alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Commons Math example source code file (GaussNewtonEstimator.java)

This example Commons Math source code file (GaussNewtonEstimator.java) is included in the DevDaily.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Java - Commons Math tags/keywords

abstractestimator, default_convergence, default_convergence, default_steady_state_threshold, default_steady_state_threshold, deprecated, estimationexception, gaussnewtonestimator, gaussnewtonestimator, io, override, realmatrix, realvector, realvector, serializable

The Commons Math GaussNewtonEstimator.java source code

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math.estimation;

import java.io.Serializable;

import org.apache.commons.math.linear.InvalidMatrixException;
import org.apache.commons.math.linear.LUDecompositionImpl;
import org.apache.commons.math.linear.MatrixUtils;
import org.apache.commons.math.linear.RealMatrix;
import org.apache.commons.math.linear.RealVector;
import org.apache.commons.math.linear.ArrayRealVector;

/**
 * This class implements a solver for estimation problems.
 *
 * <p>This class solves estimation problems using a weighted least
 * squares criterion on the measurement residuals. It uses a
 * Gauss-Newton algorithm.</p>
 *
 * @version $Revision: 811685 $ $Date: 2009-09-05 13:36:48 -0400 (Sat, 05 Sep 2009) $
 * @since 1.2
 * @deprecated as of 2.0, everything in package org.apache.commons.math.estimation has
 * been deprecated and replaced by package org.apache.commons.math.optimization.general
 *
 */
@Deprecated
public class GaussNewtonEstimator extends AbstractEstimator implements Serializable {

    /** Serializable version identifier */
    private static final long serialVersionUID = 5485001826076289109L;

    /** Default threshold for cost steady state detection. */
    private static final double DEFAULT_STEADY_STATE_THRESHOLD = 1.0e-6;

    /** Default threshold for cost convergence. */
    private static final double DEFAULT_CONVERGENCE = 1.0e-6;

    /** Threshold for cost steady state detection. */
    private double steadyStateThreshold;

    /** Threshold for cost convergence. */
    private double convergence;

    /** Simple constructor with default settings.
     * <p>
     * The estimator is built with default values for all settings.
     * </p>
     * @see #DEFAULT_STEADY_STATE_THRESHOLD
     * @see #DEFAULT_CONVERGENCE
     * @see AbstractEstimator#DEFAULT_MAX_COST_EVALUATIONS
     */
    public GaussNewtonEstimator() {
        this.steadyStateThreshold = DEFAULT_STEADY_STATE_THRESHOLD;
        this.convergence          = DEFAULT_CONVERGENCE;
    }

    /**
     * Simple constructor.
     *
     * <p>This constructor builds an estimator and stores its convergence
     * characteristics.</p>
     *
     * <p>An estimator is considered to have converged whenever either
     * the criterion goes below a physical threshold under which
     * improvements are considered useless or when the algorithm is
     * unable to improve it (even if it is still high). The first
     * condition that is met stops the iterations.</p>
     *
     * <p>The fact an estimator has converged does not mean that the
     * model accurately fits the measurements. It only means no better
     * solution can be found, it does not mean this one is good. Such an
     * analysis is left to the caller.</p>
     *
     * <p>If neither conditions are fulfilled before a given number of
     * iterations, the algorithm is considered to have failed and an
     * {@link EstimationException} is thrown.</p>
     *
     * @param maxCostEval maximal number of cost evaluations allowed
     * @param convergence criterion threshold below which we do not need
     * to improve the criterion anymore
     * @param steadyStateThreshold steady state detection threshold, the
     * problem has converged has reached a steady state if
     * <code>Math.abs(Jn - Jn-1) <
     * J<sub>n × convergence, where Jn
     * and <code>Jn-1 are the current and preceding criterion
     * values (square sum of the weighted residuals of considered measurements).
     */
    public GaussNewtonEstimator(final int maxCostEval, final double convergence,
                                final double steadyStateThreshold) {
        setMaxCostEval(maxCostEval);
        this.steadyStateThreshold = steadyStateThreshold;
        this.convergence          = convergence;
    }

    /**
     * Set the convergence criterion threshold.
     * @param convergence criterion threshold below which we do not need
     * to improve the criterion anymore
     */
    public void setConvergence(final double convergence) {
        this.convergence = convergence;
    }

    /**
     * Set the steady state detection threshold.
     * <p>
     * The problem has converged has reached a steady state if
     * <code>Math.abs(Jn - Jn-1) <
     * J<sub>n × convergence, where Jn
     * and <code>Jn-1 are the current and preceding criterion
     * values (square sum of the weighted residuals of considered measurements).
     * </p>
     * @param steadyStateThreshold steady state detection threshold
     */
    public void setSteadyStateThreshold(final double steadyStateThreshold) {
        this.steadyStateThreshold = steadyStateThreshold;
    }

    /**
     * Solve an estimation problem using a least squares criterion.
     *
     * <p>This method set the unbound parameters of the given problem
     * starting from their current values through several iterations. At
     * each step, the unbound parameters are changed in order to
     * minimize a weighted least square criterion based on the
     * measurements of the problem.</p>
     *
     * <p>The iterations are stopped either when the criterion goes
     * below a physical threshold under which improvement are considered
     * useless or when the algorithm is unable to improve it (even if it
     * is still high). The first condition that is met stops the
     * iterations. If the convergence it not reached before the maximum
     * number of iterations, an {@link EstimationException} is
     * thrown.</p>
     *
     * @param problem estimation problem to solve
     * @exception EstimationException if the problem cannot be solved
     *
     * @see EstimationProblem
     *
     */
    @Override
    public void estimate(EstimationProblem problem)
    throws EstimationException {

        initializeEstimate(problem);

        // work matrices
        double[] grad             = new double[parameters.length];
        ArrayRealVector bDecrement = new ArrayRealVector(parameters.length);
        double[] bDecrementData   = bDecrement.getDataRef();
        RealMatrix wGradGradT     = MatrixUtils.createRealMatrix(parameters.length, parameters.length);

        // iterate until convergence is reached
        double previous = Double.POSITIVE_INFINITY;
        do {

            // build the linear problem
            incrementJacobianEvaluationsCounter();
            RealVector b = new ArrayRealVector(parameters.length);
            RealMatrix a = MatrixUtils.createRealMatrix(parameters.length, parameters.length);
            for (int i = 0; i < measurements.length; ++i) {
                if (! measurements [i].isIgnored()) {

                    double weight   = measurements[i].getWeight();
                    double residual = measurements[i].getResidual();

                    // compute the normal equation
                    for (int j = 0; j < parameters.length; ++j) {
                        grad[j] = measurements[i].getPartial(parameters[j]);
                        bDecrementData[j] = weight * residual * grad[j];
                    }

                    // build the contribution matrix for measurement i
                    for (int k = 0; k < parameters.length; ++k) {
                        double gk = grad[k];
                        for (int l = 0; l < parameters.length; ++l) {
                            wGradGradT.setEntry(k, l, weight * gk * grad[l]);
                        }
                    }

                    // update the matrices
                    a = a.add(wGradGradT);
                    b = b.add(bDecrement);

                }
            }

            try {

                // solve the linearized least squares problem
                RealVector dX = new LUDecompositionImpl(a).getSolver().solve(b);

                // update the estimated parameters
                for (int i = 0; i < parameters.length; ++i) {
                    parameters[i].setEstimate(parameters[i].getEstimate() + dX.getEntry(i));
                }

            } catch(InvalidMatrixException e) {
                throw new EstimationException("unable to solve: singular problem");
            }


            previous = cost;
            updateResidualsAndCost();

        } while ((getCostEvaluations() < 2) ||
                 (Math.abs(previous - cost) > (cost * steadyStateThreshold) &&
                  (Math.abs(cost) > convergence)));

    }

}

Other Commons Math examples (source code examples)

Here is a short list of links related to this Commons Math GaussNewtonEstimator.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.