alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

HSQLDB example source code file (DoubleIntIndex.java)

This example HSQLDB source code file (DoubleIntIndex.java) is included in the DevDaily.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Java - HSQLDB tags/keywords

doubleintindex, doubleintindex, indexoutofboundsexception, indexoutofboundsexception, intlookup, m, m, methode, nosuchelementexception, nosuchelementexception, tri-median, util

The HSQLDB DoubleIntIndex.java source code

/* Copyright (c) 2001-2008, The HSQL Development Group
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright notice, this
 * list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * Neither the name of the HSQL Development Group nor the names of its
 * contributors may be used to endorse or promote products derived from this
 * software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL HSQL DEVELOPMENT GROUP, HSQLDB.ORG,
 * OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */


package org.hsqldb.lib;

import java.util.NoSuchElementException;

/**
 * Maintains an ordered  integer->integer lookup table, consisting of two
 * columns, one for keys, the other for values.
 *
 * The table is sorted on either the key or value column, depending on the calls to
 * setKeysSearchTarget() or setValuesSearchTarget(). By default, the table is
 * sorted on values.<p>
 *
 * findXXX() methods return the array index into the list
 * pair containing a matching key or value, or  or -1 if not found.<p>
 *
 * Sorting methods originally contributed by Tony Lai.
 *
 * @author Fred Toussi (fredt@users dot sourceforge.net)
 * @version 1.8.0
 * @since 1.8.0
 */
public class DoubleIntIndex implements IntLookup {

    private int           count = 0;
    private int           capacity;
    private boolean       sorted       = true;
    private boolean       sortOnValues = true;
    private boolean       hasChanged;
    private final boolean fixedSize;
    private int[]         keys;
    private int[]         values;

//
    private int targetSearchValue;

    public DoubleIntIndex(int capacity, boolean fixedSize) {

        this.capacity  = capacity;
        keys           = new int[capacity];
        values         = new int[capacity];
        this.fixedSize = fixedSize;
        hasChanged     = true;
    }

    public synchronized int getKey(int i) {

        if (i < 0 || i >= count) {
            throw new IndexOutOfBoundsException();
        }

        return keys[i];
    }

    public synchronized int getValue(int i) {

        if (i < 0 || i >= count) {
            throw new IndexOutOfBoundsException();
        }

        return values[i];
    }

    /**
     * Modifies an existing pair.
     * @param i the index
     * @param key the key
     */
    public synchronized void setKey(int i, int key) {

        if (i < 0 || i >= count) {
            throw new IndexOutOfBoundsException();
        }

        if (!sortOnValues) {
            sorted = false;
        }

        keys[i] = key;
    }

    /**
     * Modifies an existing pair.
     * @param i the index
     * @param value the value
     */
    public synchronized void setValue(int i, int value) {

        if (i < 0 || i >= count) {
            throw new IndexOutOfBoundsException();
        }

        if (sortOnValues) {
            sorted = false;
        }

        values[i] = value;
    }

    public synchronized int size() {
        return count;
    }

    public synchronized int capacity() {
        return capacity;
    }

    /**
     * Adds a pair into the table.
     *
     * @param key the key
     * @param value the value
     * @return true or false depending on success
     */
    public synchronized boolean addUnsorted(int key, int value) {

        if (count == capacity) {
            if (fixedSize) {
                return false;
            } else {
                doubleCapacity();
            }
        }

        if (sorted && count != 0) {
            if (sortOnValues) {
                if (value < values[count - 1]) {
                    sorted = false;
                }
            } else {
                if (value < keys[count - 1]) {
                    sorted = false;
                }
            }
        }

        hasChanged    = true;
        keys[count]   = key;
        values[count] = value;

        count++;

        return true;
    }

    /**
     * Adds a key, value pair into the table with the guarantee that the key
     * is equal or larger than the largest existing key. This prevents a sort
     * from taking place on next call to find()
     *
     * @param key the key
     * @param value the value
     * @return true or false depending on success
     */
    public synchronized boolean addSorted(int key, int value) {

        if (count == capacity) {
            if (fixedSize) {
                return false;
            } else {
                doubleCapacity();
            }
        }

        if (count != 0 && value < values[count - 1]) {
            return false;
        }

        hasChanged    = true;
        keys[count]   = key;
        values[count] = value;

        count++;

        return true;
    }

    /**
     * Adds a pair, ensuring no duplicate key xor value already exists in the
     * current search target column.
     * @param key the key
     * @param value the value
     * @return true or false depending on success
     */
    public synchronized boolean addUnique(int key, int value) {

        if (count == capacity) {
            if (fixedSize) {
                return false;
            } else {
                doubleCapacity();
            }
        }

        if (!sorted) {
            fastQuickSort();
        }

        targetSearchValue = sortOnValues ? value
                                         : key;

        int i = binaryEmptySlotSearch();

        if (i == -1) {
            return false;
        }

        hasChanged = true;

        if (count != i) {
            moveRows(i, i + 1, count - i);
        }

        keys[i]   = key;
        values[i] = value;

        count++;

        return true;
    }

    /**
     * Adds a pair, maintaining sorted order
     * current search target column.
     * @param key the key
     * @param value the value
     * @return true or false depending on success
     */
    public synchronized boolean add(int key, int value) {

        if (count == capacity) {
            if (fixedSize) {
                return false;
            } else {
                doubleCapacity();
            }
        }

        if (!sorted) {
            fastQuickSort();
        }

        targetSearchValue = sortOnValues ? value
                                         : key;

        int i = binarySlotSearch();

        if (i == -1) {
            return false;
        }

        hasChanged = true;

        if (count != i) {
            moveRows(i, i + 1, count - i);
        }

        keys[i]   = key;
        values[i] = value;

        count++;

        return true;
    }

    public int lookupFirstEqual(int key) throws NoSuchElementException {

        if (sortOnValues) {
            sorted       = false;
            sortOnValues = false;
        }

        int i = findFirstEqualKeyIndex(key);

        if (i == -1) {
            throw new NoSuchElementException();
        }

        return getValue(i);
    }

    public int lookupFirstGreaterEqual(int key)
    throws NoSuchElementException {

        if (sortOnValues) {
            sorted       = false;
            sortOnValues = false;
        }

        int i = findFirstGreaterEqualKeyIndex(key);

        if (i == -1) {
            throw new NoSuchElementException();
        }

        return getValue(i);
    }

    public synchronized void setValuesSearchTarget() {

        if (!sortOnValues) {
            sorted = false;
        }

        sortOnValues = true;
    }

    public synchronized void setKeysSearchTarget() {

        if (sortOnValues) {
            sorted = false;
        }

        sortOnValues = false;
    }

    /**
     * @param value the value
     * @return the index
     */
    public synchronized int findFirstGreaterEqualKeyIndex(int value) {

        int index = findFirstGreaterEqualSlotIndex(value);

        return index == count ? -1
                              : index;
    }

    /**
     * @param value the value
     * @return the index
     */
    public synchronized int findFirstEqualKeyIndex(int value) {

        if (!sorted) {
            fastQuickSort();
        }

        targetSearchValue = value;

        return binaryFirstSearch();
    }

    /**
     * This method is similar to findFirstGreaterEqualKeyIndex(int) but
     * returns the index of the empty row past the end of the array if
     * the search value is larger than all the values / keys in the searched
     * column.
     * @param value the value
     * @return the index
     */
    public synchronized int findFirstGreaterEqualSlotIndex(int value) {

        if (!sorted) {
            fastQuickSort();
        }

        targetSearchValue = value;

        return binarySlotSearch();
    }

    /**
     * Returns the index of the lowest element == the given search target,
     * or -1
     * @return index or -1 if not found
     */
    private int binaryFirstSearch() {

        int low     = 0;
        int high    = count;
        int mid     = 0;
        int compare = 0;
        int found   = count;

        while (low < high) {
            mid     = (low + high) / 2;
            compare = compare(mid);

            if (compare < 0) {
                high = mid;
            } else if (compare > 0) {
                low = mid + 1;
            } else {
                high  = mid;
                found = mid;
            }
        }

        return found == count ? -1
                              : found;
    }

    /**
     * Returns the index of the lowest element > the given search target
     *     @return the index
     */
    private int binaryGreaterSearch() {

        int low     = 0;
        int high    = count;
        int mid     = 0;
        int compare = 0;

        while (low < high) {
            mid     = (low + high) / 2;
            compare = compare(mid);

            if (compare < 0) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        return low == count ? -1
                            : low;
    }

    /**
     * Returns the index of the lowest element >= the given search target,
     * or count
     *     @return the index
     */
    private int binarySlotSearch() {

        int low     = 0;
        int high    = count;
        int mid     = 0;
        int compare = 0;

        while (low < high) {
            mid     = (low + high) / 2;
            compare = compare(mid);

            if (compare <= 0) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        return low;
    }

    /**
     * Returns the index of the lowest element > the given search target
     * or count or -1 if target is found
     * @return the index
     */
    private int binaryEmptySlotSearch() {

        int low     = 0;
        int high    = count;
        int mid     = 0;
        int compare = 0;

        while (low < high) {
            mid     = (low + high) / 2;
            compare = compare(mid);

            if (compare < 0) {
                high = mid;
            } else if (compare > 0) {
                low = mid + 1;
            } else {
                return -1;
            }
        }

        return low;
    }

    private synchronized void fastQuickSort() {

        quickSort(0, count - 1);
        insertionSort(0, count - 1);

        sorted = true;
    }

    private void quickSort(int l, int r) {

        int M = 4;
        int i;
        int j;
        int v;

        if ((r - l) > M) {
            i = (r + l) / 2;

            if (lessThan(i, l)) {
                swap(l, i);    // Tri-Median Methode!
            }

            if (lessThan(r, l)) {
                swap(l, r);
            }

            if (lessThan(r, i)) {
                swap(i, r);
            }

            j = r - 1;

            swap(i, j);

            i = l;
            v = j;

            for (;;) {
                while (lessThan(++i, v)) {}

                while (lessThan(v, --j)) {}

                if (j < i) {
                    break;
                }

                swap(i, j);
            }

            swap(i, r - 1);
            quickSort(l, j);
            quickSort(i + 1, r);
        }
    }

    private void insertionSort(int lo0, int hi0) {

        int i;
        int j;

        for (i = lo0 + 1; i <= hi0; i++) {
            j = i;

            while ((j > lo0) && lessThan(i, j - 1)) {
                j--;
            }

            if (i != j) {
                moveAndInsertRow(i, j);
            }
        }
    }

    private void moveAndInsertRow(int i, int j) {

        int col1 = keys[i];
        int col2 = values[i];

        moveRows(j, j + 1, i - j);

        keys[j]   = col1;
        values[j] = col2;
    }

    private void doubleCapacity() {

        keys     = (int[]) ArrayUtil.resizeArray(keys, capacity * 2);
        values   = (int[]) ArrayUtil.resizeArray(values, capacity * 2);
        capacity *= 2;
    }

    private void swap(int i1, int i2) {

        int col1 = keys[i1];
        int col2 = values[i1];

        keys[i1]   = keys[i2];
        values[i1] = values[i2];
        keys[i2]   = col1;
        values[i2] = col2;
    }

    private void moveRows(int fromIndex, int toIndex, int rows) {
        System.arraycopy(keys, fromIndex, keys, toIndex, rows);
        System.arraycopy(values, fromIndex, values, toIndex, rows);
    }

    public void removeRange(int start, int limit) {

        moveRows(limit, start, count - limit);

        count -= (limit - start);
    }

    public void removeAll() {

        hasChanged = true;

        ArrayUtil.clearArray(ArrayUtil.CLASS_CODE_INT, keys, 0, count);
        ArrayUtil.clearArray(ArrayUtil.CLASS_CODE_INT, values, 0, count);

        count = 0;
    }

    /**
     * Check if targeted column value in the row indexed i is less than the
     * search target object.
     * @param i the index
     * @return -1, 0 or +1
     */
    private int compare(int i) {

        if (sortOnValues) {
            if (targetSearchValue > values[i]) {
                return 1;
            } else if (targetSearchValue < values[i]) {
                return -1;
            }
        } else {
            if (targetSearchValue > keys[i]) {
                return 1;
            } else if (targetSearchValue < keys[i]) {
                return -1;
            }
        }

        return 0;
    }

    public final synchronized void remove(int position) {

        hasChanged = true;

        moveRows(position + 1, position, count - position - 1);

        count--;

        keys[count]   = 0;
        values[count] = 0;
    }

    /**
     * Check if row indexed i is less than row indexed j
     * @param i the first index
     * @param j the second index
     * @return true or false
     */
    private boolean lessThan(int i, int j) {

        if (sortOnValues) {
            if (values[i] < values[j]) {
                return true;
            }
        } else {
            if (keys[i] < keys[j]) {
                return true;
            }
        }

        return false;
    }
}

Other HSQLDB examples (source code examples)

Here is a short list of links related to this HSQLDB DoubleIntIndex.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.