alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Commons Math example source code file (EigenDecompositionImplTest.java)

This example Commons Math source code file (EigenDecompositionImplTest.java) is included in the DevDaily.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Java - Commons Math tags/keywords

arrayrealvector, arrayrealvector, eigendecomposition, eigendecomposition, eigendecompositionimpl, eigendecompositionimpl, eigendecompositionimpltest, override, random, realmatrix, realmatrix, realvector, testcase, tridiagonaltransformer, util

The Commons Math EigenDecompositionImplTest.java source code

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math.linear;

import java.util.Arrays;
import java.util.Random;

import junit.framework.TestCase;

import org.apache.commons.math.util.MathUtils;

public class EigenDecompositionImplTest extends TestCase {

    private double[] refValues;
    private RealMatrix matrix;

    public EigenDecompositionImplTest(String name) {
        super(name);
    }

    public void testDimension1() {
        RealMatrix matrix =
            MatrixUtils.createRealMatrix(new double[][] { { 1.5 } });
        EigenDecomposition ed = new EigenDecompositionImpl(matrix, MathUtils.SAFE_MIN);
        assertEquals(1.5, ed.getRealEigenvalue(0), 1.0e-15);
    }

    public void testDimension2() {
        RealMatrix matrix =
            MatrixUtils.createRealMatrix(new double[][] {
                    { 59.0, 12.0 },
                    { 12.0, 66.0 }
            });
        EigenDecomposition ed = new EigenDecompositionImpl(matrix, MathUtils.SAFE_MIN);
        assertEquals(75.0, ed.getRealEigenvalue(0), 1.0e-15);
        assertEquals(50.0, ed.getRealEigenvalue(1), 1.0e-15);
    }

    public void testDimension3() {
        RealMatrix matrix =
            MatrixUtils.createRealMatrix(new double[][] {
                                   {  39632.0, -4824.0, -16560.0 },
                                   {  -4824.0,  8693.0,   7920.0 },
                                   { -16560.0,  7920.0,  17300.0 }
                               });
        EigenDecomposition ed = new EigenDecompositionImpl(matrix, MathUtils.SAFE_MIN);
        assertEquals(50000.0, ed.getRealEigenvalue(0), 3.0e-11);
        assertEquals(12500.0, ed.getRealEigenvalue(1), 3.0e-11);
        assertEquals( 3125.0, ed.getRealEigenvalue(2), 3.0e-11);
    }

    public void testDimension3MultipleRoot() {
        RealMatrix matrix =
            MatrixUtils.createRealMatrix(new double[][] {
                    {  5,   10,   15 },
                    { 10,   20,   30 },
                    { 15,   30,   45 }
            });
        EigenDecomposition ed = new EigenDecompositionImpl(matrix, MathUtils.SAFE_MIN);
        assertEquals(70.0, ed.getRealEigenvalue(0), 3.0e-11);
        assertEquals(0.0,  ed.getRealEigenvalue(1), 3.0e-11);
        assertEquals(0.0,  ed.getRealEigenvalue(2), 3.0e-11);
    }

    public void testDimension4WithSplit() {
        RealMatrix matrix =
            MatrixUtils.createRealMatrix(new double[][] {
                                   {  0.784, -0.288,  0.000,  0.000 },
                                   { -0.288,  0.616,  0.000,  0.000 },
                                   {  0.000,  0.000,  0.164, -0.048 },
                                   {  0.000,  0.000, -0.048,  0.136 }
                               });
        EigenDecomposition ed = new EigenDecompositionImpl(matrix, MathUtils.SAFE_MIN);
        assertEquals(1.0, ed.getRealEigenvalue(0), 1.0e-15);
        assertEquals(0.4, ed.getRealEigenvalue(1), 1.0e-15);
        assertEquals(0.2, ed.getRealEigenvalue(2), 1.0e-15);
        assertEquals(0.1, ed.getRealEigenvalue(3), 1.0e-15);
    }

    public void testDimension4WithoutSplit() {
        RealMatrix matrix =
            MatrixUtils.createRealMatrix(new double[][] {
                                   {  0.5608, -0.2016,  0.1152, -0.2976 },
                                   { -0.2016,  0.4432, -0.2304,  0.1152 },
                                   {  0.1152, -0.2304,  0.3088, -0.1344 },
                                   { -0.2976,  0.1152, -0.1344,  0.3872 }
                               });
        EigenDecomposition ed = new EigenDecompositionImpl(matrix, MathUtils.SAFE_MIN);
        assertEquals(1.0, ed.getRealEigenvalue(0), 1.0e-15);
        assertEquals(0.4, ed.getRealEigenvalue(1), 1.0e-15);
        assertEquals(0.2, ed.getRealEigenvalue(2), 1.0e-15);
        assertEquals(0.1, ed.getRealEigenvalue(3), 1.0e-15);
    }

    // the following test triggered an ArrayIndexOutOfBoundsException in commons-math 2.0
    public void testMath308() {

        double[] mainTridiagonal = {
            22.330154644539597, 46.65485522478641, 17.393672330044705, 54.46687435351116, 80.17800767709437
        };
        double[] secondaryTridiagonal = {
            13.04450406501361, -5.977590941539671, 2.9040909856707517, 7.1570352792841225
        };

        // the reference values have been computed using routine DSTEMR
        // from the fortran library LAPACK version 3.2.1
        double[] refEigenValues = {
            82.044413207204002, 53.456697699894512, 52.536278520113882, 18.847969733754262, 14.138204224043099
        };
        RealVector[] refEigenVectors = {
            new ArrayRealVector(new double[] { -0.000462690386766, -0.002118073109055,  0.011530080757413,  0.252322434584915,  0.967572088232592 }),
            new ArrayRealVector(new double[] {  0.314647769490148,  0.750806415553905, -0.167700312025760, -0.537092972407375,  0.143854968127780 }),
            new ArrayRealVector(new double[] {  0.222368839324646,  0.514921891363332, -0.021377019336614,  0.801196801016305, -0.207446991247740 }),
            new ArrayRealVector(new double[] { -0.713933751051495,  0.190582113553930, -0.671410443368332,  0.056056055955050, -0.006541576993581 }),
            new ArrayRealVector(new double[] { -0.584677060845929,  0.367177264979103,  0.721453187784497, -0.052971054621812,  0.005740715188257 })
        };

        EigenDecomposition decomposition =
            new EigenDecompositionImpl(mainTridiagonal, secondaryTridiagonal, MathUtils.SAFE_MIN);

        double[] eigenValues = decomposition.getRealEigenvalues();
        for (int i = 0; i < refEigenValues.length; ++i) {
            assertEquals(refEigenValues[i], eigenValues[i], 1.0e-5);
            assertEquals(0, refEigenVectors[i].subtract(decomposition.getEigenvector(i)).getNorm(), 2.0e-7);
        }

    }

    public void testMathpbx02() {

        double[] mainTridiagonal = {
              7484.860960227216, 18405.28129035345, 13855.225609560746,
             10016.708722343366, 559.8117399576674, 6750.190788301587,
                71.21428769782159
        };
        double[] secondaryTridiagonal = {
             -4175.088570476366,1975.7955858241994,5193.178422374075,
              1995.286659169179,75.34535882933804,-234.0808002076056
        };

        // the reference values have been computed using routine DSTEMR
        // from the fortran library LAPACK version 3.2.1
        double[] refEigenValues = {
                20654.744890306974412,16828.208208485466457,
                6893.155912634994820,6757.083016675340332,
                5887.799885688558788,64.309089923240379,
                57.992628792736340
        };
        RealVector[] refEigenVectors = {
                new ArrayRealVector(new double[] {-0.270356342026904, 0.852811091326997, 0.399639490702077, 0.198794657813990, 0.019739323307666, 0.000106983022327, -0.000001216636321}),
                new ArrayRealVector(new double[] {0.179995273578326,-0.402807848153042,0.701870993525734,0.555058211014888,0.068079148898236,0.000509139115227,-0.000007112235617}),
                new ArrayRealVector(new double[] {-0.399582721284727,-0.056629954519333,-0.514406488522827,0.711168164518580,0.225548081276367,0.125943999652923,-0.004321507456014}),
                new ArrayRealVector(new double[] {0.058515721572821,0.010200130057739,0.063516274916536,-0.090696087449378,-0.017148420432597,0.991318870265707,-0.034707338554096}),
                new ArrayRealVector(new double[] {0.855205995537564,0.327134656629775,-0.265382397060548,0.282690729026706,0.105736068025572,-0.009138126622039,0.000367751821196}),
                new ArrayRealVector(new double[] {-0.002913069901144,-0.005177515777101,0.041906334478672,-0.109315918416258,0.436192305456741,0.026307315639535,0.891797507436344}),
                new ArrayRealVector(new double[] {-0.005738311176435,-0.010207611670378,0.082662420517928,-0.215733886094368,0.861606487840411,-0.025478530652759,-0.451080697503958})
        };

        // the following line triggers the exception
        EigenDecomposition decomposition =
            new EigenDecompositionImpl(mainTridiagonal, secondaryTridiagonal, MathUtils.SAFE_MIN);

        double[] eigenValues = decomposition.getRealEigenvalues();
        for (int i = 0; i < refEigenValues.length; ++i) {
            assertEquals(refEigenValues[i], eigenValues[i], 1.0e-3);
            if (refEigenVectors[i].dotProduct(decomposition.getEigenvector(i)) < 0) {
                assertEquals(0, refEigenVectors[i].add(decomposition.getEigenvector(i)).getNorm(), 1.0e-5);
            } else {
                assertEquals(0, refEigenVectors[i].subtract(decomposition.getEigenvector(i)).getNorm(), 1.0e-5);
            }
        }

    }

    public void testMathpbx03() {

        double[] mainTridiagonal = {
            1809.0978259647177,3395.4763425956166,1832.1894584712693,3804.364873592377,
            806.0482458637571,2403.656427234185,28.48691431556015
        };
        double[] secondaryTridiagonal = {
            -656.8932064545833,-469.30804108920734,-1021.7714889369421,
            -1152.540497328983,-939.9765163817368,-12.885877015422391
        };

        // the reference values have been computed using routine DSTEMR
        // from the fortran library LAPACK version 3.2.1
        double[] refEigenValues = {
            4603.121913685183245,3691.195818048970978,2743.442955402465032,1657.596442107321764,
            1336.797819095331306,30.129865209677519,17.035352085224986
        };

        RealVector[] refEigenVectors = {
            new ArrayRealVector(new double[] {-0.036249830202337,0.154184732411519,-0.346016328392363,0.867540105133093,-0.294483395433451,0.125854235969548,-0.000354507444044}),
            new ArrayRealVector(new double[] {-0.318654191697157,0.912992309960507,-0.129270874079777,-0.184150038178035,0.096521712579439,-0.070468788536461,0.000247918177736}),
            new ArrayRealVector(new double[] {-0.051394668681147,0.073102235876933,0.173502042943743,-0.188311980310942,-0.327158794289386,0.905206581432676,-0.004296342252659}),
            new ArrayRealVector(new double[] {0.838150199198361,0.193305209055716,-0.457341242126146,-0.166933875895419,0.094512811358535,0.119062381338757,-0.000941755685226}),
            new ArrayRealVector(new double[] {0.438071395458547,0.314969169786246,0.768480630802146,0.227919171600705,-0.193317045298647,-0.170305467485594,0.001677380536009}),
            new ArrayRealVector(new double[] {-0.003726503878741,-0.010091946369146,-0.067152015137611,-0.113798146542187,-0.313123000097908,-0.118940107954918,0.932862311396062}),
            new ArrayRealVector(new double[] {0.009373003194332,0.025570377559400,0.170955836081348,0.291954519805750,0.807824267665706,0.320108347088646,0.360202112392266}),
        };

        // the following line triggers the exception
        EigenDecomposition decomposition =
            new EigenDecompositionImpl(mainTridiagonal, secondaryTridiagonal, MathUtils.SAFE_MIN);

        double[] eigenValues = decomposition.getRealEigenvalues();
        for (int i = 0; i < refEigenValues.length; ++i) {
            assertEquals(refEigenValues[i], eigenValues[i], 1.0e-4);
            if (refEigenVectors[i].dotProduct(decomposition.getEigenvector(i)) < 0) {
                assertEquals(0, refEigenVectors[i].add(decomposition.getEigenvector(i)).getNorm(), 1.0e-5);
            } else {
                assertEquals(0, refEigenVectors[i].subtract(decomposition.getEigenvector(i)).getNorm(), 1.0e-5);
            }
        }

    }

    /** test a matrix already in tridiagonal form. */
    public void testTridiagonal() {
        Random r = new Random(4366663527842l);
        double[] ref = new double[30];
        for (int i = 0; i < ref.length; ++i) {
            if (i < 5) {
                ref[i] = 2 * r.nextDouble() - 1;
            } else {
                ref[i] = 0.0001 * r.nextDouble() + 6;
            }
        }
        Arrays.sort(ref);
        TriDiagonalTransformer t =
            new TriDiagonalTransformer(createTestMatrix(r, ref));
        EigenDecomposition ed =
            new EigenDecompositionImpl(t.getMainDiagonalRef(),
                                       t.getSecondaryDiagonalRef(),
                                       MathUtils.SAFE_MIN);
        double[] eigenValues = ed.getRealEigenvalues();
        assertEquals(ref.length, eigenValues.length);
        for (int i = 0; i < ref.length; ++i) {
            assertEquals(ref[ref.length - i - 1], eigenValues[i], 2.0e-14);
        }

    }

    /** test dimensions */
    public void testDimensions() {
        final int m = matrix.getRowDimension();
        EigenDecomposition ed = new EigenDecompositionImpl(matrix, MathUtils.SAFE_MIN);
        assertEquals(m, ed.getV().getRowDimension());
        assertEquals(m, ed.getV().getColumnDimension());
        assertEquals(m, ed.getD().getColumnDimension());
        assertEquals(m, ed.getD().getColumnDimension());
        assertEquals(m, ed.getVT().getRowDimension());
        assertEquals(m, ed.getVT().getColumnDimension());
    }

    /** test eigenvalues */
    public void testEigenvalues() {
        EigenDecomposition ed = new EigenDecompositionImpl(matrix, MathUtils.SAFE_MIN);
        double[] eigenValues = ed.getRealEigenvalues();
        assertEquals(refValues.length, eigenValues.length);
        for (int i = 0; i < refValues.length; ++i) {
            assertEquals(refValues[i], eigenValues[i], 3.0e-15);
        }
    }

    /** test eigenvalues for a big matrix. */
    public void testBigMatrix() {
        Random r = new Random(17748333525117l);
        double[] bigValues = new double[200];
        for (int i = 0; i < bigValues.length; ++i) {
            bigValues[i] = 2 * r.nextDouble() - 1;
        }
        Arrays.sort(bigValues);
        EigenDecomposition ed =
            new EigenDecompositionImpl(createTestMatrix(r, bigValues), MathUtils.SAFE_MIN);
        double[] eigenValues = ed.getRealEigenvalues();
        assertEquals(bigValues.length, eigenValues.length);
        for (int i = 0; i < bigValues.length; ++i) {
            assertEquals(bigValues[bigValues.length - i - 1], eigenValues[i], 2.0e-14);
        }
    }

    /** test eigenvectors */
    public void testEigenvectors() {
        EigenDecomposition ed = new EigenDecompositionImpl(matrix, MathUtils.SAFE_MIN);
        for (int i = 0; i < matrix.getRowDimension(); ++i) {
            double lambda = ed.getRealEigenvalue(i);
            RealVector v  = ed.getEigenvector(i);
            RealVector mV = matrix.operate(v);
            assertEquals(0, mV.subtract(v.mapMultiplyToSelf(lambda)).getNorm(), 1.0e-13);
        }
    }

    /** test A = VDVt */
    public void testAEqualVDVt() {
        EigenDecomposition ed = new EigenDecompositionImpl(matrix, MathUtils.SAFE_MIN);
        RealMatrix v  = ed.getV();
        RealMatrix d  = ed.getD();
        RealMatrix vT = ed.getVT();
        double norm = v.multiply(d).multiply(vT).subtract(matrix).getNorm();
        assertEquals(0, norm, 6.0e-13);
    }

    /** test that V is orthogonal */
    public void testVOrthogonal() {
        RealMatrix v = new EigenDecompositionImpl(matrix, MathUtils.SAFE_MIN).getV();
        RealMatrix vTv = v.transpose().multiply(v);
        RealMatrix id  = MatrixUtils.createRealIdentityMatrix(vTv.getRowDimension());
        assertEquals(0, vTv.subtract(id).getNorm(), 2.0e-13);
    }

    /** test diagonal matrix */
    public void testDiagonal() {
        double[] diagonal = new double[] { -3.0, -2.0, 2.0, 5.0 };
        RealMatrix m = createDiagonalMatrix(diagonal, diagonal.length, diagonal.length);
        EigenDecomposition ed = new EigenDecompositionImpl(m, MathUtils.SAFE_MIN);
        assertEquals(diagonal[0], ed.getRealEigenvalue(3), 2.0e-15);
        assertEquals(diagonal[1], ed.getRealEigenvalue(2), 2.0e-15);
        assertEquals(diagonal[2], ed.getRealEigenvalue(1), 2.0e-15);
        assertEquals(diagonal[3], ed.getRealEigenvalue(0), 2.0e-15);
    }

    /**
     * Matrix with eigenvalues {8, -1, -1}
     */
    public void testRepeatedEigenvalue() {
        RealMatrix repeated = MatrixUtils.createRealMatrix(new double[][] {
                {3,  2,  4},
                {2,  0,  2},
                {4,  2,  3}
        });
        EigenDecomposition ed = new EigenDecompositionImpl(repeated, MathUtils.SAFE_MIN);
        checkEigenValues((new double[] {8, -1, -1}), ed, 1E-12);
        checkEigenVector((new double[] {2, 1, 2}), ed, 1E-12);
    }

    /**
     * Matrix with eigenvalues {2, 0, 12}
     */
    public void testDistinctEigenvalues() {
        RealMatrix distinct = MatrixUtils.createRealMatrix(new double[][] {
                {3, 1, -4},
                {1, 3, -4},
                {-4, -4, 8}
        });
        EigenDecomposition ed = new EigenDecompositionImpl(distinct, MathUtils.SAFE_MIN);
        checkEigenValues((new double[] {2, 0, 12}), ed, 1E-12);
        checkEigenVector((new double[] {1, -1, 0}), ed, 1E-12);
        checkEigenVector((new double[] {1, 1, 1}), ed, 1E-12);
        checkEigenVector((new double[] {-1, -1, 2}), ed, 1E-12);
    }

    /**
     * Verifies operation on indefinite matrix
     */
    public void testZeroDivide() {
        RealMatrix indefinite = MatrixUtils.createRealMatrix(new double [][] {
                { 0.0, 1.0, -1.0 },
                { 1.0, 1.0, 0.0 },
                { -1.0,0.0, 1.0 }
        });
        EigenDecomposition ed = new EigenDecompositionImpl(indefinite, MathUtils.SAFE_MIN);
        checkEigenValues((new double[] {2, 1, -1}), ed, 1E-12);
        double isqrt3 = 1/Math.sqrt(3.0);
        checkEigenVector((new double[] {isqrt3,isqrt3,-isqrt3}), ed, 1E-12);
        double isqrt2 = 1/Math.sqrt(2.0);
        checkEigenVector((new double[] {0.0,-isqrt2,-isqrt2}), ed, 1E-12);
        double isqrt6 = 1/Math.sqrt(6.0);
        checkEigenVector((new double[] {2*isqrt6,-isqrt6,isqrt6}), ed, 1E-12);
    }
    /**
     * Verifies that the given EigenDecomposition has eigenvalues equivalent to
     * the targetValues, ignoring the order of the values and allowing
     * values to differ by tolerance.
     */
    protected void checkEigenValues(double[] targetValues,
            EigenDecomposition ed, double tolerance) {
        double[] observed = ed.getRealEigenvalues();
        for (int i = 0; i < observed.length; i++) {
            assertTrue(isIncludedValue(observed[i], targetValues, tolerance));
            assertTrue(isIncludedValue(targetValues[i], observed, tolerance));
        }
    }


    /**
     * Returns true iff there is an entry within tolerance of value in
     * searchArray.
     */
    private boolean isIncludedValue(double value, double[] searchArray,
            double tolerance) {
       boolean found = false;
       int i = 0;
       while (!found && i < searchArray.length) {
           if (Math.abs(value - searchArray[i]) < tolerance) {
               found = true;
           }
           i++;
       }
       return found;
    }

    /**
     * Returns true iff eigenVector is a scalar multiple of one of the columns
     * of ed.getV().  Does not try linear combinations - i.e., should only be
     * used to find vectors in one-dimensional eigenspaces.
     */
    protected void checkEigenVector(double[] eigenVector,
            EigenDecomposition ed, double tolerance) {
        assertTrue(isIncludedColumn(eigenVector, ed.getV(), tolerance));
    }

    /**
     * Returns true iff there is a column that is a scalar multiple of column
     * in searchMatrix (modulo tolerance)
     */
    private boolean isIncludedColumn(double[] column, RealMatrix searchMatrix,
            double tolerance) {
        boolean found = false;
        int i = 0;
        while (!found && i < searchMatrix.getColumnDimension()) {
            double multiplier = 1.0;
            boolean matching = true;
            int j = 0;
            while (matching && j < searchMatrix.getRowDimension()) {
                double colEntry = searchMatrix.getEntry(j, i);
                // Use the first entry where both are non-zero as scalar
                if (Math.abs(multiplier - 1.0) <= Math.ulp(1.0) && Math.abs(colEntry) > 1E-14
                        && Math.abs(column[j]) > 1e-14) {
                    multiplier = colEntry / column[j];
                }
                if (Math.abs(column[j] * multiplier - colEntry) > tolerance) {
                    matching = false;
                }
                j++;
            }
            found = matching;
            i++;
        }
        return found;
    }

    @Override
    public void setUp() {
        refValues = new double[] {
                2.003, 2.002, 2.001, 1.001, 1.000, 0.001
        };
        matrix = createTestMatrix(new Random(35992629946426l), refValues);
    }

    @Override
    public void tearDown() {
        refValues = null;
        matrix    = null;
    }

    static RealMatrix createTestMatrix(final Random r, final double[] eigenValues) {
        final int n = eigenValues.length;
        final RealMatrix v = createOrthogonalMatrix(r, n);
        final RealMatrix d = createDiagonalMatrix(eigenValues, n, n);
        return v.multiply(d).multiply(v.transpose());
    }

    public static RealMatrix createOrthogonalMatrix(final Random r, final int size) {

        final double[][] data = new double[size][size];

        for (int i = 0; i < size; ++i) {
            final double[] dataI = data[i];
            double norm2 = 0;
            do {

                // generate randomly row I
                for (int j = 0; j < size; ++j) {
                    dataI[j] = 2 * r.nextDouble() - 1;
                }

                // project the row in the subspace orthogonal to previous rows
                for (int k = 0; k < i; ++k) {
                    final double[] dataK = data[k];
                    double dotProduct = 0;
                    for (int j = 0; j < size; ++j) {
                        dotProduct += dataI[j] * dataK[j];
                    }
                    for (int j = 0; j < size; ++j) {
                        dataI[j] -= dotProduct * dataK[j];
                    }
                }

                // normalize the row
                norm2 = 0;
                for (final double dataIJ : dataI) {
                    norm2 += dataIJ * dataIJ;
                }
                final double inv = 1.0 / Math.sqrt(norm2);
                for (int j = 0; j < size; ++j) {
                    dataI[j] *= inv;
                }

            } while (norm2 * size < 0.01);
        }

        return MatrixUtils.createRealMatrix(data);

    }

    public static RealMatrix createDiagonalMatrix(final double[] diagonal,
                                                  final int rows, final int columns) {
        final double[][] dData = new double[rows][columns];
        for (int i = 0; i < Math.min(rows, columns); ++i) {
            dData[i][i] = diagonal[i];
        }
        return MatrixUtils.createRealMatrix(dData);
    }

}

Other Commons Math examples (source code examples)

Here is a short list of links related to this Commons Math EigenDecompositionImplTest.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.