|
Commons Math example source code file (MessagesResources_fr.java)
The Commons Math MessagesResources_fr.java source code/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.commons.math; import java.util.ListResourceBundle; /** * French localization message resources for the commons-math library. * @version $Revision: 927009 $ $Date: 2010-03-24 07:14:07 -0400 (Wed, 24 Mar 2010) $ * @since 1.2 */ public class MessagesResources_fr extends ListResourceBundle { /** Non-translated/translated messages arrays. */ private static final Object[][] CONTENTS = { // org.apache.commons.math.util.MathUtils { "must have n >= k for binomial coefficient (n,k), got n = {0}, k = {1}", "n doit \u00eatre sup\u00e9rieur ou \u00e9gal \u00e0 k " + "pour le coefficient du bin\u00f4me (n,k), or n = {0}, k = {1}" }, { "must have n >= 0 for binomial coefficient (n,k), got n = {0}", "n doit \u00eatre positif pour le coefficient du bin\u00f4me (n,k), or n = {0}" }, { "must have n >= 0 for n!, got n = {0}", "n doit \u00eatre positif pour le calcul de n!, or n = {0}" }, { "overflow: gcd({0}, {1}) is 2^31", "d\u00e9passement de capacit\u00e9 : le PGCD de {0} et {1} vaut 2^31" }, { "overflow: gcd({0}, {1}) is 2^63", "d\u00e9passement de capacit\u00e9 : le PGCD de {0} et {1} vaut 2^63" }, { "overflow: lcm({0}, {1}) is 2^31", "d\u00e9passement de capacit\u00e9 : le MCM de {0} et {1} vaut 2^31" }, { "overflow: lcm({0}, {1}) is 2^63", "d\u00e9passement de capacit\u00e9 : le MCM de {0} et {1} vaut 2^63" }, { "cannot raise an integral value to a negative power ({0}^{1})", "impossible d''\u00e9lever une valeur enti\u00e8re " + "\u00e0 une puissance n\u00e9gative ({0}^{1})" }, { "invalid rounding method {0}, valid methods: {1} ({2}), {3} ({4}), {5} ({6}), {7} ({8}), {9} ({10}), {11} ({12}), {13} ({14}), {15} ({16})", "m\u00e9thode d''arondi {0} invalide, m\u00e9thodes valides : {1} ({2}), {3} ({4}), {5} ({6}), {7} ({8}), {9} ({10}), {11} ({12}), {13} ({14}), {15} ({16})" }, { "Cannot normalize to an infinite value", "impossible de normaliser vers une valeur infinie" }, { "Cannot normalize to NaN", "impossible de normaliser vers NaN" }, { "Array contains an infinite element, {0} at index {1}", "le tableau contient l''\u00e9l\u00e9ment infini {0} \u00e0 l''index {1}" }, // org.apache.commons.math.FunctionEvaluationException { "evaluation failed for argument = {0}", "erreur d''\u00e9valuation pour l''argument {0}" }, // org.apache.commons.math.DuplicateSampleAbscissaException { "Abscissa {0} is duplicated at both indices {1} and {2}", "Abscisse {0} dupliqu\u00e9e aux indices {1} et {2}" }, // org.apache.commons.math.ConvergenceException { "Convergence failed", "\u00c9chec de convergence" }, // org.apache.commons.math.ArgumentOutsideDomainException { "Argument {0} outside domain [{1} ; {2}]", "Argument {0} hors du domaine [{1} ; {2}]" }, // org.apache.commons.math.MaxIterationsExceededException { "Maximal number of iterations ({0}) exceeded", "Nombre maximal d''it\u00e9rations ({0}) d\u00e9pass\u00e9" }, // org.apache.commons.math.MaxEvaluationsExceededException { "Maximal number of evaluations ({0}) exceeded", "Nombre maximal d''\u00e9valuations ({0}) d\u00e9pass\u00e9" }, // org.apache.commons.math.analysis.interpolation.SplineInterpolator // org.apache.commons.math.analysis.polynomials.PolynomialFunctionLagrangeForm // org.apache.commons.math.DimensionMismatchException // org.apache.commons.math.optimization.LeastSquaresConverter // org.apache.commons.math.optimization.direct.DirectSearchOptimizer // org.apache.commons.math.optimization.general.AbstractLeastSquaresOptimizer // org.apache.commons.math.ode.ContinuousOutputModel // org.apache.commons.math.random.UncorrelatedRandomVectorGenerator // org.apache.commons.math.stat.regression.AbstractMultipleLinearRegression // org.apache.commons.math.stat.inference.ChiSquareTestImpl // org.apache.commons.math.analysis.interpolation.MicrosphereInterpolatingFunction { "dimension mismatch {0} != {1}", "dimensions incompatibles {0} != {1}" }, // org.apache.commons.math.analysis.interpolation.MicrosphereInterpolatingFunction { "no data", "aucune donn\u00e9e" }, // org.apache.commons.math.analysis.interpolation.MicrosphereInterpolator { "brightness exponent should be positive or null, but got {0}", "l''exposant de brillance devrait \u00eatre positif ou null, or e = {0}" }, { "number of microsphere elements must be positive, but got {0}", "le nombre d''\u00e9l\u00e9ments de la microsph\u00e8re devrait \u00eatre positif, or n = {0}" }, // org.apache.commons.math.linear.decomposition.NotPositiveDefiniteMatrixException { "not positive definite matrix", "matrice non d\u00e9finie positive" }, // org.apache.commons.math.linear.decomposition.NotSymmetricMatrixException { "not symmetric matrix", "matrice non symm\u00e9trique" }, // org.apache.commons.math.fraction.FractionConversionException { "Unable to convert {0} to fraction after {1} iterations", "Impossible de convertir {0} en fraction apr\u00e8s {1} it\u00e9rations" }, { "Overflow trying to convert {0} to fraction ({1}/{2})", "D\u00e9passement de capacit\u00e9 lors de la conversion de {0} en fraction ({1}/{2})" }, // org.apache.commons.math.fraction.BigFraction { "numerator is null", "le num\u00e9rateur est null" }, { "denimonator is null", "le d\u00e9nominateur est null" }, { "denominator must be different from 0", "le d\u00e9nominateur doit \u00eatre diff\u00e9rent de 0" }, { "cannot convert NaN value", "les valeurs NaN ne peuvent \u00eatre converties" }, { "cannot convert infinite value", "les valeurs infinies ne peuvent \u00eatre converties" }, // org.apache.commons.math.fraction.AbstractFormat { "denominator format can not be null", "le format du d\u00e9nominateur ne doit pas \u00eatre nul" }, { "numerator format can not be null", "le format du num\u00e9rateur ne doit pas \u00eatre nul" }, // org.apache.commons.math.fraction.FractionFormat { "cannot convert given object to a fraction number: {0}", "impossible de convertir l''objet sous forme d''un nombre rationnel : {0}" }, // org.apache.commons.math.fraction.FractionFormat // org.apache.commons.math.fraction.BigFractionFormat { "unparseable fraction number: \"{0}\"", "\u00e9chec d''analyse du nombre rationnel \"{0}\"" }, { "cannot format given object as a fraction number", "impossible de formater l''objet sous forme d''un nombre rationnel" }, // org.apache.commons.math.fraction.ProperFractionFormat // org.apache.commons.math.fraction.ProperBigFractionFormat { "whole format can not be null", "le format complet ne doit pas \u00eatre nul" }, // org.apache.commons.math.analysis.solvers.UnivariateRealSolverUtils { "function is null", "la fonction est nulle" }, { "bad value for maximum iterations number: {0}", "valeur invalide pour le nombre maximal d''it\u00e9rations : {0}" }, { "invalid bracketing parameters: lower bound={0}, initial={1}, upper bound={2}", "param\u00e8tres d''encadrement invalides : borne inf\u00e9rieure = {0}, valeur initiale = {1}, borne sup\u00e9rieure = {2}" }, { "number of iterations={0}, maximum iterations={1}, initial={2}, lower bound={3}, upper bound={4}," + " final a value={5}, final b value={6}, f(a)={7}, f(b)={8}", "nombre d''it\u00e9rations = {0}, it\u00e9rations maximum = {1}, valeur initiale = {2}," + " borne inf\u00e9rieure = {3}, borne sup\u00e9rieure = {4}," + " valeur a finale = {5}, valeur b finale = {6}, f(a) = {7}, f(b) = {8}" }, // org.apache.commons.math.analysis.solvers.LaguerreSolver { "polynomial degree must be positive: degree={0}", "le polyn\u00f4me doit \u00eatre de degr\u00e9 positif : degr\u00e9 = {0}" }, // org.apache.commons.math.analysis.solvers.SecantSolver { "function values at endpoints do not have different signs, endpoints: [{0}, {1}], values: [{2}, {3}]", "les valeurs de la fonctions aux bornes sont de m\u00eame signe, bornes : [{0}, {1}], valeurs : [{2}, {3}]" }, // org.apache.commons.math.analysis.interpolation.SplineInterpolator // org.apache.commons.math.analysis.polynomials.PolynomialFunctionLagrangeForm { "{0} points are required, got only {1}", "{0} sont n\u00e9cessaires, seuls {1} ont \u00e9t\u00e9 fournis" }, // org.apache.commons.math.analysis.interpolation.SplineInterpolator { "points {0} and {1} are not strictly increasing ({2} >= {3})", "les points {0} et {1} ne sont pas strictement croissants ({2} >= {3})" }, { "points {0} and {1} are not strictly decreasing ({2} <= {3})", "les points {0} et {1} ne sont pas strictement d\u00e9croissants ({2} <= {3})" }, { "points {0} and {1} are not increasing ({2} > {3})", "les points {0} et {1} ne sont pas croissants ({2} > {3})" }, { "points {0} and {1} are not decreasing ({2} < {3})", "les points {0} et {1} ne sont pas d\u00e9croissants ({2} < {3})" }, // org.apache.commons.math.analysis.interpolation.LoessInterpolator { "bandwidth must be in the interval [0,1], but got {0}", "la largeur de bande doit \u00eatre dans l''intervalle [0, 1], alors qu'elle vaut {0}" }, { "the number of robustness iterations must be non-negative, but got {0}", "le nombre d''it\u00e9rations robuste ne peut \u00eatre n\u00e9gatif, alors qu''il est de {0}" }, { "Loess expects the abscissa and ordinate arrays to be of the same size, " + "but got {0} abscissae and {1} ordinatae", "la r\u00e9gression Loess n\u00e9cessite autant d''abscisses que d''ordonn\u00e9es, " + "mais {0} abscisses et {1} ordonn\u00e9es ont \u00e9t\u00e9 fournies" }, { "Loess expects at least 1 point", "la r\u00e9gression Loess n\u00e9cessite au moins un point" }, { "the bandwidth must be large enough to accomodate at least 2 points. There are {0} " + " data points, and bandwidth must be at least {1} but it is only {2}", "la largeur de bande doit \u00eatre assez grande pour supporter au moins 2 points. Il y a {0}" + "donn\u00e9es et la largeur de bande doit \u00eatre au moins de {1}, or elle est seulement de {2}" }, { "all abscissae must be finite real numbers, but {0}-th is {1}", "toutes les abscisses doivent \u00eatre des nombres r\u00e9els finis, mais l''abscisse {0} vaut {1}" }, { "all ordinatae must be finite real numbers, but {0}-th is {1}", "toutes les ordonn\u00e9es doivent \u00eatre des nombres r\u00e9els finis, mais l''ordonn\u00e9e {0} vaut {1}" }, { "all weights must be finite real numbers, but {0}-th is {1}", "tous les poids doivent \u00eatre des nombres r\u00e9els finis, mais le poids {0} vaut {1}" }, { "the abscissae array must be sorted in a strictly increasing order, " + "but the {0}-th element is {1} whereas {2}-th is {3}", "les abscisses doivent \u00eatre en ordre strictement croissant, " + "mais l''\u00e9l\u00e9ment {0} vaut {1} alors que l''\u00e9l\u00e9ment {2} vaut {3}" }, // org.apache.commons.math.util.ContinuedFraction { "Continued fraction convergents diverged to +/- infinity for value {0}", "Divergence de fraction continue \u00e0 l''infini pour la valeur {0}" }, { "Continued fraction convergents failed to converge for value {0}", "\u00c9chec de convergence de fraction continue pour la valeur {0}" }, { "Continued fraction diverged to NaN for value {0}", "Divergence de fraction continue \u00e0 NaN pour la valeur {0}"}, // org.apache.commons.math.util.DefaultTransformer { "Conversion Exception in Transformation, Object is null", "Exception de conversion dans une transformation, l''objet est nul" }, { "Conversion Exception in Transformation: {0}", "Exception de conversion dans une transformation : {0}" }, // org.apache.commons.math.optimization.MultiStartOptimizer { "no optimum computed yet", "aucun optimum n''a encore \u00e9t\u00e9 calcul\u00e9" }, // org.apache.commons.math.optimization.direct.DirectSearchOptimizer { "simplex must contain at least one point", "le simplex doit contenir au moins un point" }, { "equal vertices {0} and {1} in simplex configuration", "sommets {0} et {1} \u00e9gaux dans la configuration du simplex" }, // org.apache.commons.math.estimation.AbstractEstimation { "maximal number of evaluations exceeded ({0})", "nombre maximal d''\u00e9valuations d\u00e9pass\u00e9 ({0})" }, // org.apache.commons.math.optimization.general.AbstractLeastSquaresOptimizer { "unable to compute covariances: singular problem", "impossible de calculer les covariances : probl\u00e8me singulier"}, { "no degrees of freedom ({0} measurements, {1} parameters)", "aucun degr\u00e9 de libert\u00e9 ({0} mesures, {1} param\u00e8tres)" }, // org.apache.commons.math.optimization.general.GaussNewtonOptimizer { "unable to solve: singular problem", "r\u00e9solution impossible : probl\u00e8me singulier" }, // org.apache.commons.math.optimization.general.LevenbergMarquardtEstimator { "cost relative tolerance is too small ({0}), no further reduction in the sum of squares is possible", "trop petite tol\u00e9rance relative sur le co\u00fbt ({0}), aucune r\u00e9duction de la somme des carr\u00e9s n''est possible" }, { "parameters relative tolerance is too small ({0}), no further improvement in the approximate solution is possible", "trop petite tol\u00e9rance relative sur les param\u00e8tres ({0}), aucune am\u00e9lioration de la solution approximative n''est possible" }, { "orthogonality tolerance is too small ({0}), solution is orthogonal to the jacobian", "trop petite tol\u00e9rance sur l''orthogonalit\u00e9 ({0}), la solution est orthogonale \u00e0 la jacobienne" }, { "unable to perform Q.R decomposition on the {0}x{1} jacobian matrix", "impossible de calculer la factorisation Q.R de la matrice jacobienne {0}x{1}" }, // org.apache.commons.math.optimization.general.NonLinearConjugateGradientOptimizer { "unable to bracket optimum in line search", "impossible d''encadrer l''optimum lors de la recherche lin\u00e9aire" }, // org.apache.commons.math.optimization.fitting.HarmonicCoefficientsGuesser { "unable to first guess the harmonic coefficients", "impossible de faire une premi\u00e8re estimation des coefficients harmoniques" }, // org.apache.commons.math.optimization.fitting.HarmonicCoefficientsGuesser { "sample contains {0} observed points, at least {1} are required", "l''\u00e9chantillon ne contient que {0} points alors qu''au moins {1} sont n\u00e9cessaires" }, // org.apache.commons.math.optimization.linear.NoFeasibleSolutionException { "no feasible solution", "aucune solution r\u00e9alisable" }, // org.apache.commons.math.optimization.linear.UnboundedSolutionException { "unbounded solution", "solution non born\u00e9e" }, // org.apache.commons.math.geometry.CardanEulerSingularityException { "Cardan angles singularity", "singularit\u00e9 d''angles de Cardan" }, { "Euler angles singularity", "singularit\u00e9 d''angles d''Euler" }, // org.apache.commons.math.geometry.Rotation { "a {0}x{1} matrix cannot be a rotation matrix", "une matrice {0}x{1} ne peut pas \u00eatre une matrice de rotation" }, { "the closest orthogonal matrix has a negative determinant {0}", "la matrice orthogonale la plus proche a un d\u00e9terminant n\u00e9gatif {0}" }, { "unable to orthogonalize matrix in {0} iterations", "impossible de rendre la matrice orthogonale en {0} it\u00e9rations" }, // org.apache.commons.math.ode.nonstiff.AdaptiveStepsizeIntegrator { "minimal step size ({0,number,0.00E00}) reached, integration needs {1,number,0.00E00}", "pas minimal ({0,number,0.00E00}) atteint, l''int\u00e9gration n\u00e9cessite {1,number,0.00E00}" }, { "dimensions mismatch: state vector has dimension {0}, absolute tolerance vector has dimension {1}", "incompatibilit\u00e9 de dimensions entre le vecteur d''\u00e9tat ({0}), et le vecteur de tol\u00e9rance absolue ({1})" }, { "dimensions mismatch: state vector has dimension {0}, relative tolerance vector has dimension {1}", "incompatibilit\u00e9 de dimensions entre le vecteur d''\u00e9tat ({0}), et le vecteur de tol\u00e9rance relative ({1})" }, // org.apache.commons.math.ode.nonstiff.AdaptiveStepsizeIntegrator, // org.apache.commons.math.ode.nonstiff.RungeKuttaIntegrator { "dimensions mismatch: ODE problem has dimension {0}, initial state vector has dimension {1}", "incompatibilit\u00e9 de dimensions entre le probl\u00e8me ODE ({0}), et le vecteur d''\u00e9tat initial ({1})" }, { "dimensions mismatch: ODE problem has dimension {0}, final state vector has dimension {1}", "incompatibilit\u00e9 de dimensions entre le probl\u00e8me ODE ({0}), et le vecteur d''\u00e9tat final ({1})" }, { "too small integration interval: length = {0}", "intervalle d''int\u00e9gration trop petit : {0}" }, // org.apache.commons.math.ode.MultistepIntegrator { "{0} method needs at least one previous point", "la m\u00e9thode {0} n\u00e9cessite au moins un point pr\u00e9c\u00e9dent" }, // org.apache.commons.math.ode.ContinuousOutputModel // org.apache.commons.math.optimization.direct.DirectSearchOptimizer { "unexpected exception caught", "exception inattendue lev\u00e9e" }, { "propagation direction mismatch", "directions de propagation incoh\u00e9rentes" }, { "{0} wide hole between models time ranges", "trou de longueur {0} entre les domaines temporels des mod\u00e8les" }, // org.apache.commons.math.optimization.direct.DirectSearchOptimizer { "none of the {0} start points lead to convergence", "aucun des {0} points de d\u00e9part n''aboutit \u00e0 une convergence" }, // org.apache.commons.math.random.ValueServer { "unknown mode {0}, known modes: {1} ({2}), {3} ({4}), {5} ({6}), {7} ({8}), {9} ({10}) and {11} ({12})", "mode {0} inconnu, modes connus : {1} ({2}), {3} ({4}), {5} ({6}), {7} ({8}), {9} ({10}) et {11} ({12})" }, { "digest not initialized", "mod\u00e8le empirique non initialis\u00e9" }, // org.apache.commons.math.random.EmpiricalDistributionImpl { "distribution not loaded", "aucune distribution n''a \u00e9t\u00e9 charg\u00e9e" }, { "no bin selected", "aucun compartiment s\u00e9lectionn\u00e9" }, { "input data comes from unsupported datasource: {0}, supported sources: {1}, {2}", "les donn\u00e9es d''entr\u00e9e proviennent " + "d''une source non support\u00e9e : {0}, sources support\u00e9es : {1}, {2}" }, // org.apache.commons.math.random.EmpiricalDistributionImpl // org.apache.commons.math.random.ValueServer { "URL {0} contains no data", "l''adresse {0} ne contient aucune donn\u00e9e" }, // org.apache.commons.math.random.AbstractRandomGenerator // org.apache.commons.math.random.BitsStreamGenerator { "upper bound must be positive ({0})", "la borne sup\u00e9rieure doit \u00eatre positive ({0})" }, // org.apache.commons.math.random.RandomDataImpl { "length must be positive ({0})", "la longueur doit \u00eatre positive ({0})" }, { "upper bound ({0}) must be greater than lower bound ({1})", "la borne sup\u00e9rieure ({0}) doit \u00eatre sup\u00e9rieure" + " \u00e0 la borne inf\u00e9rieure ({1})" }, { "permutation k ({0}) exceeds n ({1})", "la permutation k ({0}) d\u00e9passe n ({1})" }, { "permutation k ({0}) must be positive", "la permutation k ({0}) doit \u00eatre positive" }, { "sample size ({0}) exceeds collection size ({1})", "la taille de l''\u00e9chantillon ({0}) d\u00e9passe la taille de la collection ({1})" }, // org.apache.commons.math.linear.decomposition.EigenDecompositionImpl { "cannot solve degree {0} equation", "impossible de r\u00e9soudre une \u00e9quation de degr\u00e9 {0}" }, { "eigen decomposition of assymetric matrices not supported yet", "la d\u00e9composition en valeurs/vecteurs propres de matrices " + "non sym\u00e9triques n''est pas encore disponible" }, // org.apache.commons.math.linear.decomposition.NonSquareMatrixException // org.apache.commons.math.stat.regression.AbstractMultipleLinearRegression { "a {0}x{1} matrix was provided instead of a square matrix", "une matrice {0}x{1} a \u00e9t\u00e9 fournie \u00e0 la place d''une matrice carr\u00e9e" }, // org.apache.commons.math.linear.decomposition.SingularMatrixException { "matrix is singular", "matrice singuli\u00e8re" }, // org.apache.commons.math.linear.decomposition.SingularValueDecompositionImpl { "cutoff singular value is {0}, should be at most {1}", "la valeur singuli\u00e8re de coupure vaut {0}, elle ne devrait pas d\u00e9passer {1}" }, // org.apache.commons.math.linear.decomposition.CholeskyDecompositionImpl // org.apache.commons.math.linear.decomposition.EigenDecompositionImpl // org.apache.commons.math.linear.decomposition.LUDecompositionImpl // org.apache.commons.math.linear.decomposition.QRDecompositionImpl // org.apache.commons.math.linear.decomposition.SingularValueDecompositionImpl { "dimensions mismatch: got {0}x{1} but expected {2}x{3}", "dimensions incoh\u00e9rentes : {0}x{1} \u00e0 la place de {2}x{3}" }, // org.apache.commons.math.linear.decomposition.CholeskyDecompositionImpl // org.apache.commons.math.linear.decomposition.EigenDecompositionImpl // org.apache.commons.math.linear.decomposition.LUDecompositionImpl // org.apache.commons.math.linear.decomposition.QRDecompositionImpl // org.apache.commons.math.linear.decomposition.SingularValueDecompositionImpl // org.apache.commons.math.linear.ArrayRealVector // org.apache.commons.math.linear.SparseRealVector { "vector length mismatch: got {0} but expected {1}", "taille de vecteur invalide : {0} au lieu de {1} attendue" }, // org.apache.commons.math.linear.ArrayRealVector // org.apache.commons.math.linear.ArrayFieldVector // org.apache.commons.math.linear.SparseRealVector { "index {0} out of allowed range [{1}, {2}]", "index {0} hors de la plage autoris\u00e9e [{1}, {2}]" }, { "vector must have at least one element", "un vecteur doit comporter au moins un \u00e9l\u00e9ment" }, { "position {0} and size {1} don't fit to the size of the input array {2}", "la position {0} et la taille {1} sont incompatibles avec la taille du tableau d''entr\u00e9e {2}"}, // org.apache.commons.math.linear.AbstractRealMatrix // org.apache.commons.math.linear.AbstractFieldMatrix { "invalid row dimension: {0} (must be positive)", "nombre de lignes invalide : {0} (doit \u00eatre positif)" }, { "invalid column dimension: {0} (must be positive)", "nombre de colonnes invalide : {0} (doit \u00eatre positif)" }, { "matrix must have at least one row", "une matrice doit comporter au moins une ligne" }, { "matrix must have at least one column", "une matrice doit comporter au moins une colonne" }, // org.apache.commons.math.linear.AbstractRealMatrix // org.apache.commons.math.linear.AbstractFieldMatrix // org.apache.commons.math.stat.inference.ChiSquareTestImpl { "some rows have length {0} while others have length {1}", "certaines lignes ont une longueur de {0} alors que d''autres ont une longueur de {1}" }, // org.apache.commons.math.linear.MatrixUtils { "row index {0} out of allowed range [{1}, {2}]", "index de ligne {0} hors de la plage autoris\u00e9e [{1}, {2}]" }, { "column index {0} out of allowed range [{1}, {2}]", "index de colonne {0} hors de la plage autoris\u00e9e [{1}, {2}]" }, { "initial row {0} after final row {1}", "ligne initiale {0} apr\u00e8s la ligne finale {1}" }, { "initial column {0} after final column {1}", "colonne initiale {0} apr\u00e8s la colonne finale {1}" }, { "empty selected row index array", "tableau des indices de lignes s\u00e9lectionn\u00e9es vide" }, { "empty selected column index array", "tableau des indices de colonnes s\u00e9lectionn\u00e9es vide" }, { "{0}x{1} and {2}x{3} matrices are not addition compatible", "les dimensions {0}x{1} et {2}x{3} sont incompatibles pour l'addition matricielle" }, { "{0}x{1} and {2}x{3} matrices are not subtraction compatible", "les dimensions {0}x{1} et {2}x{3} sont incompatibles pour la soustraction matricielle" }, { "{0}x{1} and {2}x{3} matrices are not multiplication compatible", "les dimensions {0}x{1} et {2}x{3} sont incompatibles pour la multiplication matricielle" }, // org.apache.commons.math.linear.BlockRealMatrix { "wrong array shape (block length = {0}, expected {1})", "forme de tableau erron\u00e9e (bloc de longueur {0} au lieu des {1} attendus)" }, // org.apache.commons.math.complex.Complex { "cannot compute nth root for null or negative n: {0}", "impossible de calculer la racine ni\u00e8me pour n n\u00e9gatif ou nul : {0}" }, // org.apache.commons.math.complex.ComplexFormat { "unparseable complex number: \"{0}\"", "\u00e9chec d''analyse du nombre complexe \"{0}\"" }, { "cannot format a {0} instance as a complex number", "impossible de formater une instance de {0} comme un nombre complexe" }, { "empty string for imaginary character", "cha\u00eene vide pour le caract\u00e8 imaginaire" }, { "null imaginary format", "format imaginaire nul" }, { "null real format", "format r\u00e9el nul" }, // org.apache.commons.math.complex.ComplexUtils { "negative complex module {0}", "module n\u00e9gatif ({0}) pour un nombre complexe" }, // org.apache.commons.math.geometry.Vector3DFormat { "unparseable 3D vector: \"{0}\"", "\u00e9chec d''analyse du vecteur de dimension 3 \"{0}\"" }, { "cannot format a {0} instance as a 3D vector", "impossible de formater une instance de {0} comme un vecteur de dimension 3" }, // org.apache.commons.math.linear.RealVectorFormat { "unparseable real vector: \"{0}\"", "\u00e9chec d''analyse du vecteur r\u00e9el \"{0}\"" }, { "cannot format a {0} instance as a real vector", "impossible de formater une instance de {0} comme un vecteur r\u00e9el" }, // org.apache.commons.math.util.ResizableDoubleArray { "the index specified: {0} is larger than the current maximal index {1}", "l''index sp\u00e9cifi\u00e9 ({0}) d\u00e9passe l''index maximal courant ({1})" }, { "elements cannot be retrieved from a negative array index {0}", "impossible d''extraire un \u00e9l\u00e9ment \u00e0 un index n\u00e9gatif ({0})" }, { "cannot set an element at a negative index {0}", "impossible de mettre un \u00e9l\u00e9ment \u00e0 un index n\u00e9gatif ({0})" }, { "cannot substitute an element from an empty array", "impossible de substituer un \u00e9l\u00e9ment dans un tableau vide" }, { "contraction criteria ({0}) smaller than the expansion factor ({1}). This would " + "lead to a never ending loop of expansion and contraction as a newly expanded " + "internal storage array would immediately satisfy the criteria for contraction.", "crit\u00e8re de contraction ({0}) inf\u00e9rieur au facteur d''extension. Ceci " + "induit une boucle infinie d''extensions/contractions car tout tableau de stockage " + "fra\u00eechement \u00e9tendu respecte imm\u00e9diatement le crit\u00e8re de contraction."}, { "contraction criteria smaller than one ({0}). This would lead to a never ending " + "loop of expansion and contraction as an internal storage array length equal " + "to the number of elements would satisfy the contraction criteria.", "crit\u00e8re de contraction inf\u00e9rieur \u00e0 un ({0}). Ceci induit une boucle " + "infinie d''extensions/contractions car tout tableau de stockage de longueur \u00e9gale " + "au nombre d''\u00e9l\u00e9ments respecte le crit\u00e8re de contraction." }, { "expansion factor smaller than one ({0})", "facteur d''extension inf\u00e9rieur \u00e0 un ({0})"}, { "cannot discard {0} elements from a {1} elements array", "impossible d''enlever {0} \u00e9l\u00e9ments d''un tableau en contenant {1}"}, { "cannot discard a negative number of elements ({0})", "impossible d''enlever un nombre d''\u00e9l\u00e9ments{0} n\u00e9gatif"}, { "unsupported expansion mode {0}, supported modes are {1} ({2}) and {3} ({4})", "mode d''extension {0} no support\u00e9, les modes support\u00e9s sont {1} ({2}) et {3} ({4})" }, { "initial capacity ({0}) is not positive", "la capacit\u00e9 initiale ({0}) n''est pas positive" }, { "index ({0}) is not positive", "l''indice ({0}) n''est pas positif" }, // org.apache.commons.math.analysis.polynomials.PolynomialFunction // org.apache.commons.math.analysis.polynomials.PolynomialFunctionNewtonForm { "empty polynomials coefficients array", "tableau de coefficients polyn\u00f4miaux vide" }, // org.apache.commons.math.analysis.polynomials.PolynomialFunctionNewtonForm { "array sizes should have difference 1 ({0} != {1} + 1)", "les tableaux devraient avoir une diff\u00e9rence de taille de 1 ({0} != {1} + 1)" }, // org.apache.commons.math.analysis.polynomials.PolynomialFunctionLagrangeForm { "identical abscissas x[{0}] == x[{1}] == {2} cause division by zero", "division par z\u00e9ro caus\u00e9e par les abscisses identiques x[{0}] == x[{1}] == {2}" }, // org.apache.commons.math.analysis.polynomials.PolynomialSplineFunction { "spline partition must have at least {0} points, got {1}", "une partiction spline n\u00e9cessite au moins {0} points, seuls {1} ont \u00e9t\u00e9 fournis" }, { "knot values must be strictly increasing", "les n\u0153uds d''interpolation doivent \u00eatre strictement croissants" }, { "number of polynomial interpolants must match the number of segments ({0} != {1} - 1)", "le nombre d''interpolants polyn\u00f4miaux doit correspondre au nombre de segments ({0} != {1} - 1)" }, // org.apache.commons.math.analysis.solvers.UnivariateRealSolverImpl { "function to solve cannot be null", "la fonction \u00e0 r\u00e9soudre ne peux pas \u00eatre nulle" }, { "invalid interval, initial value parameters: lower={0}, initial={1}, upper={2}", "param\u00e8tres de l''intervalle initial invalides : borne inf = {0}, valeur initiale = {1}, borne sup = {2}" }, // org.apache.commons.math.analysis.solvers.UnivariateRealSolverImpl // org.apache.commons.math.analysis.solvers.BrentSolver { "function values at endpoints do not have different signs. Endpoints: [{0}, {1}], Values: [{2}, {3}]", "les valeurs de la fonction aux bornes n''ont pas des signes diff\u00e9rents. Bornes : [{0}, {1}], valeurs : [{2}, {3}]" }, // org.apache.commons.math.analysis.solvers.UnivariateRealSolverImpl // org.apache.commons.math.analysis.integration.UnivariateRealIntegratorImpl // org.apache.commons.math.transform.FastFourierTransformer { "endpoints do not specify an interval: [{0}, {1}]", "les extr\u00e9mit\u00e9s ne constituent pas un intervalle : [{0}, {1}]" }, // org.apache.commons.math.analysis.solvers.LaguerreSolver { "function is not polynomial", "la fonction n''est pas p\u00f4lynomiale" }, // org.apache.commons.math.analysis.solvers.NewtonSolver { "function is not differentiable", "la fonction n''est pas diff\u00e9rentiable" }, // org.apache.commons.math.analysis.integration.UnivariateRealIntegratorImpl { "invalid iteration limits: min={0}, max={1}", "limites d''it\u00e9rations invalides : min = {0}, max = {1}" }, // org.apache.commons.math.analysis.integration.LegendreGaussIntegrator { "{0} points Legendre-Gauss integrator not supported," + " number of points must be in the {1}-{2} range", "int\u00e9grateur de Legendre-Gauss non support\u00e9 en {0} points, " + "le nombre de points doit \u00eatre entre {1} et {2}" }, // org.apache.commons.math.fraction.Fraction { "zero denominator in fraction {0}/{1}", "d\u00e9nominateur null dans le nombre rationnel {0}/{1}" }, { "overflow in fraction {0}/{1}, cannot negate", "d\u00e9passement de capacit\u00e9 pour la fraction {0}/{1}, son signe ne peut \u00eatre chang\u00e9" }, { "overflow, numerator too large after multiply: {0}", "d\u00e9passement de capacit\u00e9 pour le num\u00e9rateur apr\u00e8s multiplication : {0}" }, { "the fraction to divide by must not be zero: {0}/{1}", "division par un nombre rationnel nul : {0}/{1}" }, { "null fraction", "fraction nulle" }, // org.apache.commons.math.geometry.Rotation { "zero norm for rotation axis", "norme nulle pour un axe de rotation" }, { "zero norm for rotation defining vector", "norme nulle pour un axe de d\u00e9finition de rotation" }, // org.apache.commons.math.geometry.Vector3D // org.apache.commons.math.linear.ArrayRealVector { "cannot normalize a zero norm vector", "impossible de normer un vecteur de norme nulle" }, { "zero norm", "norme nulle" }, // org.apache.commons.math.ConvergingAlgorithmImpl { "no result available", "aucun r\u00e9sultat n''est disponible" }, // org.apache.commons.math.linear.BigMatrixImpl { "first {0} rows are not initialized yet", "les {0} premi\u00e8res lignes ne sont pas encore initialis\u00e9es" }, { "first {0} columns are not initialized yet", "les {0} premi\u00e8res colonnes ne sont pas encore initialis\u00e9es" }, // org.apache.commons.math.stat.Frequency { "class ({0}) does not implement Comparable", "la classe ({0}) n''implante pas l''interface Comparable" }, { "instance of class {0} not comparable to existing values", "l''instance de la classe {0} n''est pas comparable aux valeurs existantes" }, // org.apache.commons.math.stat.StatUtils { "input arrays must have the same positive length ({0} and {1})", "les tableaux d''entr\u00e9e doivent avoir la m\u00eame taille positive ({0} et {1})" }, { "input arrays must have the same length and at least two elements ({0} and {1})", "les tableaux d''entr\u00e9e doivent avoir la m\u00eame taille" + " et au moins deux \u00e9l\u00e9ments ({0} et {1})" }, // org.apache.commons.math.stat.correlation.Covariance { "arrays must have the same length and both must have at " + "least two elements. xArray has size {0}, yArray has {1} elements", "les tableaux doivent avoir la m\u00eame taille " + "et comporter au moins deux \u00e9l\u00e9ments. " + "xArray a une taille de {0}, yArray a {1} \u00e9l\u00e9ments"}, { "insufficient data: only {0} rows and {1} columns.", "donn\u00e9es insuffisantes : seulement {0} lignes et {1} colonnes." }, // org.apache.commons.math.stat.correlation.PearsonsCorrelation { "covariance matrix is null", "la matrice de covariance est nulle" }, { "invalid array dimensions. xArray has size {0}; yArray has {1} elements", "dimensions de tableaux invalides. xArray a une taille de {0}, " + "yArray a {1} \u00e9l\u00e9ments" }, // org.apache.commons.math.stat.descriptive.DescriptiveStatistics { "window size must be positive ({0})", "la taille de la fen\u00eatre doit \u00eatre positive ({0})" }, { "percentile implementation {0} does not support {1}", "l''implantation de pourcentage {0} ne dispose pas de la m\u00e9thode {1}" }, { "cannot access {0} method in percentile implementation {1}", "acc\u00e8s impossible \u00e0 la m\u00e9thode {0}" + " dans l''implantation de pourcentage {1}" }, { "out of bounds quantile value: {0}, must be in (0, 100]", "valeur de quantile {0} hors bornes, doit \u00eatre dans l''intervalle ]0, 100]" }, // org.apache.commons.math.stat.descriptive.moment.Variance // org.apache.commons.math.stat.descriptive.moment.SemiVariance // org.apache.commons.math.stat.descriptive.AbstractStorelessUnivariateStatistic // org.apache.commons.math.stat.descriptive.AbstractUnivariateStatistic { "input values array is null", "le tableau des valeurs d''entr\u00e9es est nul" }, // org.apache.commons.math.stat.descriptive.AbstractUnivariateStatistic { "start position cannot be negative ({0})", "la position de d\u00e9part ne peut pas \u00eatre n\u00e9gative" }, { "length cannot be negative ({0})", "la longueur ne peut pas \u00eatre n\u00e9gative" }, { "subarray ends after array end", "le sous-tableau se termine apr\u00e8s la fin du tableau" }, // org.apache.commons.math.stat.descriptive.moment.GeometricMean // org.apache.commons.math.stat.descriptive.MultivariateSummaryStatistics // org.apache.commons.math.stat.descriptive.SummaryStatistics { "{0} values have been added before statistic is configured", "{0} valeurs ont \u00e9t\u00e9 ajout\u00e9es " + "avant que la statistique ne soit configur\u00e9e" }, // org.apache.commons.math.stat.descriptive.moment.Kurtosis { "statistics constructed from external moments cannot be incremented", "les statistiques bas\u00e9es sur des moments externes ne peuvent pas \u00eatre incr\u00e9ment\u00e9es" }, { "statistics constructed from external moments cannot be cleared", "les statistiques bas\u00e9es sur des moments externes ne peuvent pas \u00eatre remises \u00e0 z\u00e9ro" }, // org.apache.commons.math.stat.inference.ChiSquareTestImpl { "expected array length = {0}, must be at least 2", "le tableau des valeurs attendues a une longueur de {0}, elle devrait \u00eatre au moins de 2" }, { "observed array length = {0}, must be at least 2", "le tableau des valeurs observ\u00e9es a une longueur de {0}, elle devrait \u00eatre au moins de 2" }, { "observed counts are all 0 in first observed array", "aucune occurrence dans le premier tableau des observations" }, { "observed counts are all 0 in second observed array", "aucune occurrence dans le second tableau des observations" }, { "observed counts are both zero for entry {0}", "les occurrences observ\u00e9es sont toutes deux nulles pour l'entr\u00e9e {0}" }, { "invalid row dimension: {0} (must be at least 2)", "nombre de lignes invalide : {0} (doit \u00eatre au moins de 2)" }, { "invalid column dimension: {0} (must be at least 2)", "nombre de colonnes invalide : {0} (doit \u00eatre au moins de 2)" }, { "element {0} is not positive: {1}", "l''\u00e9l\u00e9ment {0} n''est pas positif : {1}" }, { "element {0} is negative: {1}", "l''\u00e9l\u00e9ment {0} est n\u00e9gatif : {1}" }, { "element ({0}, {1}) is negative: {2}", "l''\u00e9l\u00e9ment ({0}, {1}) est n\u00e9gatif : {2}" }, // org.apache.commons.math.stat.inference.OneWayAnovaImpl { "two or more categories required, got {0}", "deux cat\u00e9gories ou plus sont n\u00e9cessaires, il y en a {0}" }, { "two or more values required in each category, one has {0}", "deux valeurs ou plus sont n\u00e9cessaires pour chaque cat\u00e9gorie, une cat\u00e9gorie en a {0}" }, // org.apache.commons.math.stat.inference.TTestImpl { "insufficient data for t statistic, needs at least 2, got {0}", "deux valeurs ou plus sont n\u00e9cessaires pour la statistique t, il y en a {0}" }, // org.apache.commons.math.stat.inference.ChiSquareTestImpl // org.apache.commons.math.stat.inference.TTestImpl // org.apache.commons.math.stat.inference.OneWayAnovaImpl // org.apache.commons.math.stat.Regression { "out of bounds significance level {0}, must be between {1} and {2}", "niveau de signification {0} hors domaine, doit \u00eatre entre {1} et {2}" }, // org.apache.commons.math.stat.regression.AbstractMultipleLinearRegression { "not enough data ({0} rows) for this many predictors ({1} predictors)", "pas assez de donn\u00e9es ({0} lignes) pour {1} pr\u00e9dicteurs" }, // org.apache.commons.math.distribution.AbstractContinuousDistribution // org.apache.commons.math.distribution.AbstractIntegerDistribution // org.apache.commons.math.distribution.ExponentialDistributionImpl // org.apache.commons.math.distribution.BinomialDistributionImpl // org.apache.commons.math.distribution.CauchyDistributionImpl // org.apache.commons.math.distribution.PascalDistributionImpl // org.apache.commons.math.distribution.WeibullDistributionImpl { "{0} out of [{1}, {2}] range", "{0} hors du domaine [{1}, {2}]" }, // org.apache.commons.math.distribution.AbstractDistribution // org.apache.commons.math.distribution.AbstractIntegerDistribution { "lower endpoint ({0}) must be less than or equal to upper endpoint ({1})", "la borne inf\u00e9rieure ({0}) devrait \u00eatre inf\u00e9rieure " + "ou \u00e9gale \u00e0 la borne sup\u00e9rieure ({1})" }, // org.apache.commons.math.distribution.AbstractContinuousDistribution { "Cumulative probability function returned NaN for argument {0} p = {1}", "Fonction de probabilit\u00e9 cumulative retourn\u00e9 NaN \u00e0 l''argument de {0} p = {1}" }, { "This distribution does not have a density function implemented", "La fonction de densit\u00e9 pour cette distribution n'a pas \u00e9t\u00e9 mis en oeuvre" }, // org.apache.commons.math.distribution.AbstractIntegerDistribution { "Discrete cumulative probability function returned NaN for argument {0}", "Discr\u00e8tes fonction de probabilit\u00e9 cumulative retourn\u00e9 NaN \u00e0 l''argument de {0}" }, // org.apache.commons.math.distribution.BinomialDistributionImpl { "number of trials must be non-negative ({0})", "le nombre d''essais ne doit pas \u00eatre n\u00e9gatif ({0})" }, // org.apache.commons.math.distribution.ExponentialDistributionImpl // org.apache.commons.math.random.RandomDataImpl { "mean must be positive ({0})", "la moyenne doit \u00eatre positive ({0})" }, // org.apache.commons.math.distribution.FDistributionImpl // org.apache.commons.math.distribution.TDistributionImpl { "degrees of freedom must be positive ({0})", "les degr\u00e9s de libert\u00e9 doivent \u00eatre positifs ({0})" }, // org.apache.commons.math.distribution.GammaDistributionImpl { "alpha must be positive ({0})", "alpha doit \u00eatre positif ({0})" }, { "beta must be positive ({0})", "beta doit \u00eatre positif ({0})" }, // org.apache.commons.math.distribution.HypergeometricDistributionImpl { "number of successes ({0}) must be less than or equal to population size ({1})", "le nombre de succ\u00e8s doit \u00eatre inf\u00e9rieur " + "ou \u00e9gal \u00e0 la taille de la population ({1})" }, { "sample size ({0}) must be less than or equal to population size ({1})", "la taille de l''\u00e9chantillon doit \u00eatre inf\u00e9rieure " + "ou \u00e9gale \u00e0 la taille de la population ({1})" }, { "population size must be positive ({0})", "la taille de la population doit \u00eatre positive ({0})" }, // org.apache.commons.math.distribution.HypergeometricDistributionImpl // org.apache.commons.math.random.RandomDataImpl { "sample size must be positive ({0})", "la taille de l''\u00e9chantillon doit \u00eatre positive ({0})" }, // org.apache.commons.math.distribution.HypergeometricDistributionImpl // org.apache.commons.math.distribution.PascalDistributionImpl { "number of successes must be non-negative ({0})", "le nombre de succ\u00e8s ne doit pas \u00eatre n\u00e9gatif ({0})" }, // org.apache.commons.math.distribution.NormalDistributionImpl // org.apache.commons.math.random.RandomDataImpl { "standard deviation must be positive ({0})", "l''\u00e9cart type doit \u00eatre positif ({0})" }, // org.apache.commons.math.distribution.PoissonDistributionImpl // org.apache.commons.math.random.RandomDataImpl { "the Poisson mean must be positive ({0})", "la moyenne de Poisson doit \u00eatre positive ({0})" }, // org.apache.commons.math.distribution.WeibullDistributionImpl { "shape must be positive ({0})", "le facteur de forme doit \u00eatre positif ({0})" }, // org.apache.commons.math.distribution.WeibullDistributionImpl // org.apache.commons.math.distribution.CauchyDistributionImpl { "scale must be positive ({0})", "l''\u00e9chelle doit \u00eatre positive ({0})" }, // org.apache.commons.math.distribution.ZipfDistributionImpl { "invalid number of elements {0} (must be positive)", "nombre d''\u00e9l\u00e9ments {0} invalide (doit \u00eatre positif)" }, { "invalid exponent {0} (must be positive)", "exposant {0} invalide (doit \u00eatre positif)" }, // org.apache.commons.math.transform.FastHadamardTransformer { "{0} is not a power of 2", "{0} n''est pas une puissance de 2" }, // org.apache.commons.math.transform.FastFourierTransformer { "cannot compute 0-th root of unity, indefinite result", "impossible de calculer la racine z\u00e9roi\u00e8me de l''unit\u00e9, " + "r\u00e9sultat ind\u00e9fini" }, { "roots of unity have not been computed yet", "les racines de l''unit\u00e9 n''ont pas encore \u00e9t\u00e9 calcul\u00e9es" }, { "out of range root of unity index {0} (must be in [{1};{2}])", "index de racine de l''unit\u00e9 hors domaine (devrait \u00eatre dans [{1}; {2}])" }, { "number of sample is not positive: {0}", "le nombre d''\u00e9chantillons n''est pas positif : {0}" }, { "{0} is not a power of 2, consider padding for fix", "{0} n''est pas une puissance de 2, ajoutez des \u00e9l\u00e9ments pour corriger" }, { "some dimensions don't match: {0} != {1}", "certaines dimensions sont incoh\u00e9rentes : {0} != {1}" }, // org.apache.commons.math.transform.FastCosineTransformer { "{0} is not a power of 2 plus one", "{0} n''est pas une puissance de 2 plus un" }, // org.apache.commons.math.transform.FastSineTransformer { "first element is not 0: {0}", "le premier \u00e9l\u00e9ment n''est pas nul : {0}" }, // org.apache.commons.math.util.OpenIntToDoubleHashMap { "map has been modified while iterating", "la table d''adressage a \u00e9t\u00e9 modifi\u00e9e pendant l''it\u00e9ration" }, { "iterator exhausted", "it\u00e9ration achev\u00e9e" }, // org.apache.commons.math.MathRuntimeException { "internal error, please fill a bug report at {0}", "erreur interne, veuillez signaler l''erreur \u00e0 {0}" } }; /** * Simple constructor. */ public MessagesResources_fr() { } /** * Get the non-translated/translated messages arrays from this resource bundle. * @return non-translated/translated messages arrays */ @Override public Object[][] getContents() { return CONTENTS.clone(); } } Other Commons Math examples (source code examples)Here is a short list of links related to this Commons Math MessagesResources_fr.java source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.