|
jfreechart example source code file (Regression.java)
The jfreechart Regression.java source code/* =========================================================== * JFreeChart : a free chart library for the Java(tm) platform * =========================================================== * * (C) Copyright 2000-2008, by Object Refinery Limited and Contributors. * * Project Info: http://www.jfree.org/jfreechart/index.html * * This library is free software; you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or * (at your option) any later version. * * This library is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public * License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, * USA. * * [Java is a trademark or registered trademark of Sun Microsystems, Inc. * in the United States and other countries.] * * --------------- * Regression.java * --------------- * (C) Copyright 2002-2008, by Object Refinery Limited. * * Original Author: David Gilbert (for Object Refinery Limited); * Contributor(s): -; * * Changes * ------- * 30-Sep-2002 : Version 1 (DG); * 18-Aug-2003 : Added 'abstract' (DG); * 15-Jul-2004 : Switched getX() with getXValue() and getY() with * getYValue() (DG); * */ package org.jfree.data.statistics; import org.jfree.data.xy.XYDataset; /** * A utility class for fitting regression curves to data. */ public abstract class Regression { /** * Returns the parameters 'a' and 'b' for an equation y = a + bx, fitted to * the data using ordinary least squares regression. The result is * returned as a double[], where result[0] --> a, and result[1] --> b. * * @param data the data. * * @return The parameters. */ public static double[] getOLSRegression(double[][] data) { int n = data.length; if (n < 2) { throw new IllegalArgumentException("Not enough data."); } double sumX = 0; double sumY = 0; double sumXX = 0; double sumXY = 0; for (int i = 0; i < n; i++) { double x = data[i][0]; double y = data[i][1]; sumX += x; sumY += y; double xx = x * x; sumXX += xx; double xy = x * y; sumXY += xy; } double sxx = sumXX - (sumX * sumX) / n; double sxy = sumXY - (sumX * sumY) / n; double xbar = sumX / n; double ybar = sumY / n; double[] result = new double[2]; result[1] = sxy / sxx; result[0] = ybar - result[1] * xbar; return result; } /** * Returns the parameters 'a' and 'b' for an equation y = a + bx, fitted to * the data using ordinary least squares regression. The result is returned * as a double[], where result[0] --> a, and result[1] --> b. * * @param data the data. * @param series the series (zero-based index). * * @return The parameters. */ public static double[] getOLSRegression(XYDataset data, int series) { int n = data.getItemCount(series); if (n < 2) { throw new IllegalArgumentException("Not enough data."); } double sumX = 0; double sumY = 0; double sumXX = 0; double sumXY = 0; for (int i = 0; i < n; i++) { double x = data.getXValue(series, i); double y = data.getYValue(series, i); sumX += x; sumY += y; double xx = x * x; sumXX += xx; double xy = x * y; sumXY += xy; } double sxx = sumXX - (sumX * sumX) / n; double sxy = sumXY - (sumX * sumY) / n; double xbar = sumX / n; double ybar = sumY / n; double[] result = new double[2]; result[1] = sxy / sxx; result[0] = ybar - result[1] * xbar; return result; } /** * Returns the parameters 'a' and 'b' for an equation y = ax^b, fitted to * the data using a power regression equation. The result is returned as * an array, where double[0] --> a, and double[1] --> b. * * @param data the data. * * @return The parameters. */ public static double[] getPowerRegression(double[][] data) { int n = data.length; if (n < 2) { throw new IllegalArgumentException("Not enough data."); } double sumX = 0; double sumY = 0; double sumXX = 0; double sumXY = 0; for (int i = 0; i < n; i++) { double x = Math.log(data[i][0]); double y = Math.log(data[i][1]); sumX += x; sumY += y; double xx = x * x; sumXX += xx; double xy = x * y; sumXY += xy; } double sxx = sumXX - (sumX * sumX) / n; double sxy = sumXY - (sumX * sumY) / n; double xbar = sumX / n; double ybar = sumY / n; double[] result = new double[2]; result[1] = sxy / sxx; result[0] = Math.pow(Math.exp(1.0), ybar - result[1] * xbar); return result; } /** * Returns the parameters 'a' and 'b' for an equation y = ax^b, fitted to * the data using a power regression equation. The result is returned as * an array, where double[0] --> a, and double[1] --> b. * * @param data the data. * @param series the series to fit the regression line against. * * @return The parameters. */ public static double[] getPowerRegression(XYDataset data, int series) { int n = data.getItemCount(series); if (n < 2) { throw new IllegalArgumentException("Not enough data."); } double sumX = 0; double sumY = 0; double sumXX = 0; double sumXY = 0; for (int i = 0; i < n; i++) { double x = Math.log(data.getXValue(series, i)); double y = Math.log(data.getYValue(series, i)); sumX += x; sumY += y; double xx = x * x; sumXX += xx; double xy = x * y; sumXY += xy; } double sxx = sumXX - (sumX * sumX) / n; double sxy = sumXY - (sumX * sumY) / n; double xbar = sumX / n; double ybar = sumY / n; double[] result = new double[2]; result[1] = sxy / sxx; result[0] = Math.pow(Math.exp(1.0), ybar - result[1] * xbar); return result; } } Other jfreechart examples (source code examples)Here is a short list of links related to this jfreechart Regression.java source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.