alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (HashTestUtils.java)

This example Java source code file (HashTestUtils.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

charsets, funnel, hashcode, hashtestutils, indexoutofboundsexception, iterable, override, primitivesink, put_boolean, put_string_low_surrogate, random, randomhasheraction, string, this, util

The HashTestUtils.java Java example source code

/*
 * Copyright (C) 2011 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.hash;

import static org.junit.Assert.assertEquals;

import com.google.common.base.Charsets;
import com.google.common.collect.ImmutableSet;
import com.google.common.collect.Sets;
import com.google.common.primitives.Ints;
import com.google.common.testing.EqualsTester;

import org.junit.Assert;

import java.nio.charset.Charset;
import java.util.Arrays;
import java.util.Random;
import java.util.Set;

/**
 * Various utilities for testing {@link HashFunction}s.
 *
 * @author Dimitris Andreou
 * @author Kurt Alfred Kluever
 */
final class HashTestUtils {
  private HashTestUtils() {}

  /**
   * Converts a string, which should contain only ascii-representable characters, to a byte[].
   */
  static byte[] ascii(String string) {
    byte[] bytes = new byte[string.length()];
    for (int i = 0; i < string.length(); i++) {
      bytes[i] = (byte) string.charAt(i);
    }
    return bytes;
  }

  interface HashFn {
    byte[] hash(byte[] input, int seed);
  }

  static void verifyHashFunction(HashFn hashFunction, int hashbits, int expected) {
    int hashBytes = hashbits / 8;

    byte[] key = new byte[256];
    byte[] hashes = new byte[hashBytes * 256];

    // Hash keys of the form {}, {0}, {0,1}, {0,1,2}... up to N=255,using 256-N as the seed
    for (int i = 0; i < 256; i++) {
      key[i] = (byte) i;
      int seed = 256 - i;
      byte[] hash = hashFunction.hash(Arrays.copyOf(key, i), seed);
      System.arraycopy(hash, 0, hashes, i * hashBytes, hash.length);
    }

    // Then hash the result array
    byte[] result = hashFunction.hash(hashes, 0);

    // interpreted in little-endian order.
    int verification = Integer.reverseBytes(Ints.fromByteArray(result));

    if (expected != verification) {
      throw new AssertionError("Expected: " + Integer.toHexString(expected)
          + " got: " + Integer.toHexString(verification));
    }
  }

  static final Funnel<Object> BAD_FUNNEL = new Funnel() {
    @Override public void funnel(Object object, PrimitiveSink bytePrimitiveSink) {
      bytePrimitiveSink.putInt(object.hashCode());
    }
  };

  static enum RandomHasherAction {
    PUT_BOOLEAN() {
      @Override void performAction(Random random, Iterable<? extends PrimitiveSink> sinks) {
        boolean value = random.nextBoolean();
        for (PrimitiveSink sink : sinks) {
          sink.putBoolean(value);
        }
      }
    },
    PUT_BYTE() {
      @Override void performAction(Random random, Iterable<? extends PrimitiveSink> sinks) {
        int value = random.nextInt();
        for (PrimitiveSink sink : sinks) {
          sink.putByte((byte) value);
        }
      }
    },
    PUT_SHORT() {
      @Override void performAction(Random random, Iterable<? extends PrimitiveSink> sinks) {
        short value = (short) random.nextInt();
        for (PrimitiveSink sink : sinks) {
          sink.putShort(value);
        }
      }
    },
    PUT_CHAR() {
      @Override void performAction(Random random, Iterable<? extends PrimitiveSink> sinks) {
        char value = (char) random.nextInt();
        for (PrimitiveSink sink : sinks) {
          sink.putChar(value);
        }
      }
    },
    PUT_INT() {
      @Override void performAction(Random random, Iterable<? extends PrimitiveSink> sinks) {
        int value = random.nextInt();
        for (PrimitiveSink sink : sinks) {
          sink.putInt(value);
        }
      }
    },
    PUT_LONG() {
      @Override void performAction(Random random, Iterable<? extends PrimitiveSink> sinks) {
        long value = random.nextLong();
        for (PrimitiveSink sink : sinks) {
          sink.putLong(value);
        }
      }
    },
    PUT_FLOAT() {
      @Override void performAction(Random random, Iterable<? extends PrimitiveSink> sinks) {
        float value = random.nextFloat();
        for (PrimitiveSink sink : sinks) {
          sink.putFloat(value);
        }
      }
    },
    PUT_DOUBLE() {
      @Override void performAction(Random random, Iterable<? extends PrimitiveSink> sinks) {
        double value = random.nextDouble();
        for (PrimitiveSink sink : sinks) {
          sink.putDouble(value);
        }
      }
    },
    PUT_BYTES() {
      @Override void performAction(Random random, Iterable<? extends PrimitiveSink> sinks) {
        byte[] value = new byte[random.nextInt(128)];
        random.nextBytes(value);
        for (PrimitiveSink sink : sinks) {
          sink.putBytes(value);
        }
      }
    },
    PUT_BYTES_INT_INT() {
      @Override void performAction(Random random, Iterable<? extends PrimitiveSink> sinks) {
        byte[] value = new byte[random.nextInt(128)];
        random.nextBytes(value);
        int off = random.nextInt(value.length + 1);
        int len = random.nextInt(value.length - off + 1);
        for (PrimitiveSink sink : sinks) {
          sink.putBytes(value);
        }
      }
    },
    PUT_STRING() {
      @Override void performAction(Random random, Iterable<? extends PrimitiveSink> sinks) {
        char[] value = new char[random.nextInt(128)];
        for (int i = 0; i < value.length; i++) {
          value[i] = (char) random.nextInt();
        }
        String s = new String(value);
        for (PrimitiveSink sink : sinks) {
          sink.putUnencodedChars(s);
        }
      }
    },
    PUT_STRING_LOW_SURROGATE() {
      @Override void performAction(Random random, Iterable<? extends PrimitiveSink> sinks) {
        String s = new String(new char[] { randomLowSurrogate(random) });
        for (PrimitiveSink sink : sinks) {
          sink.putUnencodedChars(s);
        }
      }
    },
    PUT_STRING_HIGH_SURROGATE() {
      @Override void performAction(Random random, Iterable<? extends PrimitiveSink> sinks) {
        String s = new String(new char[] { randomHighSurrogate(random) });
        for (PrimitiveSink sink : sinks) {
          sink.putUnencodedChars(s);
        }
      }
    },
    PUT_STRING_LOW_HIGH_SURROGATE() {
      @Override void performAction(Random random, Iterable<? extends PrimitiveSink> sinks) {
        String s = new String(new char[] {
            randomLowSurrogate(random), randomHighSurrogate(random)});
        for (PrimitiveSink sink : sinks) {
          sink.putUnencodedChars(s);
        }
      }
    },
    PUT_STRING_HIGH_LOW_SURROGATE() {
      @Override void performAction(Random random, Iterable<? extends PrimitiveSink> sinks) {
        String s = new String(new char[] {
            randomHighSurrogate(random), randomLowSurrogate(random)});
        for (PrimitiveSink sink : sinks) {
          sink.putUnencodedChars(s);
        }
      }
    };

    abstract void performAction(Random random, Iterable<? extends PrimitiveSink> sinks);

    private static final RandomHasherAction[] actions = values();

    static RandomHasherAction pickAtRandom(Random random) {
      return actions[random.nextInt(actions.length)];
    }
  }

  /**
   * Test that the hash function contains no funnels. A funnel is a situation where a set of input
   * (key) bits 'affects' a strictly smaller set of output bits. Funneling is bad because it can
   * result in more-than-ideal collisions for a non-uniformly distributed key space. In practice,
   * most key spaces are ANYTHING BUT uniformly distributed. A bit(i) in the input is said to
   * 'affect' a bit(j) in the output if two inputs, identical but for bit(i), will differ at output
   * bit(j) about half the time
   *
   * <p>Funneling is pretty simple to detect. The key idea is to find example keys which
   * unequivocably demonstrate that funneling cannot be occuring. This is done bit-by-bit. For
   * each input bit(i) and output bit(j), two pairs of keys must be found with all bits identical
   * except bit(i). One pair must differ in output bit(j), and one pair must not. This proves that
   * input bit(i) can alter output bit(j).
   */
  static void checkNoFunnels(HashFunction function) {
    Random rand = new Random(0);
    int keyBits = 32;
    int hashBits = function.bits();

    // output loop tests input bit
    for (int i = 0; i < keyBits; i++) {
      int same = 0x0; // bitset for output bits with same values
      int diff = 0x0; // bitset for output bits with different values
      int count = 0;
      // originally was 2 * Math.log(...), making it try more times to avoid flakiness issues
      int maxCount = (int) (4 * Math.log(2 * keyBits * hashBits) + 1);
      while (same != 0xffffffff || diff != 0xffffffff) {
        int key1 = rand.nextInt();
        // flip input bit for key2
        int key2 = key1 ^ (1 << i);
        // get hashes
        int hash1 = function.hashInt(key1).asInt();
        int hash2 = function.hashInt(key2).asInt();
        // test whether the hash values have same output bits
        same |= ~(hash1 ^ hash2);
        // test whether the hash values have different output bits
        diff |= (hash1 ^ hash2);

        count++;
        // check whether we've exceeded the probabilistically
        // likely number of trials to have proven no funneling
        if (count > maxCount) {
          Assert.fail("input bit(" + i + ") was found not to affect all " +
               hashBits + " output bits; The unaffected bits are " +
               "as follows: " + ~(same & diff) + ". This was " +
               "determined after " + count + " trials.");
        }
      }
    }
  }

  /**
   * Test for avalanche. Avalanche means that output bits differ with roughly 1/2 probability on
   * different input keys. This test verifies that each possible 1-bit key delta achieves avalanche.
   *
   * <p>For more information: http://burtleburtle.net/bob/hash/avalanche.html
   */
  static void checkAvalanche(HashFunction function, int trials, double epsilon) {
    Random rand = new Random(0);
    int keyBits = 32;
    int hashBits = function.bits();
    for (int i = 0; i < keyBits; i++) {
      int[] same = new int[hashBits];
      int[] diff = new int[hashBits];
      // go through trials to compute probability
      for (int j = 0; j < trials; j++) {
        int key1 = rand.nextInt();
        // flip input bit for key2
        int key2 = key1 ^ (1 << i);
        // compute hash values
        int hash1 = function.hashInt(key1).asInt();
        int hash2 = function.hashInt(key2).asInt();
        for (int k = 0; k < hashBits; k++) {
          if ((hash1 & (1 << k)) == (hash2 & (1 << k))) {
            same[k] += 1;
          } else {
            diff[k] += 1;
          }
        }
      }
      // measure probability and assert it's within margin of error
      for (int j = 0; j < hashBits; j++) {
        double prob = (double) diff[j] / (double) (diff[j] + same[j]);
        Assert.assertEquals(0.50d, prob, epsilon);
      }
    }
  }

  /**
   * Test for 2-bit characteristics. A characteristic is a delta in the input which is repeated in
   * the output. For example, if f() is a block cipher and c is a characteristic, then
   * f(x^c) = f(x)^c with greater than expected probability. The test for funneling is merely a test
   * for 1-bit characteristics.
   *
   * <p>There is more general code provided by Bob Jenkins to test arbitrarily sized characteristics
   * using the magic of gaussian elimination: http://burtleburtle.net/bob/crypto/findingc.html.
   */
  static void checkNo2BitCharacteristics(HashFunction function) {
    Random rand = new Random(0);
    int keyBits = 32;

    // get every one of (keyBits choose 2) deltas:
    for (int i = 0; i < keyBits; i++) {
      for (int j = 0; j < keyBits; j++) {
        if (j <= i) continue;
        int count = 0;
        int maxCount = 20; // the probability of error here is miniscule
        boolean diff = false;

        while (!diff) {
          int delta = (1 << i) | (1 << j);
          int key1 = rand.nextInt();
          // apply delta
          int key2 = key1 ^ delta;

          // get hashes
          int hash1 = function.hashInt(key1).asInt();
          int hash2 = function.hashInt(key2).asInt();

          // this 2-bit candidate delta is not a characteristic
          // if deltas are different
          if ((hash1 ^ hash2) != delta) {
            diff = true;
            continue;
          }

          // check if we've exceeded the probabilistically
          // likely number of trials to have proven 2-bit candidate
          // is not a characteristic
          count++;
          if (count > maxCount) {
            Assert.fail("2-bit delta (" + i + ", " + j + ") is likely a " +
                 "characteristic for this hash. This was " +
                 "determined after " + count + " trials");
          }
        }
      }
    }
  }

  /**
   * Test for avalanche with 2-bit deltas. Most probabilities of output bit(j) differing are well
   * within 50%.
   */
  static void check2BitAvalanche(HashFunction function, int trials, double epsilon) {
    Random rand = new Random(0);
    int keyBits = 32;
    int hashBits = function.bits();
    for (int bit1 = 0; bit1 < keyBits; bit1++) {
      for (int bit2 = 0; bit2 < keyBits; bit2++) {
        if (bit2 <= bit1) continue;
        int delta = (1 << bit1) | (1 << bit2);
        int[] same = new int[hashBits];
        int[] diff = new int[hashBits];
        // go through trials to compute probability
        for (int j = 0; j < trials; j++) {
          int key1 = rand.nextInt();
          // flip input bit for key2
          int key2 = key1 ^ delta;
          // compute hash values
          int hash1 = function.hashInt(key1).asInt();
          int hash2 = function.hashInt(key2).asInt();
          for (int k = 0; k < hashBits; k++) {
            if ((hash1 & (1 << k)) == (hash2 & (1 << k))) {
              same[k] += 1;
            } else {
              diff[k] += 1;
            }
          }
        }
        // measure probability and assert it's within margin of error
        for (int j = 0; j < hashBits; j++) {
          double prob = (double) diff[j] / (double) (diff[j] + same[j]);
          Assert.assertEquals(0.50d, prob, epsilon);
        }
      }
    }
  }

  /**
   * Checks that a Hasher returns the same HashCode when given the same input, and also
   * that the collision rate looks sane.
   */
  static void assertInvariants(HashFunction hashFunction) {
    int objects = 100;
    Set<HashCode> hashcodes = Sets.newHashSetWithExpectedSize(objects);
    Random random = new Random(314159);
    for (int i = 0; i < objects; i++) {
      int value = random.nextInt();
      HashCode hashcode1 = hashFunction.hashInt(value);
      HashCode hashcode2 = hashFunction.hashInt(value);
      Assert.assertEquals(hashcode1, hashcode2); // idempotent
      Assert.assertEquals(hashFunction.bits(), hashcode1.bits());
      Assert.assertEquals(hashFunction.bits(), hashcode1.asBytes().length * 8);
      hashcodes.add(hashcode1);
    }
    Assert.assertTrue(hashcodes.size() > objects * 0.95); // quite relaxed test

    assertHashBytesThrowsCorrectExceptions(hashFunction);
    assertIndependentHashers(hashFunction);
    assertShortcutsAreEquivalent(hashFunction, 512);
  }

  static void assertHashBytesThrowsCorrectExceptions(HashFunction hashFunction) {
    {
      HashCode unused = hashFunction.hashBytes(new byte[64], 0, 0);
    }

    try {
      hashFunction.hashBytes(new byte[128], -1, 128);
      Assert.fail();
    } catch (IndexOutOfBoundsException expected) {}
    try {
      hashFunction.hashBytes(new byte[128], 64, 256 /* too long len */);
      Assert.fail();
    } catch (IndexOutOfBoundsException expected) {}
    try {
      hashFunction.hashBytes(new byte[64], 0, -1);
      Assert.fail();
    } catch (IndexOutOfBoundsException expected) {}
  }

  static void assertIndependentHashers(HashFunction hashFunction) {
    int numActions = 100;
    // hashcodes from non-overlapping hash computations
    HashCode expected1 = randomHash(hashFunction, new Random(1L), numActions);
    HashCode expected2 = randomHash(hashFunction, new Random(2L), numActions);

    // equivalent, but overlapping, computations (should produce the same results as above)
    Random random1 = new Random(1L);
    Random random2 = new Random(2L);
    Hasher hasher1 = hashFunction.newHasher();
    Hasher hasher2 = hashFunction.newHasher();
    for (int i = 0; i < numActions; i++) {
      RandomHasherAction.pickAtRandom(random1).performAction(random1, ImmutableSet.of(hasher1));
      RandomHasherAction.pickAtRandom(random2).performAction(random2, ImmutableSet.of(hasher2));
    }

    Assert.assertEquals(expected1, hasher1.hash());
    Assert.assertEquals(expected2, hasher2.hash());
  }

  static HashCode randomHash(HashFunction hashFunction, Random random, int numActions) {
    Hasher hasher = hashFunction.newHasher();
    for (int i = 0; i < numActions; i++) {
      RandomHasherAction.pickAtRandom(random).performAction(random, ImmutableSet.of(hasher));
    }
    return hasher.hash();
  }

  private static void assertShortcutsAreEquivalent(HashFunction hashFunction, int trials) {
    Random random = new Random(42085L);
    for (int i = 0; i < trials; i++) {
      assertHashBytesEquivalence(hashFunction, random);
      assertHashIntEquivalence(hashFunction, random);
      assertHashLongEquivalence(hashFunction, random);
      assertHashStringEquivalence(hashFunction, random);
      assertHashStringWithSurrogatesEquivalence(hashFunction, random);
    }
  }

  private static void assertHashBytesEquivalence(HashFunction hashFunction, Random random) {
    int size = random.nextInt(2048);
    byte[] bytes = new byte[size];
    random.nextBytes(bytes);
    assertEquals(hashFunction.hashBytes(bytes),
        hashFunction.newHasher(size).putBytes(bytes).hash());
    int off = random.nextInt(size);
    int len = random.nextInt(size - off);
    assertEquals(hashFunction.hashBytes(bytes, off, len),
        hashFunction.newHasher(size).putBytes(bytes, off, len).hash());
  }

  private static void assertHashIntEquivalence(HashFunction hashFunction, Random random) {
    int i = random.nextInt();
    assertEquals(hashFunction.hashInt(i),
        hashFunction.newHasher().putInt(i).hash());
  }

  private static void assertHashLongEquivalence(HashFunction hashFunction, Random random) {
    long l = random.nextLong();
    assertEquals(hashFunction.hashLong(l),
        hashFunction.newHasher().putLong(l).hash());
  }

  private static final ImmutableSet<Charset> CHARSETS = ImmutableSet.of(
      Charsets.ISO_8859_1,
      Charsets.US_ASCII,
      Charsets.UTF_16,
      Charsets.UTF_16BE,
      Charsets.UTF_16LE,
      Charsets.UTF_8);

  private static void assertHashStringEquivalence(HashFunction hashFunction, Random random) {
    // Test that only data and data-order is important, not the individual operations.
    new EqualsTester()
        .addEqualityGroup(
            hashFunction.hashUnencodedChars("abc"),
            hashFunction.newHasher().putUnencodedChars("abc").hash(),
            hashFunction.newHasher().putUnencodedChars("ab").putUnencodedChars("c").hash(),
            hashFunction.newHasher().putUnencodedChars("a").putUnencodedChars("bc").hash(),
            hashFunction.newHasher().putUnencodedChars("a").putUnencodedChars("b")
                .putUnencodedChars("c").hash(),
            hashFunction.newHasher().putChar('a').putUnencodedChars("bc").hash(),
            hashFunction.newHasher().putUnencodedChars("ab").putChar('c').hash(),
            hashFunction.newHasher().putChar('a').putChar('b').putChar('c').hash())
        .testEquals();

    int size = random.nextInt(2048);
    byte[] bytes = new byte[size];
    random.nextBytes(bytes);
    String string = new String(bytes);
    assertEquals(hashFunction.hashUnencodedChars(string),
        hashFunction.newHasher().putUnencodedChars(string).hash());
    for (Charset charset : CHARSETS) {
      assertEquals(hashFunction.hashString(string, charset),
          hashFunction.newHasher().putString(string, charset).hash());
    }
  }

  /**
   * This verifies that putUnencodedChars(String) and hashUnencodedChars(String) are equivalent,
   * even for funny strings composed by (possibly unmatched, and mostly illegal) surrogate
   * characters. (But doesn't test that they do the right thing - just their consistency).
   */
  private static void assertHashStringWithSurrogatesEquivalence(
      HashFunction hashFunction, Random random) {
    int size = random.nextInt(8) + 1;
    char[] chars = new char[size];
    for (int i = 0; i < chars.length; i++) {
      chars[i] = random.nextBoolean() ? randomLowSurrogate(random) : randomHighSurrogate(random);
    }
    String string = new String(chars);
    assertEquals(hashFunction.hashUnencodedChars(string),
        hashFunction.newHasher().putUnencodedChars(string).hash());
  }

  static char randomLowSurrogate(Random random) {
    return (char) (Character.MIN_LOW_SURROGATE
        + random.nextInt(Character.MAX_LOW_SURROGATE - Character.MIN_LOW_SURROGATE + 1));
  }

  static char randomHighSurrogate(Random random) {
    return (char) (Character.MIN_HIGH_SURROGATE
        + random.nextInt(Character.MAX_HIGH_SURROGATE - Character.MIN_HIGH_SURROGATE + 1));
  }
}

Other Java examples (source code examples)

Here is a short list of links related to this Java HashTestUtils.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.