alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Scala example source code file (Stream.scala)

This example Scala source code file (Stream.scala) is included in the DevDaily.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Java - Scala tags/keywords

a, a, b, b, boolean, canbuildfrom, empty, int, stream, stream, streamwithfilter, string, that, that

The Scala Stream.scala source code

/*                     __                                               *\
**     ________ ___   / /  ___     Scala API                            **
**    / __/ __// _ | / /  / _ |    (c) 2003-2011, LAMP/EPFL             **
**  __\ \/ /__/ __ |/ /__/ __ |    http://scala-lang.org/               **
** /____/\___/_/ |_/____/_/ | |                                         **
**                          |/                                          **
\*                                                                      */



package scala.collection
package immutable

import generic._
import mutable.{Builder, StringBuilder, LazyBuilder, ListBuffer}
import scala.annotation.tailrec
import Stream.cons

/** The class `Stream` implements lazy lists where elements
 *  are only evaluated when they are needed. Here is an example:
 * 
 *  {{{
 *  object Main extends Application {
 *    
 *    def from(n: Int): Stream[Int] =
 *      Stream.cons(n, from(n + 1))
 *    
 *    def sieve(s: Stream[Int]): Stream[Int] =
 *      Stream.cons(s.head, sieve(s.tail filter { _ % s.head != 0 }))
 *    
 *    def primes = sieve(from(2))
 *    
 *    primes take 10 print
 *  }
 *  }}}
 *  
 *  @tparam A    the type of the elements contained in this stream.
 *  
 *  @author Martin Odersky, Matthias Zenger
 *  @version 1.1 08/08/03
 *  @since   2.8
 *  @define Coll Stream
 *  @define coll stream
 *  @define orderDependent
 *  @define orderDependentFold
 */
abstract class Stream[+A] extends LinearSeq[A] 
                             with GenericTraversableTemplate[A, Stream]
                             with LinearSeqOptimized[A, Stream[A]] {
self =>
  override def companion: GenericCompanion[Stream] = Stream

  import scala.collection.{Traversable, Iterable, Seq, IndexedSeq}

  /** is this stream empty? */
  def isEmpty: Boolean

  /** The first element of this stream 
   *  @throws Predef.NoSuchElementException if the stream is empty.
   */
  def head: A

  /** A stream consisting of the remaining elements of this stream after the first one.
   *  @throws Predef.UnsupportedOperationException if the stream is empty.
   */
  def tail: Stream[A]

  /** Is the tail of this stream defined? */
  protected def tailDefined: Boolean

  // Implementation of abstract method in Traversable

  // New methods in Stream
  
  /** The stream resulting from the concatenation of this stream with the argument stream.
   *  @param rest   The stream that gets appended to this stream
   *  @return       The stream containing elements of this stream and the traversable object.
   */
  def append[B >: A](rest: => TraversableOnce[B]): Stream[B] =
    if (isEmpty) rest.toStream else cons(head, tail append rest)

  /** Forces evaluation of the whole stream and returns it. */
  def force: Stream[A] = {
    var these = this
    while (!these.isEmpty) these = these.tail
    this
  }

  /** Prints elements of this stream one by one, separated by commas. */
  def print() { print(", ") }

  /** Prints elements of this stream one by one, separated by `sep`.
   *  @param sep   The separator string printed between consecutive elements. 
   */
  def print(sep: String) {
    def loop(these: Stream[A], start: String) {
      Console.print(start)
      if (these.isEmpty) Console.print("empty")
      else { 
        Console.print(these.head)
        loop(these.tail, sep) 
      }
    }
    loop(this, "")
  }
  
  override def length: Int = {
    var len = 0
    var left = this
    while (!left.isEmpty) {
      len += 1
      left = left.tail
    }
    len
  }
  
  /** It's an imperfect world, but at least we can bottle up the
   *  imperfection in a capsule.
   */
  @inline private def asThat[That](x: AnyRef): That     = x.asInstanceOf[That]
  @inline private def asStream[B](x: AnyRef): Stream[B] = x.asInstanceOf[Stream[B]]
  @inline private def isStreamBuilder[B, That](bf: CanBuildFrom[Stream[A], B, That]) =
    bf(repr).isInstanceOf[Stream.StreamBuilder[_]]

  // Overridden methods from Traversable
  
  override def toStream: Stream[A] = this

  override def hasDefiniteSize = {
    def loop(s: Stream[A]): Boolean = s.isEmpty || s.tailDefined && loop(s.tail)
    loop(this)
  }

  /** Create a new stream which contains all elements of this stream
   *  followed by all elements of Traversable `that`.
   *  @note It's subtle why this works. We know that if the target type
   *  of the Builder That is either a Stream, or one of its supertypes, or undefined,
   *  then StreamBuilder will be chosen for the implicit.
   *  we recognize that fact and optimize to get more laziness. 
   */
  override def ++[B >: A, That](that: GenTraversableOnce[B])(implicit bf: CanBuildFrom[Stream[A], B, That]): That =
    // we assume there is no other builder factory on streams and therefore know that That = Stream[A]
    if (isStreamBuilder(bf)) asThat(
      if (isEmpty) that.toStream
      else cons(head, asStream[A](tail ++ that))
    )
    else super.++(that)(bf)
  
  override def +:[B >: A, That](elem: B)(implicit bf: CanBuildFrom[Stream[A], B, That]): That =
    if (isStreamBuilder(bf)) asThat(cons(elem, this))
    else super.+:(elem)(bf)

  /**
   * Create a new stream which contains all intermediate results of applying the operator
   * to subsequent elements left to right.
   * @note This works because the target type of the Builder That is a Stream.
   */
  override final def scanLeft[B, That](z: B)(op: (B, A) => B)(implicit bf: CanBuildFrom[Stream[A], B, That]): That =
    if (isStreamBuilder(bf)) asThat(
      if (isEmpty) Stream(z)
      else cons(z, asStream[B](tail.scanLeft(op(z, head))(op)))
    )
    else super.scanLeft(z)(op)(bf)

  /** Returns the stream resulting from applying the given function
   *  `f` to each element of this stream.
   *
   *  @param f function to apply to each element.
   *  @return  <code>f(a0), ..., f(an) if this
   *           sequence is <code>a0, ..., an.
   */
  override final def map[B, That](f: A => B)(implicit bf: CanBuildFrom[Stream[A], B, That]): That = {
    if (isStreamBuilder(bf)) asThat(
      if (isEmpty) Stream.Empty
      else cons(f(head), asStream[B](tail map f))
    )
    else super.map(f)(bf)
  }
  
  override final def collect[B, That](pf: PartialFunction[A, B])(implicit bf: CanBuildFrom[Stream[A], B, That]): That = {
    if (!isStreamBuilder(bf)) super.collect(pf)(bf)
    else {
      // this implementation avoids:
      // 1) stackoverflows (could be achieved with tailrec, too)
      // 2) out of memory errors for big streams (`this` reference can be eliminated from the stack)
      var rest: Stream[A] = this
      while (rest.nonEmpty && !pf.isDefinedAt(rest.head)) rest = rest.tail
      
      //  without the call to the companion object, a thunk is created for the tail of the new stream,
      //  and the closure of the thunk will reference `this`
      if (rest.isEmpty) Stream.Empty.asInstanceOf[That]
      else Stream.collectedTail(rest, pf, bf).asInstanceOf[That]
    }
  }
  
  /** Applies the given function `f` to each element of
   *  this stream, then concatenates the results.
   *
   *  @param f  the function to apply on each element.
   *  @param bf $bfinfo
   *  @return  <code>f(a0) ::: ... ::: f(an) if
   *           this stream is <code>[a0, ..., an].
   */
  override final def flatMap[B, That](f: A => GenTraversableOnce[B])(implicit bf: CanBuildFrom[Stream[A], B, That]): That =
    // we assume there is no other builder factory on streams and therefore know that That = Stream[B]
    // optimisations are not for speed, but for functionality
    // see tickets #153, #498, #2147, and corresponding tests in run/ (as well as run/stream_flatmap_odds.scala)
    if (isStreamBuilder(bf)) asThat(
      if (isEmpty) Stream.Empty
      else {
        // establish !prefix.isEmpty || nonEmptyPrefix.isEmpty
        var nonEmptyPrefix = this
        var prefix = f(nonEmptyPrefix.head).toStream
        while (!nonEmptyPrefix.isEmpty && prefix.isEmpty) {
          nonEmptyPrefix = nonEmptyPrefix.tail
          if(!nonEmptyPrefix.isEmpty)
            prefix = f(nonEmptyPrefix.head).toStream
        }

        if (nonEmptyPrefix.isEmpty) Stream.empty
        else prefix append asStream[B](nonEmptyPrefix.tail flatMap f)
      }
    )
    else super.flatMap(f)(bf)

  /** Returns all the elements of this stream that satisfy the
   *  predicate <code>p. The order of the elements is preserved.
   *
   *  @param p the predicate used to filter the stream.
   *  @return the elements of this stream satisfying <code>p.
   */
  override def filter(p: A => Boolean): Stream[A] = {
    // optimization: drop leading prefix of elems for which f returns false
    // var rest = this dropWhile (!p(_)) - forget DRY principle - GC can't collect otherwise
    var rest = this
    while (!rest.isEmpty && !p(rest.head)) rest = rest.tail
    // private utility func to avoid `this` on stack (would be needed for the lazy arg)
    if (rest.nonEmpty) Stream.filteredTail(rest, p)
    else Stream.Empty
  }
  
  override final def withFilter(p: A => Boolean): StreamWithFilter = new StreamWithFilter(p)

  /** A lazier implementation of WithFilter than TraversableLike's.
   */
  final class StreamWithFilter(p: A => Boolean) extends WithFilter(p) {    
    
    override def map[B, That](f: A => B)(implicit bf: CanBuildFrom[Stream[A], B, That]): That = {
      def tailMap = asStream[B](tail withFilter p map f)
      if (isStreamBuilder(bf)) asThat(
        if (isEmpty) Stream.Empty
        else if (p(head)) cons(f(head), tailMap)
        else tailMap
      )
      else super.map(f)(bf)
    }
    
    override def flatMap[B, That](f: A => GenTraversableOnce[B])(implicit bf: CanBuildFrom[Stream[A], B, That]): That = {
      def tailFlatMap = asStream[B](tail withFilter p flatMap f) 
      if (isStreamBuilder(bf)) asThat(
        if (isEmpty) Stream.Empty
        else if (p(head)) f(head).toStream append tailFlatMap
        else tailFlatMap
      )
      else super.flatMap(f)(bf)
    }

    override def foreach[B](f: A => B) =
      for (x <- self) 
        if (p(x)) f(x)
    
    override def withFilter(q: A => Boolean): StreamWithFilter = 
      new StreamWithFilter(x => p(x) && q(x))
  }

  /** A lazier Iterator than LinearSeqLike's. */
  override def iterator: Iterator[A] = new StreamIterator(self)

  /** Apply the given function <code>f to each element of this linear sequence
   *  (while respecting the order of the elements).
   *
   *  @param f the treatment to apply to each element.
   *  @note  Overridden here as final to trigger tail-call optimization, which replaces
   *         'this' with 'tail' at each iteration. This is absolutely necessary
   *         for allowing the GC to collect the underlying stream as elements are
   *         consumed.
   */
  @tailrec
  override final def foreach[B](f: A => B) {
    if (!this.isEmpty) {
      f(head)
      tail.foreach(f)
    }
  }
  
  /** Stream specialization of foldLeft which allows GC to collect
   *  along the way.
   */
  @tailrec
  override final def foldLeft[B](z: B)(op: (B, A) => B): B = {
    if (this.isEmpty) z
    else tail.foldLeft(op(z, head))(op)
  }

  /** Stream specialization of reduceLeft which allows GC to collect
   *  along the way.
   */
  override final def reduceLeft[B >: A](f: (B, A) => B): B = {
    if (this.isEmpty) throw new UnsupportedOperationException("empty.reduceLeft")
    else {
      var reducedRes: B = this.head
      var left = this.tail
      while (!left.isEmpty) {
        reducedRes = f(reducedRes, left.head)
        left = left.tail
      }
      reducedRes
    }
  }

  /** Returns all the elements of this stream that satisfy the
   *  predicate <code>p. The order of the elements is preserved.
   *
   *  @param p the predicate used to filter the stream.
   *  @return the elements of this stream satisfying <code>p.
   */
  override def partition(p: A => Boolean): (Stream[A], Stream[A]) = (filter(p(_)), filterNot(p(_)))
    
  /** Returns a stream formed from this stream and the specified stream
   *  <code>that by associating each element of the former with
   *  the element at the same position in the latter.
   *  If one of the two streams is longer than the other, its remaining elements are ignored.
   *
   *  @return     <code>Stream({a0,b0}, ...,
   *              {a<sub>min(m,n),bmin(m,n))} when
   *              <code>Stream(a0, ..., am)
   *              zip Stream(b<sub>0, ..., bn) is invoked.
   */
  override final def zip[A1 >: A, B, That](that: collection.GenIterable[B])(implicit bf: CanBuildFrom[Stream[A], (A1, B), That]): That =
    // we assume there is no other builder factory on streams and therefore know that That = Stream[(A1, B)]
    if (isStreamBuilder(bf)) asThat(
      if (this.isEmpty || that.isEmpty) Stream.Empty
      else cons((this.head, that.head), asStream[(A1, B)](this.tail zip that.tail))
    )
    else super.zip(that)(bf)

  /** Zips this iterable with its indices. `s.zipWithIndex` is equivalent to 
   *  `s zip s.indices`
   */
  override def zipWithIndex[A1 >: A, That](implicit bf: CanBuildFrom[Stream[A], (A1, Int), That]): That =
    this.zip[A1, Int, That](Stream.from(0))
  
  /** Write all defined elements of this iterable into given string builder.
   *  The written text begins with the string <code>start and is finished by the string
   *  <code>end. Inside, the string representations of defined elements (w.r.t.
   *  the method <code>toString()) are separated by the string
   *  <code>sep. The method will not force evaluation of undefined elements. A
   *  tail of such elements will be represented by a "?" instead.
   */
  override def addString(b: StringBuilder, start: String, sep: String, end: String): StringBuilder = {
    def loop(pre: String, these: Stream[A]) {
      if (these.isEmpty) b append end
      else {
        b append pre append these.head
        if (these.tailDefined) loop(sep, these.tail)
        else b append sep append "?" append end
      }
    }
    b append start
    loop("", this)
    b
  }

  override def mkString(sep: String): String = mkString("", sep, "")
  override def mkString: String = mkString("")
  override def mkString(start: String, sep: String, end: String): String = {
    this.force
    super.mkString(start, sep, end)
  }
  override def toString = super.mkString(stringPrefix + "(", ", ", ")")

  override def splitAt(n: Int): (Stream[A], Stream[A]) = (take(n), drop(n))
  
  /** Returns the <code>n first elements of this stream, or else the whole 
   *  stream, if it has less than <code>n elements.
   *
   *  @param n the number of elements to take.
   *  @return the <code>n first elements of this stream.
   */
  override def take(n: Int): Stream[A] =
    if (n <= 0 || isEmpty) Stream.empty
    else if (n == 1) cons(head, Stream.empty)
    else cons(head, tail take n-1)
  
  @tailrec final override def drop(n: Int): Stream[A] =
    if (n <= 0 || isEmpty) this
    else tail drop n-1

  /** A substream starting at index `from` and extending up to (but not including)
   *  index `until`.
   *
   *  @param start   The index of the first element of the returned subsequence
   *  @param end     The index of the element following the returned subsequence
   */
  override def slice(from: Int, until: Int): Stream[A] = {
    val lo = from max 0
    if (until <= lo || isEmpty) Stream.empty
    else this drop lo take (until - lo)
  }

  /** The stream without its last element.
   *  @throws Predef.UnsupportedOperationException if the stream is empty.
   */
  override def init: Stream[A] =
    if (isEmpty) super.init
    else if (tail.isEmpty) Stream.Empty
    else cons(head, tail.init)

  /** Returns the rightmost <code>n elements from this iterable.
   *  @param n the number of elements to take
   */
  override def takeRight(n: Int): Stream[A] = {
    var these: Stream[A] = this
    var lead = this drop n
    while (!lead.isEmpty) {
      these = these.tail
      lead = lead.tail
    }
    these
  }

  // there's nothing we can do about dropRight, so we just keep the definition in LinearSeq
  
  /** Returns the longest prefix of this stream whose elements satisfy
   *  the predicate <code>p.
   *
   *  @param p the test predicate.
   */
  override def takeWhile(p: A => Boolean): Stream[A] =
    if (!isEmpty && p(head)) cons(head, tail takeWhile p) 
    else Stream.Empty

  /** Returns the longest suffix of this iterable whose first element
   *  does not satisfy the predicate <code>p.
   *
   *  @param p the test predicate.
   */
  override def dropWhile(p: A => Boolean): Stream[A] = {
    var these: Stream[A] = this
    while (!these.isEmpty && p(these.head)) these = these.tail
    these
  }

  /** Builds a new stream from this stream in which any duplicates (wrt to ==) removed.
   *  Among duplicate elements, only the first one is retained in the result stream
   */
  override def distinct: Stream[A] =
    if (isEmpty) this
    else cons(head, tail.filter(head !=).distinct)

  /** Returns a new sequence of given length containing the elements of this sequence followed by zero
   *  or more occurrences of given elements. 
   */
  override def padTo[B >: A, That](len: Int, elem: B)(implicit bf: CanBuildFrom[Stream[A], B, That]): That = {
    def loop(len: Int, these: Stream[A]): Stream[B] = 
      if (these.isEmpty) Stream.fill(len)(elem)
      else cons(these.head, loop(len - 1, these.tail))
    
    if (isStreamBuilder(bf)) asThat(loop(len, this))
    else super.padTo(len, elem)(bf)
  }

  /** A list consisting of all elements of this list in reverse order.
   */
  override def reverse: Stream[A] = {
    var result: Stream[A] = Stream.Empty
    var these = this
    while (!these.isEmpty) {
      val r = Stream.consWrapper(result).#::(these.head)
      r.tail // force it!
      result = r
      these = these.tail
    }
    result
  }

  override def flatten[B](implicit asTraversable: A => /*<: representation as ``Stream''.
   */
  override def stringPrefix = "Stream"

}
  
/** See #3273 and test case run/bug3273 for motivation. */
final class StreamIterator[+A](self: Stream[A]) extends Iterator[A] {
  // A call-by-need cell.
  class LazyCell(st: => Stream[A]) {
    lazy val v = st
  }
  
  private var these = new LazyCell(self)
  def hasNext: Boolean = these.v.nonEmpty
  def next: A =
    if (isEmpty) Iterator.empty.next
    else {
      val cur    = these.v
      val result = cur.head
      these = new LazyCell(cur.tail)
      result
    }
  override def toStream = {
    val result = these.v
    these = new LazyCell(Stream.empty)
    result
  }
  override def toList   = toStream.toList
}

/**
 * The object <code>Stream provides helper functions
 * to manipulate streams.
 *
 * @author Martin Odersky, Matthias Zenger
 * @version 1.1 08/08/03
 * @since   2.8
 */
object Stream extends SeqFactory[Stream] {
  
  /** The factory for streams.
   *  @note Methods such as map/flatMap will not invoke the Builder factory,
   *        but will return a new stream directly, to preserve laziness.
   *        The new stream is then cast to the factory's result type.
   *        This means that every CanBuildFrom that takes a
   *        Stream as its From type parameter must yield a stream as its result parameter.
   *        If that assumption is broken, cast errors might result.
   */
  class StreamCanBuildFrom[A] extends GenericCanBuildFrom[A]

  implicit def canBuildFrom[A]: CanBuildFrom[Coll, A, Stream[A]] = new StreamCanBuildFrom[A]
  
  /** Creates a new builder for a stream */
  def newBuilder[A]: Builder[A, Stream[A]] = new StreamBuilder[A]

  import scala.collection.{Iterable, Seq, IndexedSeq}

  /** A builder for streams
   *  @note This builder is lazy only in the sense that it does not go downs the spine
   *        of traversables that are added as a whole. If more laziness can be achieved,
   *        this builder should be bypassed.
   */
  class StreamBuilder[A] extends scala.collection.mutable.LazyBuilder[A, Stream[A]] {
    def result: Stream[A] = parts.toStream flatMap (_.toStream)
  }

  object Empty extends Stream[Nothing] { 
    override def isEmpty = true
    override def head = throw new NoSuchElementException("head of empty stream")
    override def tail = throw new UnsupportedOperationException("tail of empty stream")
    def tailDefined = false
  }

  /** The empty stream */
  override def empty[A]: Stream[A] = Empty

  /** A stream consisting of given elements */
  override def apply[A](xs: A*): Stream[A] = xs.toStream

  /** A wrapper class that adds `#::` for cons and `#:::` for concat as operations
   *  to streams.
   */
  class ConsWrapper[A](tl: => Stream[A]) {
    def #::(hd: A): Stream[A] = cons(hd, tl)
    def #:::(prefix: Stream[A]): Stream[A] = prefix append tl
  }

  /** A wrapper method that adds `#::` for cons and `#::: for concat as operations
   *  to streams.
   */
  implicit def consWrapper[A](stream: => Stream[A]): ConsWrapper[A] = 
    new ConsWrapper[A](stream)

  /** An extractor that allows to pattern match streams with `#::`.
   */
  object #:: {
    def unapply[A](xs: Stream[A]): Option[(A, Stream[A])] = 
      if (xs.isEmpty) None
      else Some((xs.head, xs.tail))
  }

  @deprecated("use #:: instead", "2.8.0")
  lazy val lazy_:: = #::

  /** An alternative way of building and matching Streams using Stream.cons(hd, tl).
   */
  object cons {

    /** A stream consisting of a given first element and remaining elements 
     *  @param hd   The first element of the result stream
     *  @param tl   The remaining elements of the result stream
     */
    def apply[A](hd: A, tl: => Stream[A]) = new Cons(hd, tl)

    /** Maps a stream to its head and tail */
    def unapply[A](xs: Stream[A]): Option[(A, Stream[A])] = #::.unapply(xs)
  }

  /** A lazy cons cell, from which streams are built. */
  @SerialVersionUID(-602202424901551803L)
  final class Cons[+A](hd: A, tl: => Stream[A]) extends Stream[A] with Serializable {
    override def isEmpty = false
    override def head = hd
    @volatile private[this] var tlVal: Stream[A] = _
    def tailDefined: Boolean = tlVal ne null
    override def tail: Stream[A] = {
      if (!tailDefined)
        synchronized {
          if (!tailDefined) tlVal = tl
        }
      
      tlVal 
    }
  }

  /** An infinite stream that repeatedly applies a given function to a start value.
   *
   *  @param start the start value of the stream
   *  @param f     the function that's repeatedly applied
   *  @return      the stream returning the infinite sequence of values `start, f(start), f(f(start)), ...`
   */
  def iterate[A](start: A)(f: A => A): Stream[A] = cons(start, iterate(f(start))(f))

  override def iterate[A](start: A, len: Int)(f: A => A): Stream[A] =
    iterate(start)(f) take len

  /**
   * Create an infinite stream starting at <code>start
   * and incrementing by step <code>step
   *
   * @param start the start value of the stream
   * @param step the increment value of the stream
   * @return the stream starting at value <code>start.
   */
  def from(start: Int, step: Int): Stream[Int] =
    cons(start, from(start+step, step))

  /**
   * Create an infinite stream starting at <code>start
   * and incrementing by 1.
   *
   * @param start the start value of the stream
   * @return the stream starting at value <code>start.
   */
  def from(start: Int): Stream[Int] = from(start, 1)

  /**
   * Create an infinite stream containing the given element expression (which is computed for each
   * occurrence)
   *
   * @param elem the element composing the resulting stream
   * @return the stream containing an infinite number of elem
   */
  def continually[A](elem: => A): Stream[A] = cons(elem, continually(elem))

  override def fill[A](n: Int)(elem: => A): Stream[A] = 
    if (n <= 0) Empty else cons(elem, fill(n-1)(elem))

  override def tabulate[A](n: Int)(f: Int => A): Stream[A] = {
    def loop(i: Int): Stream[A] =
      if (i >= n) Empty else cons(f(i), loop(i+1))
    loop(0)
  }

  override def range[T: Integral](start: T, end: T, step: T): Stream[T] = {
    val num = implicitly[Integral[T]]
    import num._
    
    if (if (step < zero) start <= end else end <= start) Empty
    else cons(start, range(start + step, end, step))
  }

  private[immutable] def filteredTail[A](stream: Stream[A], p: A => Boolean) = {
    cons(stream.head, stream.tail filter p)
  }
  
  private[immutable] def collectedTail[A, B, That](stream: Stream[A], pf: PartialFunction[A, B], bf: CanBuildFrom[Stream[A], B, That]) = {
    cons(pf(stream.head), stream.tail.collect(pf)(bf).asInstanceOf[Stream[B]])
  }
  
  /** A stream containing all elements of a given iterator, in the order they are produced.
   *  @param it   The iterator producing the stream's elements
   */
  @deprecated("use it.toStream instead", "2.8.0")
  def fromIterator[A](it: Iterator[A]): Stream[A] = it.toStream

  /** The concatenation of a sequence of streams
   */
  @deprecated("use xs.flatten instead", "2.8.0")
  def concat[A](xs: Iterable[Stream[A]]): Stream[A] = concat(xs.iterator)
  
  /** The concatenation of all streams returned by an iterator
   */
  @deprecated("use xs.toStream.flatten instead", "2.8.0")
  def concat[A](xs: Iterator[Stream[A]]): Stream[A] = xs.toStream.flatten //(conforms[Stream[A], scala.collection.Traversable[A]])

  /**
   * Create a stream with element values
   * <code>vn+1 = step(vn)
   * where <code>v0 = start
   * and elements are in the range between <code>start (inclusive)
   * and <code>end (exclusive)
   * @param start the start value of the stream
   * @param end the end value of the stream
   * @param step the increment function of the stream, must be monotonically increasing or decreasing
   * @return the stream starting at value <code>start.
   */
  @deprecated("use `iterate' instead.", "2.8.0")
  def range(start: Int, end: Int, step: Int => Int): Stream[Int] =
    iterate(start, end - start)(step)

  /**
   * Create an infinite stream containing the given element.
   *
   * @param elem the element composing the resulting stream
   * @return the stream containing an infinite number of elem
   */
  @deprecated("use `continually' instead", "2.8.0")
  def const[A](elem: A): Stream[A] = cons(elem, const(elem))

  /** Create a stream containing several copies of an element.
   *
   *  @param n    the length of the resulting stream
   *  @param elem the element composing the resulting stream
   *  @return     the stream composed of n elements all equal to elem
   */
  @deprecated("use fill(n, elem) instead", "2.8.0")
  def make[A](n: Int, elem: A): Stream[A] = fill(n)(elem)
}


Other Scala examples (source code examples)

Here is a short list of links related to this Scala Stream.scala source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.