
        case ps :: rest => (rest.isEmpty || isImplicitParamss(rest)) && (ps corresponds paramTypes)(_.tpe =:= _)
      }
      tp member name filter matchesParams match {
        case NoSymbol => NoType
        case member   => (tp memberType member).finalResultType
      }
    }

    def ClassType(arg: Type) = if (phase.erasedTypes) ClassClass.tpe else appliedType(ClassClass, arg)

    /** Can we tell by inspecting the symbol that it will never
     *  at any phase have type parameters?
     */
    def neverHasTypeParameters(sym: Symbol) = sym match {
      case _: RefinementClassSymbol => true
      case _: ModuleClassSymbol     => true
      case _: ImplClassSymbol       => true
      case _                        =>
        (
             sym.isPrimitiveValueClass
          || sym.isAnonymousClass
          || sym.initialize.isMonomorphicType
        )
    }

    def EnumType(sym: Symbol) =
      // given (in java): "class A { enum E { VAL1 } }"
      //  - sym: the symbol of the actual enumeration value (VAL1)
      //  - .owner: the ModuleClassSymbol of the enumeration (object E)
      //  - .linkedClassOfClass: the ClassSymbol of the enumeration (class E)
      sym.owner.linkedClassOfClass.tpe

    /** Given a class symbol C with type parameters T1, T2, ... Tn
     *  which have upper/lower bounds LB1/UB1, LB1/UB2, ..., LBn/UBn,
     *  returns an existential type of the form
     *
     *    C[E1, ..., En] forSome { E1 >: LB1 <: UB1 ... en >: LBn <: UBn }.
     */
    // TODO Review the way this is used. I see two potential problems:
    //  1. `existentialAbstraction` here doesn't create fresh existential type symbols, it just
    //     uses the class type parameter symbols directly as the list of quantified symbols.
    //     See SI-8244 for the trouble that this can cause.
    //     Compare with callers of `typeParamsToExistentials` (used in Java raw type handling)
    //  2. Why don't we require a prefix? Could its omission lead to wrong results in CheckabilityChecker?
    def classExistentialType(clazz: Symbol): Type =
      existentialAbstraction(clazz.typeParams, clazz.tpe_*)

    // members of class scala.Any

    // TODO these aren't final! They are now overriden in AnyRef/Object. Prior to the fix
    //      for SI-8129, they were actually *overloaded* by the members in AnyRef/Object.
    //      We should unfinalize these, override in AnyValClass, and make the overrides final.
    //      Refchecks never actually looks at these, so its just for consistency.
    lazy val Any_==       = enterNewMethod(AnyClass, nme.EQ, AnyTpe :: Nil, BooleanTpe, FINAL)
    lazy val Any_!=       = enterNewMethod(AnyClass, nme.NE, AnyTpe :: Nil, BooleanTpe, FINAL)

    lazy val Any_equals   = enterNewMethod(AnyClass, nme.equals_, AnyTpe :: Nil, BooleanTpe)
    lazy val Any_hashCode = enterNewMethod(AnyClass, nme.hashCode_, Nil, IntTpe)
    lazy val Any_toString = enterNewMethod(AnyClass, nme.toString_, Nil, StringTpe)
    lazy val Any_##       = enterNewMethod(AnyClass, nme.HASHHASH, Nil, IntTpe, FINAL)

    // Any_getClass requires special handling.  The return type is determined on
    // a per-call-site basis as if the function being called were actually:
    //
    //    // Assuming `target.getClass()`
    //    def getClass[T](target: T): Class[_ <: T]
    //
    // Since getClass is not actually a polymorphic method, this requires compiler
    // participation.  At the "Any" level, the return type is Class[_] as it is in
    // java.lang.Object.  Java also special cases the return type.
    lazy val Any_getClass     = enterNewMethod(AnyClass, nme.getClass_, Nil, getMemberMethod(ObjectClass, nme.getClass_).tpe.resultType, DEFERRED)
    lazy val Any_isInstanceOf = newT1NullaryMethod(AnyClass, nme.isInstanceOf_, FINAL)(_ => BooleanTpe)
    lazy val Any_asInstanceOf = newT1NullaryMethod(AnyClass, nme.asInstanceOf_, FINAL)(_.typeConstructor)

    lazy val primitiveGetClassMethods = Set[Symbol](Any_getClass, AnyVal_getClass) ++ (
      ScalaValueClasses map (_.tpe member nme.getClass_)
    )

    lazy val getClassMethods: Set[Symbol] = primitiveGetClassMethods + Object_getClass

  // A type function from T => Class[U], used to determine the return
    // type of getClass calls.  The returned type is:
    //
    //  1. If T is a value type, Class[T].
    //  2. If T is a phantom type (Any or AnyVal), Class[_].
    //  3. If T is a local class, Class[_ <: |T|].
    //  4. Otherwise, Class[_ <: T].
    //
    // Note: AnyVal cannot be Class[_ <: AnyVal] because if the static type of the
    // receiver is AnyVal, it implies the receiver is boxed, so the correct
    // class object is that of java.lang.Integer, not Int.
    //
    // TODO: If T is final, return type could be Class[T].  Should it?
    def getClassReturnType(tp: Type): Type = {
      val sym     = tp.typeSymbol

      if (phase.erasedTypes) ClassClass.tpe
      else if (isPrimitiveValueClass(sym)) ClassType(tp.widen)
      else {
        val eparams    = typeParamsToExistentials(ClassClass, ClassClass.typeParams)
        val upperBound = (
          if (isPhantomClass(sym)) AnyTpe
          else if (sym.isLocalClass) erasure.intersectionDominator(tp.parents)
          else tp.widen
        )

        existentialAbstraction(
          eparams,
          ClassType((eparams.head setInfo TypeBounds.upper(upperBound)).tpe)
        )
      }
    }

    /** Remove references to class Object (other than the head) in a list of parents */
    def removeLaterObjects(tps: List[Type]): List[Type] = tps match {
      case Nil      => Nil
      case x :: xs  => x :: xs.filterNot(_.typeSymbol == ObjectClass)
    }
    /** Remove all but one reference to class Object from a list of parents. */
    def removeRedundantObjects(tps: List[Type]): List[Type] = tps match {
      case Nil      => Nil
      case x :: xs  =>
        if (x.typeSymbol == ObjectClass)
          x :: xs.filterNot(_.typeSymbol == ObjectClass)
        else
          x :: removeRedundantObjects(xs)
    }

    /** The following transformations applied to a list of parents.
     *  If any parent is a class/trait, all parents which normalize to
     *  Object are discarded.  Otherwise, all parents which normalize
     *  to Object except the first one found are discarded.
     */
    def normalizedParents(parents: List[Type]): List[Type] = {
      if (parents exists (t => (t.typeSymbol ne ObjectClass) && t.typeSymbol.isClass))
        parents filterNot (_.typeSymbol eq ObjectClass)
      else
        removeRedundantObjects(parents)
    }

    /** Flatten curried parameter lists of a method type. */
    def allParameters(tpe: Type): List[Symbol] = tpe match {
      case MethodType(params, res) => params ::: allParameters(res)
      case _                       => Nil
    }

    def typeStringNoPackage(tp: Type) =
      "" + tp stripPrefix tp.typeSymbol.enclosingPackage.fullName + "."

    def briefParentsString(parents: List[Type]) =
      normalizedParents(parents) map typeStringNoPackage mkString " with "

    def parentsString(parents: List[Type]) =
      normalizedParents(parents) mkString " with "

    def valueParamsString(tp: Type) = tp match {
      case MethodType(params, _) => params map (_.defString) mkString ("(", ",", ")")
      case _                     => ""
    }

    // members of class java.lang.{ Object, String }
    lazy val Object_## = enterNewMethod(ObjectClass, nme.HASHHASH, Nil, IntTpe, FINAL)
    lazy val Object_== = enterNewMethod(ObjectClass, nme.EQ, AnyTpe :: Nil, BooleanTpe, FINAL)
    lazy val Object_!= = enterNewMethod(ObjectClass, nme.NE, AnyTpe :: Nil, BooleanTpe, FINAL)
    lazy val Object_eq = enterNewMethod(ObjectClass, nme.eq, AnyRefTpe :: Nil, BooleanTpe, FINAL)
    lazy val Object_ne = enterNewMethod(ObjectClass, nme.ne, AnyRefTpe :: Nil, BooleanTpe, FINAL)
    lazy val Object_isInstanceOf = newT1NoParamsMethod(ObjectClass, nme.isInstanceOf_Ob, FINAL | SYNTHETIC | ARTIFACT)(_ => BooleanTpe)
    lazy val Object_asInstanceOf = newT1NoParamsMethod(ObjectClass, nme.asInstanceOf_Ob, FINAL | SYNTHETIC | ARTIFACT)(_.typeConstructor)
    lazy val Object_synchronized = newPolyMethod(1, ObjectClass, nme.synchronized_, FINAL)(tps =>
      (Some(List(tps.head.typeConstructor)), tps.head.typeConstructor)
    )
    lazy val String_+ = enterNewMethod(StringClass, nme.raw.PLUS, AnyTpe :: Nil, StringTpe, FINAL)

    def Object_getClass  = getMemberMethod(ObjectClass, nme.getClass_)
    def Object_clone     = getMemberMethod(ObjectClass, nme.clone_)
    def Object_finalize  = getMemberMethod(ObjectClass, nme.finalize_)
    def Object_notify    = getMemberMethod(ObjectClass, nme.notify_)
    def Object_notifyAll = getMemberMethod(ObjectClass, nme.notifyAll_)
    def Object_equals    = getMemberMethod(ObjectClass, nme.equals_)
    def Object_hashCode  = getMemberMethod(ObjectClass, nme.hashCode_)
    def Object_toString  = getMemberMethod(ObjectClass, nme.toString_)

    // boxed classes
    lazy val ObjectRefClass         = requiredClass[scala.runtime.ObjectRef[_]]
    lazy val VolatileObjectRefClass = requiredClass[scala.runtime.VolatileObjectRef[_]]
    lazy val RuntimeStaticsModule   = getRequiredModule("scala.runtime.Statics")
    lazy val BoxesRunTimeModule     = getRequiredModule("scala.runtime.BoxesRunTime")
    lazy val BoxesRunTimeClass      = BoxesRunTimeModule.moduleClass
    lazy val BoxedNumberClass       = getClassByName(sn.BoxedNumber)
    lazy val BoxedCharacterClass    = getClassByName(sn.BoxedCharacter)
    lazy val BoxedBooleanClass      = getClassByName(sn.BoxedBoolean)
    lazy val BoxedByteClass         = requiredClass[java.lang.Byte]
    lazy val BoxedShortClass        = requiredClass[java.lang.Short]
    lazy val BoxedIntClass          = requiredClass[java.lang.Integer]
    lazy val BoxedLongClass         = requiredClass[java.lang.Long]
    lazy val BoxedFloatClass        = requiredClass[java.lang.Float]
    lazy val BoxedDoubleClass       = requiredClass[java.lang.Double]

    lazy val BoxedUnitClass         = requiredClass[scala.runtime.BoxedUnit]
    lazy val BoxedUnitModule        = getRequiredModule("scala.runtime.BoxedUnit")
      def BoxedUnit_UNIT            = getMemberValue(BoxedUnitModule, nme.UNIT)
      def BoxedUnit_TYPE            = getMemberValue(BoxedUnitModule, nme.TYPE_)

    // Annotation base classes
    lazy val AnnotationClass            = requiredClass[scala.annotation.Annotation]
    lazy val ClassfileAnnotationClass   = requiredClass[scala.annotation.ClassfileAnnotation]
    lazy val StaticAnnotationClass      = requiredClass[scala.annotation.StaticAnnotation]

    // Annotations
    lazy val BridgeClass                = requiredClass[scala.annotation.bridge]
    lazy val ElidableMethodClass        = requiredClass[scala.annotation.elidable]
    lazy val ImplicitNotFoundClass      = requiredClass[scala.annotation.implicitNotFound]
    lazy val MigrationAnnotationClass   = requiredClass[scala.annotation.migration]
    lazy val ScalaStrictFPAttr          = requiredClass[scala.annotation.strictfp]
    lazy val SwitchClass                = requiredClass[scala.annotation.switch]
    lazy val TailrecClass               = requiredClass[scala.annotation.tailrec]
    lazy val VarargsClass               = requiredClass[scala.annotation.varargs]
    lazy val uncheckedStableClass       = requiredClass[scala.annotation.unchecked.uncheckedStable]
    lazy val uncheckedVarianceClass     = requiredClass[scala.annotation.unchecked.uncheckedVariance]

    lazy val BeanPropertyAttr           = requiredClass[scala.beans.BeanProperty]
    lazy val BooleanBeanPropertyAttr    = requiredClass[scala.beans.BooleanBeanProperty]
    lazy val CompileTimeOnlyAttr        = getClassIfDefined("scala.annotation.compileTimeOnly")
    lazy val DeprecatedAttr             = requiredClass[scala.deprecated]
    lazy val DeprecatedNameAttr         = requiredClass[scala.deprecatedName]
    lazy val DeprecatedInheritanceAttr  = requiredClass[scala.deprecatedInheritance]
    lazy val DeprecatedOverridingAttr   = requiredClass[scala.deprecatedOverriding]
    lazy val NativeAttr                 = requiredClass[scala.native]
    lazy val RemoteAttr                 = requiredClass[scala.remote]
    lazy val ScalaInlineClass           = requiredClass[scala.inline]
    lazy val ScalaNoInlineClass         = requiredClass[scala.noinline]
    lazy val SerialVersionUIDAttr       = requiredClass[scala.SerialVersionUID]
    lazy val SerialVersionUIDAnnotation = AnnotationInfo(SerialVersionUIDAttr.tpe, List(Literal(Constant(0))), List())
    lazy val SpecializedClass           = requiredClass[scala.specialized]
    lazy val ThrowsClass                = requiredClass[scala.throws[_]]
    lazy val TransientAttr              = requiredClass[scala.transient]
    lazy val UncheckedClass             = requiredClass[scala.unchecked]
    lazy val UncheckedBoundsClass       = getClassIfDefined("scala.reflect.internal.annotations.uncheckedBounds")
    lazy val UnspecializedClass         = requiredClass[scala.annotation.unspecialized]
    lazy val VolatileAttr               = requiredClass[scala.volatile]

    // Meta-annotations
    lazy val BeanGetterTargetClass      = requiredClass[meta.beanGetter]
    lazy val BeanSetterTargetClass      = requiredClass[meta.beanSetter]
    lazy val FieldTargetClass           = requiredClass[meta.field]
    lazy val GetterTargetClass          = requiredClass[meta.getter]
    lazy val ParamTargetClass           = requiredClass[meta.param]
    lazy val SetterTargetClass          = requiredClass[meta.setter]
    lazy val ObjectTargetClass          = requiredClass[meta.companionObject]
    lazy val ClassTargetClass           = requiredClass[meta.companionClass]
    lazy val MethodTargetClass          = requiredClass[meta.companionMethod]    // TODO: module, moduleClass? package, packageObject?
    lazy val LanguageFeatureAnnot       = requiredClass[meta.languageFeature]

    // Language features
    lazy val languageFeatureModule      = getRequiredModule("scala.languageFeature")

    def isMetaAnnotation(sym: Symbol): Boolean = metaAnnotations(sym) || (
      // Trying to allow for deprecated locations
      sym.isAliasType && isMetaAnnotation(sym.info.typeSymbol)
    )
    lazy val metaAnnotations: Set[Symbol] = getPackage("scala.annotation.meta").info.members filter (_ isSubClass StaticAnnotationClass) toSet

    // According to the scala.annotation.meta package object:
    // * By default, annotations on (`val`-, `var`- or plain) constructor parameters
    // * end up on the parameter, not on any other entity. Annotations on fields
    // * by default only end up on the field.
    def defaultAnnotationTarget(t: Tree): Symbol = t match {
      case ClassDef(_, _, _, _)                                  => ClassTargetClass
      case ModuleDef(_, _, _)                                    => ObjectTargetClass
      case vd @ ValDef(_, _, _, _) if vd.symbol.isParamAccessor  => ParamTargetClass
      case vd @ ValDef(_, _, _, _) if vd.symbol.isValueParameter => ParamTargetClass
      case ValDef(_, _, _, _)                                    => FieldTargetClass
      case DefDef(_, _, _, _, _, _)                              => MethodTargetClass
      case _                                                     => GetterTargetClass
    }

    lazy val AnnotationDefaultAttr: ClassSymbol = {
      val sym = RuntimePackageClass.newClassSymbol(tpnme.AnnotationDefaultATTR, NoPosition, 0L)
      sym setInfo ClassInfoType(List(AnnotationClass.tpe), newScope, sym)
      markAllCompleted(sym)
      RuntimePackageClass.info.decls.toList.filter(_.name == sym.name) match {
        case existing :: _ =>
          existing.asInstanceOf[ClassSymbol]
        case _ =>
          RuntimePackageClass.info.decls enter sym
          // This attribute needs a constructor so that modifiers in parsed Java code make sense
          sym.info.decls enter sym.newClassConstructor(NoPosition)
          sym
      }
    }

    private def fatalMissingSymbol(owner: Symbol, name: Name, what: String = "member", addendum: String = "") = {
      throw new FatalError(owner + " does not have a " + what + " " + name + addendum)
    }

    def getLanguageFeature(name: String, owner: Symbol = languageFeatureModule): Symbol = getMember(owner, newTypeName(name))

    def termMember(owner: Symbol, name: String): Symbol = owner.info.member(newTermName(name))

    def findNamedMember(fullName: Name, root: Symbol): Symbol = {
      val segs = nme.segments(fullName.toString, fullName.isTermName)
      if (segs.isEmpty || segs.head != root.simpleName) NoSymbol
      else findNamedMember(segs.tail, root)
    }
    def findNamedMember(segs: List[Name], root: Symbol): Symbol =
      if (segs.isEmpty) root
      else findNamedMember(segs.tail, root.info member segs.head)

    def getMember(owner: Symbol, name: Name): Symbol = {
      getMemberIfDefined(owner, name) orElse {
        if (phase.flatClasses && name.isTypeName && !owner.isPackageObjectOrClass) {
          val pkg = owner.owner
          val flatname = tpnme.flattenedName(owner.name, name)
          getMember(pkg, flatname)
        }
        else fatalMissingSymbol(owner, name)
      }
    }
    def getMemberValue(owner: Symbol, name: Name): TermSymbol = {
      getMember(owner, name.toTermName) match {
        case x: TermSymbol => x
        case _             => fatalMissingSymbol(owner, name, "member value")
      }
    }
    def getMemberModule(owner: Symbol, name: Name): ModuleSymbol = {
      getMember(owner, name.toTermName) match {
        case x: ModuleSymbol => x
        case NoSymbol        => fatalMissingSymbol(owner, name, "member object")
        case other           => fatalMissingSymbol(owner, name, "member object", addendum = s". A symbol ${other} of kind ${other.accurateKindString} already exists.")
      }
    }
    def getTypeMember(owner: Symbol, name: Name): TypeSymbol = {
      getMember(owner, name.toTypeName) match {
        case x: TypeSymbol => x
        case _             => fatalMissingSymbol(owner, name, "type member")
      }
    }
    def getMemberClass(owner: Symbol, name: Name): ClassSymbol = {
      getMember(owner, name.toTypeName) match {
        case x: ClassSymbol => x
        case _              => fatalMissingSymbol(owner, name, "member class")
      }
    }
    def getMemberMethod(owner: Symbol, name: Name): TermSymbol = {
      getMember(owner, name.toTermName) match {
        case x: TermSymbol => x
        case _             => fatalMissingSymbol(owner, name, "method")
      }
    }

    private lazy val erasurePhase = findPhaseWithName("erasure")
    def getMemberIfDefined(owner: Symbol, name: Name): Symbol =
      // findMember considered harmful after erasure; e.g.
      //
      // scala> exitingErasure(Symbol_apply).isOverloaded
      // res27: Boolean = true
      //
      enteringPhaseNotLaterThan(erasurePhase )(
        owner.info.nonPrivateMember(name)
      )

    /** Using getDecl rather than getMember may avoid issues with
     *  OverloadedTypes turning up when you don't want them, if you
     *  know the method in question is uniquely declared in the given owner.
     */
    def getDecl(owner: Symbol, name: Name): Symbol = {
      getDeclIfDefined(owner, name) orElse fatalMissingSymbol(owner, name, "decl")
    }
    def getDeclIfDefined(owner: Symbol, name: Name): Symbol =
      owner.info.nonPrivateDecl(name)

    private def newAlias(owner: Symbol, name: TypeName, alias: Type): AliasTypeSymbol =
      owner.newAliasType(name) setInfoAndEnter alias

    private def specialPolyClass(name: TypeName, flags: Long)(parentFn: Symbol => Type): ClassSymbol = {
      val clazz   = enterNewClass(ScalaPackageClass, name, Nil)
      val tparam  = clazz.newSyntheticTypeParam("T0", flags)
      val parents = List(AnyRefTpe, parentFn(tparam))

      clazz setInfo GenPolyType(List(tparam), ClassInfoType(parents, newScope, clazz)) markAllCompleted
    }

    def newPolyMethod(typeParamCount: Int, owner: Symbol, name: TermName, flags: Long)(createFn: PolyMethodCreator): MethodSymbol = {
      val msym    = owner.newMethod(name.encode, NoPosition, flags)
      val tparams = msym.newSyntheticTypeParams(typeParamCount)
      val mtpe    = createFn(tparams) match {
        case (Some(formals), restpe) => MethodType(msym.newSyntheticValueParams(formals), restpe)
        case (_, restpe)             => NullaryMethodType(restpe)
      }

      msym setInfoAndEnter genPolyType(tparams, mtpe) markAllCompleted
    }

    /** T1 means one type parameter.
     */
    def newT1NullaryMethod(owner: Symbol, name: TermName, flags: Long)(createFn: Symbol => Type): MethodSymbol = {
      newPolyMethod(1, owner, name, flags)(tparams => (None, createFn(tparams.head)))
    }
    def newT1NoParamsMethod(owner: Symbol, name: TermName, flags: Long)(createFn: Symbol => Type): MethodSymbol = {
      newPolyMethod(1, owner, name, flags)(tparams => (Some(Nil), createFn(tparams.head)))
    }

    /** Is symbol a phantom class for which no runtime representation exists? */
    lazy val isPhantomClass = Set[Symbol](AnyClass, AnyValClass, NullClass, NothingClass)
    /** Lists core classes that don't have underlying bytecode, but are synthesized on-the-fly in every reflection universe */
    lazy val syntheticCoreClasses = List(
      AnnotationDefaultAttr, // #2264
      RepeatedParamClass,
      JavaRepeatedParamClass,
      ByNameParamClass,
      AnyClass,
      AnyRefClass,
      AnyValClass,
      NullClass,
      NothingClass,
      SingletonClass
    )
    /** Lists core methods that don't have underlying bytecode, but are synthesized on-the-fly in every reflection universe */
    lazy val syntheticCoreMethods = List(
      Any_==,
      Any_!=,
      Any_equals,
      Any_hashCode,
      Any_toString,
      Any_getClass,
      Any_isInstanceOf,
      Any_asInstanceOf,
      Any_##,
      Object_eq,
      Object_ne,
      Object_==,
      Object_!=,
      Object_##,
      Object_synchronized,
      Object_isInstanceOf,
      Object_asInstanceOf,
      String_+
    )
    /** Lists core classes that do have underlying bytecode, but are adjusted on-the-fly in every reflection universe */
    lazy val hijackedCoreClasses = List(
      ComparableClass,
      JavaSerializableClass
    )
    /** Lists symbols that are synthesized or hijacked by the compiler.
     *
     *  Such symbols either don't have any underlying bytecode at all ("synthesized")
     *  or get loaded from bytecode but have their metadata adjusted ("hijacked").
     */
    lazy val symbolsNotPresentInBytecode = syntheticCoreClasses ++ syntheticCoreMethods ++ hijackedCoreClasses

    /** Is the symbol that of a parent which is added during parsing? */
    lazy val isPossibleSyntheticParent = ProductClass.seq.toSet[Symbol] + ProductRootClass + SerializableClass

    private lazy val boxedValueClassesSet = boxedClass.values.toSet[Symbol] + BoxedUnitClass

    /** Is symbol a value class? */
    def isPrimitiveValueClass(sym: Symbol) = ScalaValueClasses contains sym
    def isPrimitiveValueType(tp: Type)     = isPrimitiveValueClass(tp.typeSymbol)

    /** Is symbol a boxed value class, e.g. java.lang.Integer? */
    def isBoxedValueClass(sym: Symbol) = boxedValueClassesSet(sym)

    /** If symbol is a value class (boxed or not), return the unboxed
     *  value class.  Otherwise, NoSymbol.
     */
    def unboxedValueClass(sym: Symbol): Symbol =
      if (isPrimitiveValueClass(sym)) sym
      else if (sym == BoxedUnitClass) UnitClass
      else boxedClass.map(kvp => (kvp._2: Symbol, kvp._1)).getOrElse(sym, NoSymbol)

    /** Is type's symbol a numeric value class? */
    def isNumericValueType(tp: Type): Boolean = tp match {
      case TypeRef(_, sym, _) => isNumericValueClass(sym)
      case _                  => false
    }

    // todo: reconcile with javaSignature!!!
    def signature(tp: Type): String = {
      def erasure(tp: Type): Type = tp match {
        case st: SubType => erasure(st.supertype)
        case RefinedType(parents, _) => erasure(parents.head)
        case _ => tp
      }
      def flatNameString(sym: Symbol, separator: Char): String =
        if (sym == NoSymbol) ""   // be more resistant to error conditions, e.g. neg/t3222.scala
        else if (sym.isTopLevel) sym.javaClassName
        else flatNameString(sym.owner, separator) + nme.NAME_JOIN_STRING + sym.simpleName
      def signature1(etp: Type): String = {
        if (etp.typeSymbol == ArrayClass) "[" + signature1(erasure(etp.dealiasWiden.typeArgs.head))
        else if (isPrimitiveValueClass(etp.typeSymbol)) abbrvTag(etp.typeSymbol).toString()
        else "L" + flatNameString(etp.typeSymbol, '/') + ";"
      }
      val etp = erasure(tp)
      if (etp.typeSymbol == ArrayClass) signature1(etp)
      else flatNameString(etp.typeSymbol, '.')
    }

    // documented in JavaUniverse.init
    def init() {
      if (isInitialized) return
      ObjectClass.initialize
      ScalaPackageClass.initialize
      val forced1 = symbolsNotPresentInBytecode
      val forced2 = NoSymbol
      isInitialized = true
    } //init

    class UniverseDependentTypes(universe: Tree) {
      lazy val nameType         = universeMemberType(tpnme.Name)
      lazy val modsType         = universeMemberType(tpnme.Modifiers)
      lazy val flagsType        = universeMemberType(tpnme.FlagSet)
      lazy val symbolType       = universeMemberType(tpnme.Symbol)
      lazy val treeType         = universeMemberType(tpnme.Tree)
      lazy val caseDefType      = universeMemberType(tpnme.CaseDef)
      lazy val liftableType     = universeMemberType(tpnme.Liftable)
      lazy val unliftableType   = universeMemberType(tpnme.Unliftable)
      lazy val iterableTreeType = appliedType(IterableClass, treeType)
      lazy val listTreeType     = appliedType(ListClass, treeType)
      lazy val listListTreeType = appliedType(ListClass, listTreeType)

      def universeMemberType(name: TypeName) = universe.tpe.memberType(getTypeMember(universe.symbol, name))
    }

    /** Efficient access to member symbols which must be looked up each run. Access via `currentRun.runDefinitions` */
    final class RunDefinitions {
      lazy val StringAdd_+ = getMemberMethod(StringAddClass, nme.PLUS)

      // The given symbol represents either String.+ or StringAdd.+
      def isStringAddition(sym: Symbol) = sym == String_+ || sym == StringAdd_+

      lazy val StringContext_f = getMemberMethod(StringContextClass, nme.f)

      lazy val ArrowAssocClass = getMemberClass(PredefModule, TypeName("ArrowAssoc")) // SI-5731
      def isArrowAssoc(sym: Symbol) = sym.owner == ArrowAssocClass

      lazy val Boxes_isNumberOrBool  = getDecl(BoxesRunTimeClass, nme.isBoxedNumberOrBoolean)
      lazy val Boxes_isNumber        = getDecl(BoxesRunTimeClass, nme.isBoxedNumber)

      private def valueClassCompanion(name: TermName): ModuleSymbol = {
        getMember(ScalaPackageClass, name) match {
          case x: ModuleSymbol => x
          case _               => catastrophicFailure()
        }
      }

      private def valueCompanionMember(className: Name, methodName: TermName): TermSymbol =
        getMemberMethod(valueClassCompanion(className.toTermName).moduleClass, methodName)

      lazy val boxMethod        = classesMap(x => valueCompanionMember(x, nme.box))
      lazy val unboxMethod      = classesMap(x => valueCompanionMember(x, nme.unbox))
      lazy val isUnbox          = unboxMethod.values.toSet[Symbol]
      lazy val isBox            = boxMethod.values.toSet[Symbol]

      lazy val Option_apply = getMemberMethod(OptionModule, nme.apply)
      lazy val List_apply = DefinitionsClass.this.List_apply

      /**
       * Is the given symbol `List.apply`?
       * To to avoid bootstrapping cycles, this return false if the given symbol or List itself is not initialized.
       */
      def isListApply(sym: Symbol) = sym.isInitialized && ListModule.hasCompleteInfo && sym == List_apply
      def isPredefClassOf(sym: Symbol) = if (PredefModule.hasCompleteInfo) sym == Predef_classOf else isPredefMemberNamed(sym, nme.classOf)

      lazy val TagMaterializers = Map[Symbol, Symbol](
        ClassTagClass    -> materializeClassTag,
        WeakTypeTagClass -> materializeWeakTypeTag,
        TypeTagClass     -> materializeTypeTag
      )
      lazy val TagSymbols = TagMaterializers.keySet
      lazy val Predef_conforms     = (getMemberIfDefined(PredefModule, nme.conforms)
                               orElse getMemberMethod(PredefModule, "conforms": TermName)) // TODO: predicate on -Xsource:2.10 (for now, needed for transition from M8 -> RC1)
      lazy val Predef_classOf      = getMemberMethod(PredefModule, nme.classOf)
      lazy val Predef_implicitly   = getMemberMethod(PredefModule, nme.implicitly)
      lazy val Predef_wrapRefArray = getMemberMethod(PredefModule, nme.wrapRefArray)
      lazy val Predef_???          = DefinitionsClass.this.Predef_???

      lazy val arrayApplyMethod       = getMemberMethod(ScalaRunTimeModule, nme.array_apply)
      lazy val arrayUpdateMethod      = getMemberMethod(ScalaRunTimeModule, nme.array_update)
      lazy val arrayLengthMethod      = getMemberMethod(ScalaRunTimeModule, nme.array_length)
      lazy val arrayCloneMethod       = getMemberMethod(ScalaRunTimeModule, nme.array_clone)
      lazy val ensureAccessibleMethod = getMemberMethod(ScalaRunTimeModule, nme.ensureAccessible)
      lazy val arrayClassMethod       = getMemberMethod(ScalaRunTimeModule, nme.arrayClass)
      lazy val traversableDropMethod  = getMemberMethod(ScalaRunTimeModule, nme.drop)

      lazy val GroupOfSpecializable = getMemberClass(SpecializableModule, tpnme.Group)

      lazy val WeakTypeTagClass = TypeTagsClass.map(sym => getMemberClass(sym, tpnme.WeakTypeTag))
      lazy val WeakTypeTagModule = TypeTagsClass.map(sym => getMemberModule(sym, nme.WeakTypeTag))
      lazy val TypeTagClass = TypeTagsClass.map(sym => getMemberClass(sym, tpnme.TypeTag))
      lazy val TypeTagModule = TypeTagsClass.map(sym => getMemberModule(sym, nme.TypeTag))
      lazy val MacroContextUniverse = DefinitionsClass.this.MacroContextUniverse

      lazy val materializeClassTag    = getMemberMethod(ReflectPackage, nme.materializeClassTag)
      lazy val materializeWeakTypeTag = ReflectApiPackage.map(sym => getMemberMethod(sym, nme.materializeWeakTypeTag))
      lazy val materializeTypeTag     = ReflectApiPackage.map(sym => getMemberMethod(sym, nme.materializeTypeTag))

      lazy val experimentalModule         = getMemberModule(languageFeatureModule, nme.experimental)
      lazy val MacrosFeature              = getLanguageFeature("macros", experimentalModule)
      lazy val DynamicsFeature            = getLanguageFeature("dynamics")
      lazy val PostfixOpsFeature          = getLanguageFeature("postfixOps")
      lazy val ReflectiveCallsFeature     = getLanguageFeature("reflectiveCalls")
      lazy val ImplicitConversionsFeature = getLanguageFeature("implicitConversions")
      lazy val HigherKindsFeature         = getLanguageFeature("higherKinds")
      lazy val ExistentialsFeature        = getLanguageFeature("existentials")

      lazy val ApiUniverseReify = ApiUniverseClass.map(sym => getMemberMethod(sym, nme.reify))

      lazy val ReflectRuntimeUniverse      = DefinitionsClass.this.ReflectRuntimeUniverse
      lazy val ReflectRuntimeCurrentMirror = DefinitionsClass.this.ReflectRuntimeCurrentMirror

      lazy val TreesTreeType         = TreesClass.map(sym => getTypeMember(sym, tpnme.Tree))
      object TreeType { def unapply(tpe: Type): Boolean = tpe.typeSymbol.overrideChain contains TreesTreeType }
      object SubtreeType { def unapply(tpe: Type): Boolean = tpe.typeSymbol.overrideChain exists (_.tpe <:< TreesTreeType.tpe) }

      object ExprClassOf { def unapply(tp: Type): Option[Type] = elementExtractOption(ExprClass, tp) }

      lazy val PartialManifestClass  = getTypeMember(ReflectPackage, tpnme.ClassManifest)
      lazy val ManifestSymbols = Set[Symbol](PartialManifestClass, FullManifestClass, OptManifestClass)
    }
  }
}

Other Scala source code examples

Here is a short list of links related to this Scala Definitions.scala source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.