alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (RandomGeneratorAbstractTest.java)

This example Java source code file (RandomGeneratorAbstractTest.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

before, frequency, kolmogorovsmirnovtest, math-723, mathillegalargumentexception, override, randomdatagenerator, randomgenerator, randomgeneratorabstracttest, test, this, uniformrealdistribution, util, walked

The RandomGeneratorAbstractTest.java Java example source code

/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.random;

import java.util.Arrays;

import org.apache.commons.math3.TestUtils;
import org.apache.commons.math3.distribution.RealDistribution;
import org.apache.commons.math3.distribution.UniformRealDistribution;
import org.apache.commons.math3.exception.MathIllegalArgumentException;
import org.apache.commons.math3.stat.Frequency;
import org.apache.commons.math3.stat.inference.KolmogorovSmirnovTest;
import org.apache.commons.math3.util.FastMath;
import org.junit.Assert;
import org.junit.Before;
import org.junit.Test;

/**
 * Base class for RandomGenerator tests.
 *
 * Tests RandomGenerator methods directly and also executes RandomDataTest
 * test cases against a RandomDataImpl created using the provided generator.
 *
 * RandomGenerator test classes should extend this class, implementing
 * makeGenerator() to provide a concrete generator to test. The generator
 * returned by makeGenerator should be seeded with a fixed seed.
 *
 */

public abstract class RandomGeneratorAbstractTest extends RandomDataGeneratorTest {

    /** RandomGenerator under test */
    protected RandomGenerator generator;

    /**
     * Override this method in subclasses to provide a concrete generator to test.
     * Return a generator seeded with a fixed seed.
     */
    protected abstract RandomGenerator makeGenerator();

    /**
     * Initialize generator and randomData instance in superclass.
     */
    public RandomGeneratorAbstractTest() {
        generator = makeGenerator();
        randomData = new RandomDataGenerator(generator);
    }

    /**
     * Set a fixed seed for the tests
     */
    @Before
    public void setUp() {
        generator = makeGenerator();
    }

    // Omit secureXxx tests, since they do not use the provided generator
    @Override
    public void testNextSecureLongIAE() {}
    @Override
    public void testNextSecureLongNegativeToPositiveRange() {}
    @Override
    public void testNextSecureLongNegativeRange() {}
    @Override
    public void testNextSecureLongPositiveRange() {}
    @Override
    public void testNextSecureIntIAE() {}
    @Override
    public void testNextSecureIntNegativeToPositiveRange() {}
    @Override
    public void testNextSecureIntNegativeRange() {}
    @Override
    public void testNextSecureIntPositiveRange() {}
    @Override
    public void testNextSecureHex() {}

    @Test
    /**
     * Tests uniformity of nextInt(int) distribution by generating 1000
     * samples for each of 10 test values and for each sample performing
     * a chi-square test of homogeneity of the observed distribution with
     * the expected uniform distribution.  Tests are performed at the .01
     * level and an average failure rate higher than 2% (i.e. more than 20
     * null hypothesis rejections) causes the test case to fail.
     *
     * All random values are generated using the generator instance used by
     * other tests and the generator is not reseeded, so this is a fixed seed
     * test.
     */
    public void testNextIntDirect() {
        // Set up test values - end of the array filled randomly
        int[] testValues = new int[] {4, 10, 12, 32, 100, 10000, 0, 0, 0, 0};
        for (int i = 6; i < 10; i++) {
            final int val = generator.nextInt();
            testValues[i] = val < 0 ? -val : val + 1;
        }

        final int numTests = 1000;
        for (int i = 0; i < testValues.length; i++) {
            final int n = testValues[i];
            // Set up bins
            int[] binUpperBounds;
            if (n < 32) {
                binUpperBounds = new int[n];
                for (int k = 0; k < n; k++) {
                    binUpperBounds[k] = k;
                }
            } else {
                binUpperBounds = new int[10];
                final int step = n / 10;
                for (int k = 0; k < 9; k++) {
                    binUpperBounds[k] = (k + 1) * step;
                }
                binUpperBounds[9] = n - 1;
            }
            // Run the tests
            int numFailures = 0;
            final int binCount = binUpperBounds.length;
            final long[] observed = new long[binCount];
            final double[] expected = new double[binCount];
            expected[0] = binUpperBounds[0] == 0 ? (double) smallSampleSize / (double) n :
                (double) ((binUpperBounds[0] + 1) * smallSampleSize) / (double) n;
            for (int k = 1; k < binCount; k++) {
                expected[k] = (double) smallSampleSize *
                (double) (binUpperBounds[k] - binUpperBounds[k - 1]) / n;
            }
            for (int j = 0; j < numTests; j++) {
                Arrays.fill(observed, 0);
                for (int k = 0; k < smallSampleSize; k++) {
                    final int value = generator.nextInt(n);
                    Assert.assertTrue("nextInt range",(value >= 0) && (value < n));
                    for (int l = 0; l < binCount; l++) {
                        if (binUpperBounds[l] >= value) {
                            observed[l]++;
                            break;
                        }
                    }
                }
                if (testStatistic.chiSquareTest(expected, observed) < 0.01) {
                    numFailures++;
                }
            }
            if ((double) numFailures / (double) numTests > 0.02) {
                Assert.fail("Too many failures for n = " + n +
                " " + numFailures + " out of " + numTests + " tests failed.");
            }
        }
    }

    @Test
    public void testNextIntIAE2() {
        try {
            generator.nextInt(-1);
            Assert.fail("MathIllegalArgumentException expected");
        } catch (MathIllegalArgumentException ex) {
            // ignored
        }
        try {
            generator.nextInt(0);
        } catch (MathIllegalArgumentException ex) {
            // ignored
        }
    }

    @Test
    public void testNextLongDirect() {
        long q1 = Long.MAX_VALUE/4;
        long q2 = 2 *  q1;
        long q3 = 3 * q1;

        Frequency freq = new Frequency();
        long val = 0;
        int value = 0;
        for (int i=0; i<smallSampleSize; i++) {
            val = generator.nextLong();
            val = val < 0 ? -val : val;
            if (val < q1) {
                value = 0;
            } else if (val < q2) {
                value = 1;
            } else if (val < q3) {
                value = 2;
            } else {
                value = 3;
            }
            freq.addValue(value);
        }
        long[] observed = new long[4];
        for (int i=0; i<4; i++) {
            observed[i] = freq.getCount(i);
        }

        /* Use ChiSquare dist with df = 4-1 = 3, alpha = .001
         * Change to 11.34 for alpha = .01
         */
        Assert.assertTrue("chi-square test -- will fail about 1 in 1000 times",
                testStatistic.chiSquare(expected,observed) < 16.27);
    }

    @Test
    public void testNextBooleanDirect() {
        long halfSampleSize = smallSampleSize / 2;
        double[] expected = {halfSampleSize, halfSampleSize};
        long[] observed = new long[2];
        for (int i=0; i<smallSampleSize; i++) {
            if (generator.nextBoolean()) {
                observed[0]++;
            } else {
                observed[1]++;
            }
        }
        /* Use ChiSquare dist with df = 2-1 = 1, alpha = .001
         * Change to 6.635 for alpha = .01
         */
        Assert.assertTrue("chi-square test -- will fail about 1 in 1000 times",
                testStatistic.chiSquare(expected,observed) < 10.828);
    }

    @Test
    public void testNextFloatDirect() {
        Frequency freq = new Frequency();
        float val = 0;
        int value = 0;
        for (int i=0; i<smallSampleSize; i++) {
            val = generator.nextFloat();
            if (val < 0.25) {
                value = 0;
            } else if (val < 0.5) {
                value = 1;
            } else if (val < 0.75) {
                value = 2;
            } else {
                value = 3;
            }
            freq.addValue(value);
        }
        long[] observed = new long[4];
        for (int i=0; i<4; i++) {
            observed[i] = freq.getCount(i);
        }

        /* Use ChiSquare dist with df = 4-1 = 3, alpha = .001
         * Change to 11.34 for alpha = .01
         */
        Assert.assertTrue("chi-square test -- will fail about 1 in 1000 times",
                testStatistic.chiSquare(expected,observed) < 16.27);
    }

    @Test
    public void testNextDouble() {
        final double[] sample = new double[10000];
        for (int i = 0; i < sample.length; i++) {
            sample[i] = generator.nextDouble();
        }
        final RealDistribution uniformDistribution = new UniformRealDistribution(0,1);
        final KolmogorovSmirnovTest ks = new KolmogorovSmirnovTest();
        Assert.assertFalse(ks.kolmogorovSmirnovTest(uniformDistribution, sample, .01));
    }

    @Test(expected=MathIllegalArgumentException.class)
    public void testNextIntNeg() {
        generator.nextInt(-1);
    }

    @Test
    public void testNextInt2() {
        int walk = 0;
        final int N = 10000;
        for (int k = 0; k < N; ++k) {
           if (generator.nextInt() >= 0) {
               ++walk;
           } else {
               --walk;
           }
        }
        Assert.assertTrue("Walked too far astray: " + walk + "\nNote: This " +
                "test will fail randomly about 1 in 100 times.",
                FastMath.abs(walk) < FastMath.sqrt(N) * 2.576);
    }

    @Test
    public void testNextLong2() {
        int walk = 0;
        final int N = 1000;
        for (int k = 0; k < N; ++k) {
           if (generator.nextLong() >= 0) {
               ++walk;
           } else {
               --walk;
           }
        }
        Assert.assertTrue("Walked too far astray: " + walk + "\nNote: This " +
                "test will fail randomly about 1 in 100 times.",
                FastMath.abs(walk) < FastMath.sqrt(N) * 2.576);
    }

    @Test
    public void testNexBoolean2() {
        int walk = 0;
        final int N = 10000;
        for (int k = 0; k < N; ++k) {
           if (generator.nextBoolean()) {
               ++walk;
           } else {
               --walk;
           }
        }
        Assert.assertTrue("Walked too far astray: " + walk + "\nNote: This " +
                "test will fail randomly about 1 in 100 times.",
                FastMath.abs(walk) < FastMath.sqrt(N) * 2.576);
    }

    @Test
    public void testNexBytes() {
        long[] count = new long[256];
        byte[] bytes = new byte[10];
        double[] expected = new double[256];
        final int sampleSize = 100000;

        for (int i = 0; i < 256; i++) {
            expected[i] = (double) sampleSize / 265f;
        }

        for (int k = 0; k < sampleSize; ++k) {
           generator.nextBytes(bytes);
           for (byte b : bytes) {
               ++count[b + 128];
           }
        }

        TestUtils.assertChiSquareAccept(expected, count, 0.001);

    }

    @Test
    public void testSeeding() {
        // makeGenerator initializes with fixed seed
        RandomGenerator gen = makeGenerator();
        RandomGenerator gen1 = makeGenerator();
        checkSameSequence(gen, gen1);
        // reseed, but recreate the second one
        // verifies MATH-723
        gen.setSeed(100);
        gen1 = makeGenerator();
        gen1.setSeed(100);
        checkSameSequence(gen, gen1);
    }

    private void checkSameSequence(RandomGenerator gen1, RandomGenerator gen2) {
        final int len = 11;  // Needs to be an odd number to check MATH-723
        final double[][] values = new double[2][len];
        for (int i = 0; i < len; i++) {
            values[0][i] = gen1.nextDouble();
        }
        for (int i = 0; i < len; i++) {
            values[1][i] = gen2.nextDouble();
        }
        Assert.assertTrue(Arrays.equals(values[0], values[1]));
        for (int i = 0; i < len; i++) {
            values[0][i] = gen1.nextFloat();
        }
        for (int i = 0; i < len; i++) {
            values[1][i] = gen2.nextFloat();
        }
        Assert.assertTrue(Arrays.equals(values[0], values[1]));
        for (int i = 0; i < len; i++) {
            values[0][i] = gen1.nextInt();
        }
        for (int i = 0; i < len; i++) {
            values[1][i] = gen2.nextInt();
        }
        Assert.assertTrue(Arrays.equals(values[0], values[1]));
        for (int i = 0; i < len; i++) {
            values[0][i] = gen1.nextLong();
        }
        for (int i = 0; i < len; i++) {
            values[1][i] = gen2.nextLong();
        }
        Assert.assertTrue(Arrays.equals(values[0], values[1]));
        for (int i = 0; i < len; i++) {
            values[0][i] = gen1.nextInt(len);
        }
        for (int i = 0; i < len; i++) {
            values[1][i] = gen2.nextInt(len);
        }
        Assert.assertTrue(Arrays.equals(values[0], values[1]));
        for (int i = 0; i < len; i++) {
            values[0][i] = gen1.nextBoolean() ? 1 : 0;
        }
        for (int i = 0; i < len; i++) {
            values[1][i] = gen2.nextBoolean() ? 1 : 0;
        }
        Assert.assertTrue(Arrays.equals(values[0], values[1]));
        for (int i = 0; i < len; i++) {
            values[0][i] = gen1.nextGaussian();
        }
        for (int i = 0; i < len; i++) {
            values[1][i] = gen2.nextGaussian();
        }
        Assert.assertTrue(Arrays.equals(values[0], values[1]));
    }

}

Other Java examples (source code examples)

Here is a short list of links related to this Java RandomGeneratorAbstractTest.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.