alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  
* <th align="right">Blocksize * <th align="right">Compression
memory usage * <th align="right">Decompression
memory usage * </tr> * <td align="right">100k * <td align="right">1300k * <td align="right"> 565k * </tr> * <td align="right">200k * <td align="right">2200k * <td align="right">1065k * </tr> * <td align="right">300k * <td align="right">3100k * <td align="right">1565k * </tr> * <td align="right">400k * <td align="right">4000k * <td align="right">2065k * </tr> * <td align="right">500k * <td align="right">4900k * <td align="right">2565k * </tr> * <td align="right">600k * <td align="right">5800k * <td align="right">3065k * </tr> * <td align="right">700k * <td align="right">6700k * <td align="right">3565k * </tr> * <td align="right">800k * <td align="right">7600k * <td align="right">4065k * </tr> * <td align="right">900k * <td align="right">8500k * <td align="right">4565k * </tr> * </table> * * <p>For decompression CBZip2InputStream allocates less * memory if the bzipped input is smaller than one block.</p> * * <p>Instances of this class are not threadsafe.

* * <p> * TODO: Update to BZip2 1.0.1 * </p> * */ public class CBZip2OutputStream extends OutputStream implements BZip2Constants { /** * The minimum supported blocksize <tt> == 1. */ public static final int MIN_BLOCKSIZE = 1; /** * The maximum supported blocksize <tt> == 9. */ public static final int MAX_BLOCKSIZE = 9; /** * This constant is accessible by subclasses for historical purposes. * If you don't know what it means then you don't need it. */ protected static final int SETMASK = (1 << 21); /** * This constant is accessible by subclasses for historical purposes. * If you don't know what it means then you don't need it. */ protected static final int CLEARMASK = (~SETMASK); /** * This constant is accessible by subclasses for historical purposes. * If you don't know what it means then you don't need it. */ protected static final int GREATER_ICOST = 15; /** * This constant is accessible by subclasses for historical purposes. * If you don't know what it means then you don't need it. */ protected static final int LESSER_ICOST = 0; /** * This constant is accessible by subclasses for historical purposes. * If you don't know what it means then you don't need it. */ protected static final int SMALL_THRESH = 20; /** * This constant is accessible by subclasses for historical purposes. * If you don't know what it means then you don't need it. */ protected static final int DEPTH_THRESH = 10; /** * This constant is accessible by subclasses for historical purposes. * If you don't know what it means then you don't need it. */ protected static final int WORK_FACTOR = 30; /** * This constant is accessible by subclasses for historical purposes. * If you don't know what it means then you don't need it. * <p> If you are ever unlucky/improbable enough to get a stack overflow whilst sorting, increase the following constant and try again. In practice I have never seen the stack go above 27 elems, so the following limit seems very generous. * </p> */ protected static final int QSORT_STACK_SIZE = 1000; /** * Knuth's increments seem to work better than Incerpi-Sedgewick * here. Possibly because the number of elems to sort is usually * small, typically <= 20. */ private static final int[] INCS = { 1, 4, 13, 40, 121, 364, 1093, 3280, 9841, 29524, 88573, 265720, 797161, 2391484 }; /** * This method is accessible by subclasses for historical purposes. * If you don't know what it does then you don't need it. */ protected static void hbMakeCodeLengths(char[] len, int[] freq, int alphaSize, int maxLen) { /* Nodes and heap entries run from 1. Entry 0 for both the heap and nodes is a sentinel. */ final int[] heap = new int[MAX_ALPHA_SIZE * 2]; final int[] weight = new int[MAX_ALPHA_SIZE * 2]; final int[] parent = new int[MAX_ALPHA_SIZE * 2]; for (int i = alphaSize; --i >= 0;) { weight[i + 1] = (freq[i] == 0 ? 1 : freq[i]) << 8; } for (boolean tooLong = true; tooLong;) { tooLong = false; int nNodes = alphaSize; int nHeap = 0; heap[0] = 0; weight[0] = 0; parent[0] = -2; for (int i = 1; i <= alphaSize; i++) { parent[i] = -1; nHeap++; heap[nHeap] = i; int zz = nHeap; int tmp = heap[zz]; while (weight[tmp] < weight[heap[zz >> 1]]) { heap[zz] = heap[zz >> 1]; zz >>= 1; } heap[zz] = tmp; } // assert (nHeap < (MAX_ALPHA_SIZE + 2)) : nHeap; while (nHeap > 1) { int n1 = heap[1]; heap[1] = heap[nHeap]; nHeap--; int yy = 0; int zz = 1; int tmp = heap[1]; while (true) { yy = zz << 1; if (yy > nHeap) { break; } if ((yy < nHeap) && (weight[heap[yy + 1]] < weight[heap[yy]])) { yy++; } if (weight[tmp] < weight[heap[yy]]) { break; } heap[zz] = heap[yy]; zz = yy; } heap[zz] = tmp; int n2 = heap[1]; heap[1] = heap[nHeap]; nHeap--; yy = 0; zz = 1; tmp = heap[1]; while (true) { yy = zz << 1; if (yy > nHeap) { break; } if ((yy < nHeap) && (weight[heap[yy + 1]] < weight[heap[yy]])) { yy++; } if (weight[tmp] < weight[heap[yy]]) { break; } heap[zz] = heap[yy]; zz = yy; } heap[zz] = tmp; nNodes++; parent[n1] = parent[n2] = nNodes; final int weight_n1 = weight[n1]; final int weight_n2 = weight[n2]; weight[nNodes] = (((weight_n1 & 0xffffff00) + (weight_n2 & 0xffffff00)) | (1 + (((weight_n1 & 0x000000ff) > (weight_n2 & 0x000000ff)) ? (weight_n1 & 0x000000ff) : (weight_n2 & 0x000000ff)))); parent[nNodes] = -1; nHeap++; heap[nHeap] = nNodes; tmp = 0; zz = nHeap; tmp = heap[zz]; final int weight_tmp = weight[tmp]; while (weight_tmp < weight[heap[zz >> 1]]) { heap[zz] = heap[zz >> 1]; zz >>= 1; } heap[zz] = tmp; } // assert (nNodes < (MAX_ALPHA_SIZE * 2)) : nNodes; for (int i = 1; i <= alphaSize; i++) { int j = 0; int k = i; for (int parent_k; (parent_k = parent[k]) >= 0;) { k = parent_k; j++; } len[i - 1] = (char) j; if (j > maxLen) { tooLong = true; } } if (tooLong) { for (int i = 1; i < alphaSize; i++) { int j = weight[i] >> 8; j = 1 + (j >> 1); weight[i] = j << 8; } } } } private static void hbMakeCodeLengths(final byte[] len, final int[] freq, final Data dat, final int alphaSize, final int maxLen) { /* Nodes and heap entries run from 1. Entry 0 for both the heap and nodes is a sentinel. */ final int[] heap = dat.heap; final int[] weight = dat.weight; final int[] parent = dat.parent; for (int i = alphaSize; --i >= 0;) { weight[i + 1] = (freq[i] == 0 ? 1 : freq[i]) << 8; } for (boolean tooLong = true; tooLong;) { tooLong = false; int nNodes = alphaSize; int nHeap = 0; heap[0] = 0; weight[0] = 0; parent[0] = -2; for (int i = 1; i <= alphaSize; i++) { parent[i] = -1; nHeap++; heap[nHeap] = i; int zz = nHeap; int tmp = heap[zz]; while (weight[tmp] < weight[heap[zz >> 1]]) { heap[zz] = heap[zz >> 1]; zz >>= 1; } heap[zz] = tmp; } while (nHeap > 1) { int n1 = heap[1]; heap[1] = heap[nHeap]; nHeap--; int yy = 0; int zz = 1; int tmp = heap[1]; while (true) { yy = zz << 1; if (yy > nHeap) { break; } if ((yy < nHeap) && (weight[heap[yy + 1]] < weight[heap[yy]])) { yy++; } if (weight[tmp] < weight[heap[yy]]) { break; } heap[zz] = heap[yy]; zz = yy; } heap[zz] = tmp; int n2 = heap[1]; heap[1] = heap[nHeap]; nHeap--; yy = 0; zz = 1; tmp = heap[1]; while (true) { yy = zz << 1; if (yy > nHeap) { break; } if ((yy < nHeap) && (weight[heap[yy + 1]] < weight[heap[yy]])) { yy++; } if (weight[tmp] < weight[heap[yy]]) { break; } heap[zz] = heap[yy]; zz = yy; } heap[zz] = tmp; nNodes++; parent[n1] = parent[n2] = nNodes; final int weight_n1 = weight[n1]; final int weight_n2 = weight[n2]; weight[nNodes] = ((weight_n1 & 0xffffff00) + (weight_n2 & 0xffffff00)) | (1 + (((weight_n1 & 0x000000ff) > (weight_n2 & 0x000000ff)) ? (weight_n1 & 0x000000ff) : (weight_n2 & 0x000000ff))); parent[nNodes] = -1; nHeap++; heap[nHeap] = nNodes; tmp = 0; zz = nHeap; tmp = heap[zz]; final int weight_tmp = weight[tmp]; while (weight_tmp < weight[heap[zz >> 1]]) { heap[zz] = heap[zz >> 1]; zz >>= 1; } heap[zz] = tmp; } for (int i = 1; i <= alphaSize; i++) { int j = 0; int k = i; for (int parent_k; (parent_k = parent[k]) >= 0;) { k = parent_k; j++; } len[i - 1] = (byte) j; if (j > maxLen) { tooLong = true; } } if (tooLong) { for (int i = 1; i < alphaSize; i++) { int j = weight[i] >> 8; j = 1 + (j >> 1); weight[i] = j << 8; } } } } /** Index of the last char in the block, so the block size == last + 1. */ private int last; /** * Index in fmap[] of original string after sorting. */ private int origPtr; /** Always: in the range 0 .. 9. The current block size is 100000 * this number. */ private final int blockSize100k; private boolean blockRandomised; private int bsBuff; private int bsLive; private final CRC crc = new CRC(); private int nInUse; private int nMTF; /* * Used when sorting. If too many long comparisons * happen, we stop sorting, randomise the block * slightly, and try again. */ private int workDone; private int workLimit; private boolean firstAttempt; private int currentChar = -1; private int runLength = 0; private int blockCRC; private int combinedCRC; private int allowableBlockSize; /** * All memory intensive stuff. */ private CBZip2OutputStream.Data data; private OutputStream out; /** * Chooses a blocksize based on the given length of the data to compress. * * @return * The blocksize, between {@link #MIN_BLOCKSIZE} and {@link #MAX_BLOCKSIZE} * both inclusive. For a negative <tt>inputLength this method returns * <tt>MAX_BLOCKSIZE always. * * @param inputLength * The length of the data which will be compressed by * <tt>CBZip2OutputStream. */ public static int chooseBlockSize(long inputLength) { return (inputLength > 0) ? (int) Math.min((inputLength / 132000) + 1, 9) : MAX_BLOCKSIZE; } /** * Constructs a new <tt>CBZip2OutputStream with a blocksize of 900k. * * <p>Attention: The caller is resonsible to write the two * BZip2 magic bytes <tt>"BZ" to the specified stream prior * to calling this constructor.</p> * * @param out * the destination stream. * * @throws IOException * if an I/O error occurs in the specified stream. * @throws NullPointerException * if <code>out == null. */ public CBZip2OutputStream(final OutputStream out) throws IOException { this(out, MAX_BLOCKSIZE); } /** * Constructs a new <tt>CBZip2OutputStream with specified blocksize. * * <p>Attention: The caller is resonsible to write the two * BZip2 magic bytes <tt>"BZ" to the specified stream prior * to calling this constructor.</p> * * * @param out * the destination stream. * @param blockSize * the blockSize as 100k units. * * @throws IOException * if an I/O error occurs in the specified stream. * @throws IllegalArgumentException * if <code>(blockSize < 1) || (blockSize > 9). * @throws NullPointerException * if <code>out == null. * * @see #MIN_BLOCKSIZE * @see #MAX_BLOCKSIZE */ public CBZip2OutputStream(final OutputStream out, final int blockSize) throws IOException { super(); if (blockSize < 1) { throw new IllegalArgumentException("blockSize(" + blockSize + ") < 1"); } if (blockSize > 9) { throw new IllegalArgumentException("blockSize(" + blockSize + ") > 9"); } this.blockSize100k = blockSize; this.out = out; init(); } public void write(final int b) throws IOException { if (this.out != null) { write0(b); } else { throw new IOException("closed"); } } private void writeRun() throws IOException { final int lastShadow = this.last; if (lastShadow < this.allowableBlockSize) { final int currentCharShadow = this.currentChar; final Data dataShadow = this.data; dataShadow.inUse[currentCharShadow] = true; final byte ch = (byte) currentCharShadow; int runLengthShadow = this.runLength; this.crc.updateCRC(currentCharShadow, runLengthShadow); switch (runLengthShadow) { case 1: dataShadow.block[lastShadow + 2] = ch; this.last = lastShadow + 1; break; case 2: dataShadow.block[lastShadow + 2] = ch; dataShadow.block[lastShadow + 3] = ch; this.last = lastShadow + 2; break; case 3: { final byte[] block = dataShadow.block; block[lastShadow + 2] = ch; block[lastShadow + 3] = ch; block[lastShadow + 4] = ch; this.last = lastShadow + 3; } break; default: { runLengthShadow -= 4; dataShadow.inUse[runLengthShadow] = true; final byte[] block = dataShadow.block; block[lastShadow + 2] = ch; block[lastShadow + 3] = ch; block[lastShadow + 4] = ch; block[lastShadow + 5] = ch; block[lastShadow + 6] = (byte) runLengthShadow; this.last = lastShadow + 5; } break; } } else { endBlock(); initBlock(); writeRun(); } } /** * Overriden to close the stream. */ protected void finalize() throws Throwable { close(); super.finalize(); } public void close() throws IOException { OutputStream outShadow = this.out; if (outShadow != null) { try { if (this.runLength > 0) { writeRun(); } this.currentChar = -1; endBlock(); endCompression(); outShadow.close(); } finally { this.out = null; this.data = null; } } } public void flush() throws IOException { OutputStream outShadow = this.out; if (outShadow != null) { outShadow.flush(); } } private void init() throws IOException { // write magic: done by caller who created this stream //this.out.write('B'); //this.out.write('Z'); this.data = new Data(this.blockSize100k); /* Write `magic' bytes h indicating file-format == huffmanised, followed by a digit indicating blockSize100k. */ bsPutUByte('h'); bsPutUByte('0' + this.blockSize100k); this.combinedCRC = 0; initBlock(); } private void initBlock() { // blockNo++; this.crc.initialiseCRC(); this.last = -1; // ch = 0; boolean[] inUse = this.data.inUse; for (int i = 256; --i >= 0;) { inUse[i] = false; } /* 20 is just a paranoia constant */ this.allowableBlockSize = (this.blockSize100k * BZip2Constants.baseBlockSize) - 20; } private void endBlock() throws IOException { this.blockCRC = this.crc.getFinalCRC(); this.combinedCRC = (this.combinedCRC << 1) | (this.combinedCRC >>> 31); this.combinedCRC ^= this.blockCRC; // empty block at end of file if (this.last == -1) { return; } /* sort the block and establish posn of original string */ blockSort(); /* A 6-byte block header, the value chosen arbitrarily as 0x314159265359 :-). A 32 bit value does not really give a strong enough guarantee that the value will not appear by chance in the compressed datastream. Worst-case probability of this event, for a 900k block, is about 2.0e-3 for 32 bits, 1.0e-5 for 40 bits and 4.0e-8 for 48 bits. For a compressed file of size 100Gb -- about 100000 blocks -- only a 48-bit marker will do. NB: normal compression/ decompression do *not* rely on these statistical properties. They are only important when trying to recover blocks from damaged files. */ bsPutUByte(0x31); bsPutUByte(0x41); bsPutUByte(0x59); bsPutUByte(0x26); bsPutUByte(0x53); bsPutUByte(0x59); /* Now the block's CRC, so it is in a known place. */ bsPutInt(this.blockCRC); /* Now a single bit indicating randomisation. */ if (this.blockRandomised) { bsW(1, 1); } else { bsW(1, 0); } /* Finally, block's contents proper. */ moveToFrontCodeAndSend(); } private void endCompression() throws IOException { /* Now another magic 48-bit number, 0x177245385090, to indicate the end of the last block. (sqrt(pi), if you want to know. I did want to use e, but it contains too much repetition -- 27 18 28 18 28 46 -- for me to feel statistically comfortable. Call me paranoid.) */ bsPutUByte(0x17); bsPutUByte(0x72); bsPutUByte(0x45); bsPutUByte(0x38); bsPutUByte(0x50); bsPutUByte(0x90); bsPutInt(this.combinedCRC); bsFinishedWithStream(); } /** * Returns the blocksize parameter specified at construction time. */ public final int getBlockSize() { return this.blockSize100k; } public void write(final byte[] buf, int offs, final int len) throws IOException { if (offs < 0) { throw new IndexOutOfBoundsException("offs(" + offs + ") < 0."); } if (len < 0) { throw new IndexOutOfBoundsException("len(" + len + ") < 0."); } if (offs + len > buf.length) { throw new IndexOutOfBoundsException("offs(" + offs + ") + len(" + len + ") > buf.length(" + buf.length + ")."); } if (this.out == null) { throw new IOException("stream closed"); } for (int hi = offs + len; offs < hi;) { write0(buf[offs++]); } } private void write0(int b) throws IOException { if (this.currentChar != -1) { b &= 0xff; if (this.currentChar == b) { if (++this.runLength > 254) { writeRun(); this.currentChar = -1; this.runLength = 0; } // else nothing to do } else { writeRun(); this.runLength = 1; this.currentChar = b; } } else { this.currentChar = b & 0xff; this.runLength++; } } private static void hbAssignCodes(final int[] code, final byte[] length, final int minLen, final int maxLen, final int alphaSize) { int vec = 0; for (int n = minLen; n <= maxLen; n++) { for (int i = 0; i < alphaSize; i++) { if ((length[i] & 0xff) == n) { code[i] = vec; vec++; } } vec <<= 1; } } private void bsFinishedWithStream() throws IOException { while (this.bsLive > 0) { int ch = this.bsBuff >> 24; this.out.write(ch); // write 8-bit this.bsBuff <<= 8; this.bsLive -= 8; } } private void bsW(final int n, final int v) throws IOException { final OutputStream outShadow = this.out; int bsLiveShadow = this.bsLive; int bsBuffShadow = this.bsBuff; while (bsLiveShadow >= 8) { outShadow.write(bsBuffShadow >> 24); // write 8-bit bsBuffShadow <<= 8; bsLiveShadow -= 8; } this.bsBuff = bsBuffShadow | (v << (32 - bsLiveShadow - n)); this.bsLive = bsLiveShadow + n; } private void bsPutUByte(final int c) throws IOException { bsW(8, c); } private void bsPutInt(final int u) throws IOException { bsW(8, (u >> 24) & 0xff); bsW(8, (u >> 16) & 0xff); bsW(8, (u >> 8) & 0xff); bsW(8, u & 0xff); } private void sendMTFValues() throws IOException { final byte[][] len = this.data.sendMTFValues_len; final int alphaSize = this.nInUse + 2; for (int t = N_GROUPS; --t >= 0;) { byte[] len_t = len[t]; for (int v = alphaSize; --v >= 0;) { len_t[v] = GREATER_ICOST; } } /* Decide how many coding tables to use */ // assert (this.nMTF > 0) : this.nMTF; final int nGroups = (this.nMTF < 200) ? 2 : (this.nMTF < 600) ? 3 : (this.nMTF < 1200) ? 4 : (this.nMTF < 2400) ? 5 : 6; /* Generate an initial set of coding tables */ sendMTFValues0(nGroups, alphaSize); /* Iterate up to N_ITERS times to improve the tables. */ final int nSelectors = sendMTFValues1(nGroups, alphaSize); /* Compute MTF values for the selectors. */ sendMTFValues2(nGroups, nSelectors); /* Assign actual codes for the tables. */ sendMTFValues3(nGroups, alphaSize); /* Transmit the mapping table. */ sendMTFValues4(); /* Now the selectors. */ sendMTFValues5(nGroups, nSelectors); /* Now the coding tables. */ sendMTFValues6(nGroups, alphaSize); /* And finally, the block data proper */ sendMTFValues7(nSelectors); } private void sendMTFValues0(final int nGroups, final int alphaSize) { final byte[][] len = this.data.sendMTFValues_len; final int[] mtfFreq = this.data.mtfFreq; int remF = this.nMTF; int gs = 0; for (int nPart = nGroups; nPart > 0; nPart--) { final int tFreq = remF / nPart; int ge = gs - 1; int aFreq = 0; for (final int a = alphaSize - 1; (aFreq < tFreq) && (ge < a);) { aFreq += mtfFreq[++ge]; } if ((ge > gs) && (nPart != nGroups) && (nPart != 1) && (((nGroups - nPart) & 1) != 0)) { aFreq -= mtfFreq[ge--]; } final byte[] len_np = len[nPart - 1]; for (int v = alphaSize; --v >= 0;) { if ((v >= gs) && (v <= ge)) { len_np[v] = LESSER_ICOST; } else { len_np[v] = GREATER_ICOST; } } gs = ge + 1; remF -= aFreq; } } private int sendMTFValues1(final int nGroups, final int alphaSize) { final Data dataShadow = this.data; final int[][] rfreq = dataShadow.sendMTFValues_rfreq; final int[] fave = dataShadow.sendMTFValues_fave; final short[] cost = dataShadow.sendMTFValues_cost; final char[] sfmap = dataShadow.sfmap; final byte[] selector = dataShadow.selector; final byte[][] len = dataShadow.sendMTFValues_len; final byte[] len_0 = len[0]; final byte[] len_1 = len[1]; final byte[] len_2 = len[2]; final byte[] len_3 = len[3]; final byte[] len_4 = len[4]; final byte[] len_5 = len[5]; final int nMTFShadow = this.nMTF; int nSelectors = 0; for (int iter = 0; iter < N_ITERS; iter++) { for (int t = nGroups; --t >= 0;) { fave[t] = 0; int[] rfreqt = rfreq[t]; for (int i = alphaSize; --i >= 0;) { rfreqt[i] = 0; } } nSelectors = 0; for (int gs = 0; gs < this.nMTF;) { /* Set group start & end marks. */ /* Calculate the cost of this group as coded by each of the coding tables. */ final int ge = Math.min(gs + G_SIZE - 1, nMTFShadow - 1); if (nGroups == N_GROUPS) { // unrolled version of the else-block short cost0 = 0; short cost1 = 0; short cost2 = 0; short cost3 = 0; short cost4 = 0; short cost5 = 0; for (int i = gs; i <= ge; i++) { final int icv = sfmap[i]; cost0 += len_0[icv] & 0xff; cost1 += len_1[icv] & 0xff; cost2 += len_2[icv] & 0xff; cost3 += len_3[icv] & 0xff; cost4 += len_4[icv] & 0xff; cost5 += len_5[icv] & 0xff; } cost[0] = cost0; cost[1] = cost1; cost[2] = cost2; cost[3] = cost3; cost[4] = cost4; cost[5] = cost5; } else { for (int t = nGroups; --t >= 0;) { cost[t] = 0; } for (int i = gs; i <= ge; i++) { final int icv = sfmap[i]; for (int t = nGroups; --t >= 0;) { cost[t] += len[t][icv] & 0xff; } } } /* Find the coding table which is best for this group, and record its identity in the selector table. */ int bt = -1; for (int t = nGroups, bc = 999999999; --t >= 0;) { final int cost_t = cost[t]; if (cost_t < bc) { bc = cost_t; bt = t; } } fave[bt]++; selector[nSelectors] = (byte) bt; nSelectors++; /* Increment the symbol frequencies for the selected table. */ final int[] rfreq_bt = rfreq[bt]; for (int i = gs; i <= ge; i++) { rfreq_bt[sfmap[i]]++; } gs = ge + 1; } /* Recompute the tables based on the accumulated frequencies. */ for (int t = 0; t < nGroups; t++) { hbMakeCodeLengths(len[t], rfreq[t], this.data, alphaSize, 20); } } return nSelectors; } private void sendMTFValues2(final int nGroups, final int nSelectors) { // assert (nGroups < 8) : nGroups; final Data dataShadow = this.data; byte[] pos = dataShadow.sendMTFValues2_pos; for (int i = nGroups; --i >= 0;) { pos[i] = (byte) i; } for (int i = 0; i < nSelectors; i++) { final byte ll_i = dataShadow.selector[i]; byte tmp = pos[0]; int j = 0; while (ll_i != tmp) { j++; byte tmp2 = tmp; tmp = pos[j]; pos[j] = tmp2; } pos[0] = tmp; dataShadow.selectorMtf[i] = (byte) j; } } private void sendMTFValues3(final int nGroups, final int alphaSize) { int[][] code = this.data.sendMTFValues_code; byte[][] len = this.data.sendMTFValues_len; for (int t = 0; t < nGroups; t++) { int minLen = 32; int maxLen = 0; final byte[] len_t = len[t]; for (int i = alphaSize; --i >= 0;) { final int l = len_t[i] & 0xff; if (l > maxLen) { maxLen = l; } if (l < minLen) { minLen = l; } } // assert (maxLen <= 20) : maxLen; // assert (minLen >= 1) : minLen; hbAssignCodes(code[t], len[t], minLen, maxLen, alphaSize); } } private void sendMTFValues4() throws IOException { final boolean[] inUse = this.data.inUse; final boolean[] inUse16 = this.data.sentMTFValues4_inUse16; for (int i = 16; --i >= 0;) { inUse16[i] = false; final int i16 = i * 16; for (int j = 16; --j >= 0;) { if (inUse[i16 + j]) { inUse16[i] = true; } } } for (int i = 0; i < 16; i++) { bsW(1, inUse16[i] ? 1 : 0); } final OutputStream outShadow = this.out; int bsLiveShadow = this.bsLive; int bsBuffShadow = this.bsBuff; for (int i = 0; i < 16; i++) { if (inUse16[i]) { final int i16 = i * 16; for (int j = 0; j < 16; j++) { // inlined: bsW(1, inUse[i16 + j] ? 1 : 0); while (bsLiveShadow >= 8) { outShadow.write(bsBuffShadow >> 24); // write 8-bit bsBuffShadow <<= 8; bsLiveShadow -= 8; } if (inUse[i16 + j]) { bsBuffShadow |= 1 << (32 - bsLiveShadow - 1); } bsLiveShadow++; } } } this.bsBuff = bsBuffShadow; this.bsLive = bsLiveShadow; } private void sendMTFValues5(final int nGroups, final int nSelectors) throws IOException { bsW(3, nGroups); bsW(15, nSelectors); final OutputStream outShadow = this.out; final byte[] selectorMtf = this.data.selectorMtf; int bsLiveShadow = this.bsLive; int bsBuffShadow = this.bsBuff; for (int i = 0; i < nSelectors; i++) { for (int j = 0, hj = selectorMtf[i] & 0xff; j < hj; j++) { // inlined: bsW(1, 1); while (bsLiveShadow >= 8) { outShadow.write(bsBuffShadow >> 24); bsBuffShadow <<= 8; bsLiveShadow -= 8; } bsBuffShadow |= 1 << (32 - bsLiveShadow - 1); bsLiveShadow++; } // inlined: bsW(1, 0); while (bsLiveShadow >= 8) { outShadow.write(bsBuffShadow >> 24); bsBuffShadow <<= 8; bsLiveShadow -= 8; } //bsBuffShadow |= 0 << (32 - bsLiveShadow - 1); bsLiveShadow++; } this.bsBuff = bsBuffShadow; this.bsLive = bsLiveShadow; } private void sendMTFValues6(final int nGroups, final int alphaSize) throws IOException { final byte[][] len = this.data.sendMTFValues_len; final OutputStream outShadow = this.out; int bsLiveShadow = this.bsLive; int bsBuffShadow = this.bsBuff; for (int t = 0; t < nGroups; t++) { byte[] len_t = len[t]; int curr = len_t[0] & 0xff; // inlined: bsW(5, curr); while (bsLiveShadow >= 8) { outShadow.write(bsBuffShadow >> 24); // write 8-bit bsBuffShadow <<= 8; bsLiveShadow -= 8; } bsBuffShadow |= curr << (32 - bsLiveShadow - 5); bsLiveShadow += 5; for (int i = 0; i < alphaSize; i++) { int lti = len_t[i] & 0xff; while (curr < lti) { // inlined: bsW(2, 2); while (bsLiveShadow >= 8) { outShadow.write(bsBuffShadow >> 24); // write 8-bit bsBuffShadow <<= 8; bsLiveShadow -= 8; } bsBuffShadow |= 2 << (32 - bsLiveShadow - 2); bsLiveShadow += 2; curr++; /* 10 */ } while (curr > lti) { // inlined: bsW(2, 3); while (bsLiveShadow >= 8) { outShadow.write(bsBuffShadow >> 24); // write 8-bit bsBuffShadow <<= 8; bsLiveShadow -= 8; } bsBuffShadow |= 3 << (32 - bsLiveShadow - 2); bsLiveShadow += 2; curr--; /* 11 */ } // inlined: bsW(1, 0); while (bsLiveShadow >= 8) { outShadow.write(bsBuffShadow >> 24); // write 8-bit bsBuffShadow <<= 8; bsLiveShadow -= 8; } // bsBuffShadow |= 0 << (32 - bsLiveShadow - 1); bsLiveShadow++; } } this.bsBuff = bsBuffShadow; this.bsLive = bsLiveShadow; } private void sendMTFValues7(final int nSelectors) throws IOException { final Data dataShadow = this.data; final byte[][] len = dataShadow.sendMTFValues_len; final int[][] code = dataShadow.sendMTFValues_code; final OutputStream outShadow = this.out; final byte[] selector = dataShadow.selector; final char[] sfmap = dataShadow.sfmap; final int nMTFShadow = this.nMTF; int selCtr = 0; int bsLiveShadow = this.bsLive; int bsBuffShadow = this.bsBuff; for (int gs = 0; gs < nMTFShadow;) { final int ge = Math.min(gs + G_SIZE - 1, nMTFShadow - 1); final int selector_selCtr = selector[selCtr] & 0xff; final int[] code_selCtr = code[selector_selCtr]; final byte[] len_selCtr = len[selector_selCtr]; while (gs <= ge) { final int sfmap_i = sfmap[gs]; // // inlined: bsW(len_selCtr[sfmap_i] & 0xff, // code_selCtr[sfmap_i]); // while (bsLiveShadow >= 8) { outShadow.write(bsBuffShadow >> 24); bsBuffShadow <<= 8; bsLiveShadow -= 8; } final int n = len_selCtr[sfmap_i] & 0xFF; bsBuffShadow |= code_selCtr[sfmap_i] << (32 - bsLiveShadow - n); bsLiveShadow += n; gs++; } gs = ge + 1; selCtr++; } this.bsBuff = bsBuffShadow; this.bsLive = bsLiveShadow; } private void moveToFrontCodeAndSend() throws IOException { bsW(24, this.origPtr); generateMTFValues(); sendMTFValues(); } /** * This is the most hammered method of this class. * * <p>This is the version using unrolled loops. Normally I never * use such ones in Java code. The unrolling has shown a * noticable performance improvement on JRE 1.4.2 (Linux i586 / * HotSpot Client). Of course it depends on the JIT compiler of * the vm.</p> */ private boolean mainSimpleSort(final Data dataShadow, final int lo, final int hi, final int d) { final int bigN = hi - lo + 1; if (bigN < 2) { return this.firstAttempt && (this.workDone > this.workLimit); } int hp = 0; while (INCS[hp] < bigN) { hp++; } final int[] fmap = dataShadow.fmap; final char[] quadrant = dataShadow.quadrant; final byte[] block = dataShadow.block; final int lastShadow = this.last; final int lastPlus1 = lastShadow + 1; final boolean firstAttemptShadow = this.firstAttempt; final int workLimitShadow = this.workLimit; int workDoneShadow = this.workDone; // Following block contains unrolled code which could be shortened by // coding it in additional loops. HP: while (--hp >= 0) { final int h = INCS[hp]; final int mj = lo + h - 1; for (int i = lo + h; i <= hi;) { // copy for (int k = 3; (i <= hi) && (--k >= 0); i++) { final int v = fmap[i]; final int vd = v + d; int j = i; // for (int a; // (j > mj) && mainGtU((a = fmap[j - h]) + d, vd, // block, quadrant, lastShadow); // j -= h) { // fmap[j] = a; // } // // unrolled version: // start inline mainGTU boolean onceRunned = false; int a = 0; HAMMER: while (true) { if (onceRunned) { fmap[j] = a; if ((j -= h) <= mj) { break HAMMER; } } else { onceRunned = true; } a = fmap[j - h]; int i1 = a + d; int i2 = vd; // following could be done in a loop, but // unrolled it for performance: if (block[i1 + 1] == block[i2 + 1]) { if (block[i1 + 2] == block[i2 + 2]) { if (block[i1 + 3] == block[i2 + 3]) { if (block[i1 + 4] == block[i2 + 4]) { if (block[i1 + 5] == block[i2 + 5]) { if (block[(i1 += 6)] == block[(i2 += 6)]) { int x = lastShadow; X: while (x > 0) { x -= 4; if (block[i1 + 1] == block[i2 + 1]) { if (quadrant[i1] == quadrant[i2]) { if (block[i1 + 2] == block[i2 + 2]) { if (quadrant[i1 + 1] == quadrant[i2 + 1]) { if (block[i1 + 3] == block[i2 + 3]) { if (quadrant[i1 + 2] == quadrant[i2 + 2]) { if (block[i1 + 4] == block[i2 + 4]) { if (quadrant[i1 + 3] == quadrant[i2 + 3]) { if ((i1 += 4) >= lastPlus1) { i1 -= lastPlus1; } if ((i2 += 4) >= lastPlus1) { i2 -= lastPlus1; } workDoneShadow++; continue X; } else if ((quadrant[i1 + 3] > quadrant[i2 + 3])) { continue HAMMER; } else { break HAMMER; } } else if ((block[i1 + 4] & 0xff) > (block[i2 + 4] & 0xff)) { continue HAMMER; } else { break HAMMER; } } else if ((quadrant[i1 + 2] > quadrant[i2 + 2])) { continue HAMMER; } else { break HAMMER; } } else if ((block[i1 + 3] & 0xff) > (block[i2 + 3] & 0xff)) { continue HAMMER; } else { break HAMMER; } } else if ((quadrant[i1 + 1] > quadrant[i2 + 1])) { continue HAMMER; } else { break HAMMER; } } else if ((block[i1 + 2] & 0xff) > (block[i2 + 2] & 0xff)) { continue HAMMER; } else { break HAMMER; } } else if ((quadrant[i1] > quadrant[i2])) { continue HAMMER; } else { break HAMMER; } } else if ((block[i1 + 1] & 0xff) > (block[i2 + 1] & 0xff)) { continue HAMMER; } else { break HAMMER; } } break HAMMER; } // while x > 0 else { if ((block[i1] & 0xff) > (block[i2] & 0xff)) { continue HAMMER; } else { break HAMMER; } } } else if ((block[i1 + 5] & 0xff) > (block[i2 + 5] & 0xff)) { continue HAMMER; } else { break HAMMER; } } else if ((block[i1 + 4] & 0xff) > (block[i2 + 4] & 0xff)) { continue HAMMER; } else { break HAMMER; } } else if ((block[i1 + 3] & 0xff) > (block[i2 + 3] & 0xff)) { continue HAMMER; } else { break HAMMER; } } else if ((block[i1 + 2] & 0xff) > (block[i2 + 2] & 0xff)) { continue HAMMER; } else { break HAMMER; } } else if ((block[i1 + 1] & 0xff) > (block[i2 + 1] & 0xff)) { continue HAMMER; } else { break HAMMER; } } // HAMMER // end inline mainGTU fmap[j] = v; } if (firstAttemptShadow && (i <= hi) && (workDoneShadow > workLimitShadow)) { break HP; } } } this.workDone = workDoneShadow; return firstAttemptShadow && (workDoneShadow > workLimitShadow); } private static void vswap(int[] fmap, int p1, int p2, int n) { n += p1; while (p1 < n) { int t = fmap[p1]; fmap[p1++] = fmap[p2]; fmap[p2++] = t; } } private static byte med3(byte a, byte b, byte c) { return (a < b) ? (b < c ? b : a < c ? c : a) : (b > c ? b : a > c ? c : a); } private void blockSort() { this.workLimit = WORK_FACTOR * this.last; this.workDone = 0; this.blockRandomised = false; this.firstAttempt = true; mainSort(); if (this.firstAttempt && (this.workDone > this.workLimit)) { randomiseBlock(); this.workLimit = this.workDone = 0; this.firstAttempt = false; mainSort(); } int[] fmap = this.data.fmap; this.origPtr = -1; for (int i = 0, lastShadow = this.last; i <= lastShadow; i++) { if (fmap[i] == 0) { this.origPtr = i; break; } } // assert (this.origPtr != -1) : this.origPtr; } /** * Method "mainQSort3", file "blocksort.c", BZip2 1.0.2 */ private void mainQSort3(final Data dataShadow, final int loSt, final int hiSt, final int dSt) { final int[] stack_ll = dataShadow.stack_ll; final int[] stack_hh = dataShadow.stack_hh; final int[] stack_dd = dataShadow.stack_dd; final int[] fmap = dataShadow.fmap; final byte[] block = dataShadow.block; stack_ll[0] = loSt; stack_hh[0] = hiSt; stack_dd[0] = dSt; for (int sp = 1; --sp >= 0;) { final int lo = stack_ll[sp]; final int hi = stack_hh[sp]; final int d = stack_dd[sp]; if ((hi - lo < SMALL_THRESH) || (d > DEPTH_THRESH)) { if (mainSimpleSort(dataShadow, lo, hi, d)) { return; } } else { final int d1 = d + 1; final int med = med3(block[fmap[lo] + d1], block[fmap[hi ] + d1], block[fmap[(lo + hi) >> 1] + d1]) & 0xff; int unLo = lo; int unHi = hi; int ltLo = lo; int gtHi = hi; while (true) { while (unLo <= unHi) { final int n = ((int) block[fmap[unLo] + d1] & 0xff) - med; if (n == 0) { final int temp = fmap[unLo]; fmap[unLo++] = fmap[ltLo]; fmap[ltLo++] = temp; } else if (n < 0) { unLo++; } else { break; } } while (unLo <= unHi) { final int n = ((int) block[fmap[unHi] + d1] & 0xff) - med; if (n == 0) { final int temp = fmap[unHi]; fmap[unHi--] = fmap[gtHi]; fmap[gtHi--] = temp; } else if (n > 0) { unHi--; } else { break; } } if (unLo <= unHi) { final int temp = fmap[unLo]; fmap[unLo++] = fmap[unHi]; fmap[unHi--] = temp; } else { break; } } if (gtHi < ltLo) { stack_ll[sp] = lo; stack_hh[sp] = hi; stack_dd[sp] = d1; sp++; } else { int n = ((ltLo - lo) < (unLo - ltLo)) ? (ltLo - lo) : (unLo - ltLo); vswap(fmap, lo, unLo - n, n); int m = ((hi - gtHi) < (gtHi - unHi)) ? (hi - gtHi) : (gtHi - unHi); vswap(fmap, unLo, hi - m + 1, m); n = lo + unLo - ltLo - 1; m = hi - (gtHi - unHi) + 1; stack_ll[sp] = lo; stack_hh[sp] = n; stack_dd[sp] = d; sp++; stack_ll[sp] = n + 1; stack_hh[sp] = m - 1; stack_dd[sp] = d1; sp++; stack_ll[sp] = m; stack_hh[sp] = hi; stack_dd[sp] = d; sp++; } } } } private void mainSort() { final Data dataShadow = this.data; final int[] runningOrder = dataShadow.mainSort_runningOrder; final int[] copy = dataShadow.mainSort_copy; final boolean[] bigDone = dataShadow.mainSort_bigDone; final int[] ftab = dataShadow.ftab; final byte[] block = dataShadow.block; final int[] fmap = dataShadow.fmap; final char[] quadrant = dataShadow.quadrant; final int lastShadow = this.last; final int workLimitShadow = this.workLimit; final boolean firstAttemptShadow = this.firstAttempt; // Set up the 2-byte frequency table for (int i = 65537; --i >= 0;) { ftab[i] = 0; } /* In the various block-sized structures, live data runs from 0 to last+NUM_OVERSHOOT_BYTES inclusive. First, set up the overshoot area for block. */ for (int i = 0; i < NUM_OVERSHOOT_BYTES; i++) { block[lastShadow + i + 2] = block[(i % (lastShadow + 1)) + 1]; } for (int i = lastShadow + NUM_OVERSHOOT_BYTES; --i >= 0;) { quadrant[i] = 0; } block[0] = block[lastShadow + 1]; // Complete the initial radix sort: int c1 = block[0] & 0xff; for (int i = 0; i <= lastShadow; i++) { final int c2 = block[i + 1] & 0xff; ftab[(c1 << 8) + c2]++; c1 = c2; } for (int i = 1; i <= 65536; i++) ftab[i] += ftab[i - 1]; c1 = block[1] & 0xff; for (int i = 0; i < lastShadow; i++) { final int c2 = block[i + 2] & 0xff; fmap[--ftab[(c1 << 8) + c2]] = i; c1 = c2; } fmap[--ftab[((block[lastShadow + 1] & 0xff) << 8) + (block[1] & 0xff)]] = lastShadow; /* Now ftab contains the first loc of every small bucket. Calculate the running order, from smallest to largest big bucket. */ for (int i = 256; --i >= 0;) { bigDone[i] = false; runningOrder[i] = i; } for (int h = 364; h != 1;) { h /= 3; for (int i = h; i <= 255; i++) { final int vv = runningOrder[i]; final int a = ftab[(vv + 1) << 8] - ftab[vv << 8]; final int b = h - 1; int j = i; for (int ro = runningOrder[j - h]; (ftab[(ro + 1) << 8] - ftab[ro << 8]) > a; ro = runningOrder[j - h]) { runningOrder[j] = ro; j -= h; if (j <= b) { break; } } runningOrder[j] = vv; } } /* The main sorting loop. */ for (int i = 0; i <= 255; i++) { /* Process big buckets, starting with the least full. */ final int ss = runningOrder[i]; // Step 1: /* Complete the big bucket [ss] by quicksorting any unsorted small buckets [ss, j]. Hopefully previous pointer-scanning phases have already completed many of the small buckets [ss, j], so we don't have to sort them at all. */ for (int j = 0; j <= 255; j++) { final int sb = (ss << 8) + j; final int ftab_sb = ftab[sb]; if ((ftab_sb & SETMASK) != SETMASK) { final int lo = ftab_sb & CLEARMASK; final int hi = (ftab[sb + 1] & CLEARMASK) - 1; if (hi > lo) { mainQSort3(dataShadow, lo, hi, 2); if (firstAttemptShadow && (this.workDone > workLimitShadow)) { return; } } ftab[sb] = ftab_sb | SETMASK; } } // Step 2: // Now scan this big bucket so as to synthesise the // sorted order for small buckets [t, ss] for all t != ss. for (int j = 0; j <= 255; j++) { copy[j] = ftab[(j << 8) + ss] & CLEARMASK; } for (int j = ftab[ss << 8] & CLEARMASK, hj = (ftab[(ss + 1) << 8] & CLEARMASK); j < hj; j++) { final int fmap_j = fmap[j]; c1 = block[fmap_j] & 0xff; if (!bigDone[c1]) { fmap[copy[c1]] = (fmap_j == 0) ? lastShadow : (fmap_j - 1); copy[c1]++; } } for (int j = 256; --j >= 0;) ftab[(j << 8) + ss] |= SETMASK; // Step 3: /* The ss big bucket is now done. Record this fact, and update the quadrant descriptors. Remember to update quadrants in the overshoot area too, if necessary. The "if (i < 255)" test merely skips this updating for the last bucket processed, since updating for the last bucket is pointless. */ bigDone[ss] = true; if (i < 255) { final int bbStart = ftab[ss << 8] & CLEARMASK; final int bbSize = (ftab[(ss + 1) << 8] & CLEARMASK) - bbStart; int shifts = 0; while ((bbSize >> shifts) > 65534) { shifts++; } for (int j = 0; j < bbSize; j++) { final int a2update = fmap[bbStart + j]; final char qVal = (char) (j >> shifts); quadrant[a2update] = qVal; if (a2update < NUM_OVERSHOOT_BYTES) { quadrant[a2update + lastShadow + 1] = qVal; } } } } } private void randomiseBlock() { final boolean[] inUse = this.data.inUse; final byte[] block = this.data.block; final int lastShadow = this.last; for (int i = 256; --i >= 0;) inUse[i] = false; int rNToGo = 0; int rTPos = 0; for (int i = 0, j = 1; i <= lastShadow; i = j, j++) { if (rNToGo == 0) { rNToGo = (char) BZip2Constants.rNums[rTPos]; if (++rTPos == 512) { rTPos = 0; } } rNToGo--; block[j] ^= ((rNToGo == 1) ? 1 : 0); // handle 16 bit signed numbers inUse[block[j] & 0xff] = true; } this.blockRandomised = true; } private void generateMTFValues() { final int lastShadow = this.last; final Data dataShadow = this.data; final boolean[] inUse = dataShadow.inUse; final byte[] block = dataShadow.block; final int[] fmap = dataShadow.fmap; final char[] sfmap = dataShadow.sfmap; final int[] mtfFreq = dataShadow.mtfFreq; final byte[] unseqToSeq = dataShadow.unseqToSeq; final byte[] yy = dataShadow.generateMTFValues_yy; // make maps int nInUseShadow = 0; for (int i = 0; i < 256; i++) { if (inUse[i]) { unseqToSeq[i] = (byte) nInUseShadow; nInUseShadow++; } } this.nInUse = nInUseShadow; final int eob = nInUseShadow + 1; for (int i = eob; i >= 0; i--) { mtfFreq[i] = 0; } for (int i = nInUseShadow; --i >= 0;) { yy[i] = (byte) i; } int wr = 0; int zPend = 0; for (int i = 0; i <= lastShadow; i++) { final byte ll_i = unseqToSeq[block[fmap[i]] & 0xff]; byte tmp = yy[0]; int j = 0; while (ll_i != tmp) { j++; byte tmp2 = tmp; tmp = yy[j]; yy[j] = tmp2; } yy[0] = tmp; if (j == 0) { zPend++; } else { if (zPend > 0) { zPend--; while (true) { if ((zPend & 1) == 0) { sfmap[wr] = RUNA; wr++; mtfFreq[RUNA]++; } else { sfmap[wr] = RUNB; wr++; mtfFreq[RUNB]++; } if (zPend >= 2) { zPend = (zPend - 2) >> 1; } else { break; } } zPend = 0; } sfmap[wr] = (char) (j + 1); wr++; mtfFreq[j + 1]++; } } if (zPend > 0) { zPend--; while (true) { if ((zPend & 1) == 0) { sfmap[wr] = RUNA; wr++; mtfFreq[RUNA]++; } else { sfmap[wr] = RUNB; wr++; mtfFreq[RUNB]++; } if (zPend >= 2) { zPend = (zPend - 2) >> 1; } else { break; } } } sfmap[wr] = (char) eob; mtfFreq[eob]++; this.nMTF = wr + 1; } private static final class Data extends Object { // with blockSize 900k final boolean[] inUse = new boolean[256]; // 256 byte final byte[] unseqToSeq = new byte[256]; // 256 byte final int[] mtfFreq = new int[MAX_ALPHA_SIZE]; // 1032 byte final byte[] selector = new byte[MAX_SELECTORS]; // 18002 byte final byte[] selectorMtf = new byte[MAX_SELECTORS]; // 18002 byte final byte[] generateMTFValues_yy = new byte[256]; // 256 byte final byte[][] sendMTFValues_len = new byte[N_GROUPS][MAX_ALPHA_SIZE]; // 1548 byte final int[][] sendMTFValues_rfreq = new int[N_GROUPS][MAX_ALPHA_SIZE]; // 6192 byte final int[] sendMTFValues_fave = new int[N_GROUPS]; // 24 byte final short[] sendMTFValues_cost = new short[N_GROUPS]; // 12 byte final int[][] sendMTFValues_code = new int[N_GROUPS][MAX_ALPHA_SIZE]; // 6192 byte final byte[] sendMTFValues2_pos = new byte[N_GROUPS]; // 6 byte final boolean[] sentMTFValues4_inUse16 = new boolean[16]; // 16 byte final int[] stack_ll = new int[QSORT_STACK_SIZE]; // 4000 byte final int[] stack_hh = new int[QSORT_STACK_SIZE]; // 4000 byte final int[] stack_dd = new int[QSORT_STACK_SIZE]; // 4000 byte final int[] mainSort_runningOrder = new int[256]; // 1024 byte final int[] mainSort_copy = new int[256]; // 1024 byte final boolean[] mainSort_bigDone = new boolean[256]; // 256 byte final int[] heap = new int[MAX_ALPHA_SIZE + 2]; // 1040 byte final int[] weight = new int[MAX_ALPHA_SIZE * 2]; // 2064 byte final int[] parent = new int[MAX_ALPHA_SIZE * 2]; // 2064 byte final int[] ftab = new int[65537]; // 262148 byte // ------------ // 333408 byte final byte[] block; // 900021 byte final int[] fmap; // 3600000 byte final char[] sfmap; // 3600000 byte // ------------ // 8433529 byte // ============ /** * Array instance identical to sfmap, both are used only temporarily and indepently, * so we do not need to allocate additional memory. */ final char[] quadrant; Data(int blockSize100k) { super(); final int n = blockSize100k * BZip2Constants.baseBlockSize; this.block = new byte[(n + 1 + NUM_OVERSHOOT_BYTES)]; this.fmap = new int[n]; this.sfmap = new char[2 * n]; this.quadrant = this.sfmap; } } }

Other Ant examples (source code examples)

Here is a short list of links related to this Ant CBZip2OutputStream.java source code file:

Ant example source code file (CBZip2OutputStream.java)

This example Ant source code file (CBZip2OutputStream.java) is included in the DevDaily.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Java - Ant tags/keywords

clearmask, data, data, greater_icost, hammer, hammer, incs, io, ioexception, ioexception, max_blocksize, num_overshoot_bytes, outputstream, outputstream, setmask

The CBZip2OutputStream.java source code

/*
 *  Licensed to the Apache Software Foundation (ASF) under one or more
 *  contributor license agreements.  See the NOTICE file distributed with
 *  this work for additional information regarding copyright ownership.
 *  The ASF licenses this file to You under the Apache License, Version 2.0
 *  (the "License"); you may not use this file except in compliance with
 *  the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 */

/*
 * This package is based on the work done by Keiron Liddle, Aftex Software
 * <keiron@aftexsw.com> to whom the Ant project is very grateful for his
 * great code.
 */

package org.apache.tools.bzip2;

import java.io.OutputStream;
import java.io.IOException;

/**
 * An output stream that compresses into the BZip2 format (without the file
 * header chars) into another stream.

 * <p>The compression requires large amounts of memory. Thus you
 * should call the {@link #close() close()} method as soon as
 * possible, to force <tt>CBZip2OutputStream to release the
 * allocated memory.</p>
 *
 * <p>You can shrink the amount of allocated memory and maybe raise
 * the compression speed by choosing a lower blocksize, which in turn
 * may cause a lower compression ratio.  You can avoid unnecessary
 * memory allocation by avoiding using a blocksize which is bigger
 * than the size of the input. </p>
 *
 * <p>You can compute the memory usage for compressing by the
 * following formula:</p>
 * <pre>
 * <code>400k + (9 * blocksize).
 * </pre>
 * 
 * <p>To get the memory required for decompression by {@link
 * CBZip2InputStream CBZip2InputStream} use</p>
 * <pre>
 * <code>65k + (5 * blocksize).
 * </pre>
 *
 * <table width="100%" border="1">
 *  <colgroup>
 *    <col width="33%" />
 *    <col width="33%" />
 *    <col width="33%" />
 *  </colgroup>
 *  <tr>
 *    <th colspan="3">Memory usage by blocksize
 *  </tr>
... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.