|
Java example source code file (sharedRuntime_x86_32.cpp)
The sharedRuntime_x86_32.cpp Java example source code/* * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "asm/macroAssembler.hpp" #include "asm/macroAssembler.inline.hpp" #include "code/debugInfoRec.hpp" #include "code/icBuffer.hpp" #include "code/vtableStubs.hpp" #include "interpreter/interpreter.hpp" #include "oops/compiledICHolder.hpp" #include "prims/jvmtiRedefineClassesTrace.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/vframeArray.hpp" #include "vmreg_x86.inline.hpp" #ifdef COMPILER1 #include "c1/c1_Runtime1.hpp" #endif #ifdef COMPILER2 #include "opto/runtime.hpp" #endif #define __ masm-> const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size; class RegisterSaver { // Capture info about frame layout #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off enum layout { fpu_state_off = 0, fpu_state_end = fpu_state_off+FPUStateSizeInWords, st0_off, st0H_off, st1_off, st1H_off, st2_off, st2H_off, st3_off, st3H_off, st4_off, st4H_off, st5_off, st5H_off, st6_off, st6H_off, st7_off, st7H_off, xmm_off, DEF_XMM_OFFS(0), DEF_XMM_OFFS(1), DEF_XMM_OFFS(2), DEF_XMM_OFFS(3), DEF_XMM_OFFS(4), DEF_XMM_OFFS(5), DEF_XMM_OFFS(6), DEF_XMM_OFFS(7), flags_off = xmm7_off + 16/BytesPerInt + 1, // 16-byte stack alignment fill word rdi_off, rsi_off, ignore_off, // extra copy of rbp, rsp_off, rbx_off, rdx_off, rcx_off, rax_off, // The frame sender code expects that rbp will be in the "natural" place and // will override any oopMap setting for it. We must therefore force the layout // so that it agrees with the frame sender code. rbp_off, return_off, // slot for return address reg_save_size }; enum { FPU_regs_live = flags_off - fpu_state_end }; public: static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool verify_fpu = true, bool save_vectors = false); static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false); static int rax_offset() { return rax_off; } static int rbx_offset() { return rbx_off; } // Offsets into the register save area // Used by deoptimization when it is managing result register // values on its own static int raxOffset(void) { return rax_off; } static int rdxOffset(void) { return rdx_off; } static int rbxOffset(void) { return rbx_off; } static int xmm0Offset(void) { return xmm0_off; } // This really returns a slot in the fp save area, which one is not important static int fpResultOffset(void) { return st0_off; } // During deoptimization only the result register need to be restored // all the other values have already been extracted. static void restore_result_registers(MacroAssembler* masm); }; OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool verify_fpu, bool save_vectors) { int vect_words = 0; #ifdef COMPILER2 if (save_vectors) { assert(UseAVX > 0, "256bit vectors are supported only with AVX"); assert(MaxVectorSize == 32, "only 256bit vectors are supported now"); // Save upper half of YMM registes vect_words = 8 * 16 / wordSize; additional_frame_words += vect_words; } #else assert(!save_vectors, "vectors are generated only by C2"); #endif int frame_size_in_bytes = (reg_save_size + additional_frame_words) * wordSize; int frame_words = frame_size_in_bytes / wordSize; *total_frame_words = frame_words; assert(FPUStateSizeInWords == 27, "update stack layout"); // save registers, fpu state, and flags // We assume caller has already has return address slot on the stack // We push epb twice in this sequence because we want the real rbp, // to be under the return like a normal enter and we want to use pusha // We push by hand instead of pusing push __ enter(); __ pusha(); __ pushf(); __ subptr(rsp,FPU_regs_live*wordSize); // Push FPU registers space __ push_FPU_state(); // Save FPU state & init if (verify_fpu) { // Some stubs may have non standard FPU control word settings so // only check and reset the value when it required to be the // standard value. The safepoint blob in particular can be used // in methods which are using the 24 bit control word for // optimized float math. #ifdef ASSERT // Make sure the control word has the expected value Label ok; __ cmpw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std()); __ jccb(Assembler::equal, ok); __ stop("corrupted control word detected"); __ bind(ok); #endif // Reset the control word to guard against exceptions being unmasked // since fstp_d can cause FPU stack underflow exceptions. Write it // into the on stack copy and then reload that to make sure that the // current and future values are correct. __ movw(Address(rsp, 0), StubRoutines::fpu_cntrl_wrd_std()); } __ frstor(Address(rsp, 0)); if (!verify_fpu) { // Set the control word so that exceptions are masked for the // following code. __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std())); } // Save the FPU registers in de-opt-able form __ fstp_d(Address(rsp, st0_off*wordSize)); // st(0) __ fstp_d(Address(rsp, st1_off*wordSize)); // st(1) __ fstp_d(Address(rsp, st2_off*wordSize)); // st(2) __ fstp_d(Address(rsp, st3_off*wordSize)); // st(3) __ fstp_d(Address(rsp, st4_off*wordSize)); // st(4) __ fstp_d(Address(rsp, st5_off*wordSize)); // st(5) __ fstp_d(Address(rsp, st6_off*wordSize)); // st(6) __ fstp_d(Address(rsp, st7_off*wordSize)); // st(7) if( UseSSE == 1 ) { // Save the XMM state __ movflt(Address(rsp,xmm0_off*wordSize),xmm0); __ movflt(Address(rsp,xmm1_off*wordSize),xmm1); __ movflt(Address(rsp,xmm2_off*wordSize),xmm2); __ movflt(Address(rsp,xmm3_off*wordSize),xmm3); __ movflt(Address(rsp,xmm4_off*wordSize),xmm4); __ movflt(Address(rsp,xmm5_off*wordSize),xmm5); __ movflt(Address(rsp,xmm6_off*wordSize),xmm6); __ movflt(Address(rsp,xmm7_off*wordSize),xmm7); } else if( UseSSE >= 2 ) { // Save whole 128bit (16 bytes) XMM regiters __ movdqu(Address(rsp,xmm0_off*wordSize),xmm0); __ movdqu(Address(rsp,xmm1_off*wordSize),xmm1); __ movdqu(Address(rsp,xmm2_off*wordSize),xmm2); __ movdqu(Address(rsp,xmm3_off*wordSize),xmm3); __ movdqu(Address(rsp,xmm4_off*wordSize),xmm4); __ movdqu(Address(rsp,xmm5_off*wordSize),xmm5); __ movdqu(Address(rsp,xmm6_off*wordSize),xmm6); __ movdqu(Address(rsp,xmm7_off*wordSize),xmm7); } if (vect_words > 0) { assert(vect_words*wordSize == 128, ""); __ subptr(rsp, 128); // Save upper half of YMM registes __ vextractf128h(Address(rsp, 0),xmm0); __ vextractf128h(Address(rsp, 16),xmm1); __ vextractf128h(Address(rsp, 32),xmm2); __ vextractf128h(Address(rsp, 48),xmm3); __ vextractf128h(Address(rsp, 64),xmm4); __ vextractf128h(Address(rsp, 80),xmm5); __ vextractf128h(Address(rsp, 96),xmm6); __ vextractf128h(Address(rsp,112),xmm7); } // Set an oopmap for the call site. This oopmap will map all // oop-registers and debug-info registers as callee-saved. This // will allow deoptimization at this safepoint to find all possible // debug-info recordings, as well as let GC find all oops. OopMapSet *oop_maps = new OopMapSet(); OopMap* map = new OopMap( frame_words, 0 ); #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_words) map->set_callee_saved(STACK_OFFSET( rax_off), rax->as_VMReg()); map->set_callee_saved(STACK_OFFSET( rcx_off), rcx->as_VMReg()); map->set_callee_saved(STACK_OFFSET( rdx_off), rdx->as_VMReg()); map->set_callee_saved(STACK_OFFSET( rbx_off), rbx->as_VMReg()); // rbp, location is known implicitly, no oopMap map->set_callee_saved(STACK_OFFSET( rsi_off), rsi->as_VMReg()); map->set_callee_saved(STACK_OFFSET( rdi_off), rdi->as_VMReg()); map->set_callee_saved(STACK_OFFSET(st0_off), as_FloatRegister(0)->as_VMReg()); map->set_callee_saved(STACK_OFFSET(st1_off), as_FloatRegister(1)->as_VMReg()); map->set_callee_saved(STACK_OFFSET(st2_off), as_FloatRegister(2)->as_VMReg()); map->set_callee_saved(STACK_OFFSET(st3_off), as_FloatRegister(3)->as_VMReg()); map->set_callee_saved(STACK_OFFSET(st4_off), as_FloatRegister(4)->as_VMReg()); map->set_callee_saved(STACK_OFFSET(st5_off), as_FloatRegister(5)->as_VMReg()); map->set_callee_saved(STACK_OFFSET(st6_off), as_FloatRegister(6)->as_VMReg()); map->set_callee_saved(STACK_OFFSET(st7_off), as_FloatRegister(7)->as_VMReg()); map->set_callee_saved(STACK_OFFSET(xmm0_off), xmm0->as_VMReg()); map->set_callee_saved(STACK_OFFSET(xmm1_off), xmm1->as_VMReg()); map->set_callee_saved(STACK_OFFSET(xmm2_off), xmm2->as_VMReg()); map->set_callee_saved(STACK_OFFSET(xmm3_off), xmm3->as_VMReg()); map->set_callee_saved(STACK_OFFSET(xmm4_off), xmm4->as_VMReg()); map->set_callee_saved(STACK_OFFSET(xmm5_off), xmm5->as_VMReg()); map->set_callee_saved(STACK_OFFSET(xmm6_off), xmm6->as_VMReg()); map->set_callee_saved(STACK_OFFSET(xmm7_off), xmm7->as_VMReg()); // %%% This is really a waste but we'll keep things as they were for now if (true) { #define NEXTREG(x) (x)->as_VMReg()->next() map->set_callee_saved(STACK_OFFSET(st0H_off), NEXTREG(as_FloatRegister(0))); map->set_callee_saved(STACK_OFFSET(st1H_off), NEXTREG(as_FloatRegister(1))); map->set_callee_saved(STACK_OFFSET(st2H_off), NEXTREG(as_FloatRegister(2))); map->set_callee_saved(STACK_OFFSET(st3H_off), NEXTREG(as_FloatRegister(3))); map->set_callee_saved(STACK_OFFSET(st4H_off), NEXTREG(as_FloatRegister(4))); map->set_callee_saved(STACK_OFFSET(st5H_off), NEXTREG(as_FloatRegister(5))); map->set_callee_saved(STACK_OFFSET(st6H_off), NEXTREG(as_FloatRegister(6))); map->set_callee_saved(STACK_OFFSET(st7H_off), NEXTREG(as_FloatRegister(7))); map->set_callee_saved(STACK_OFFSET(xmm0H_off), NEXTREG(xmm0)); map->set_callee_saved(STACK_OFFSET(xmm1H_off), NEXTREG(xmm1)); map->set_callee_saved(STACK_OFFSET(xmm2H_off), NEXTREG(xmm2)); map->set_callee_saved(STACK_OFFSET(xmm3H_off), NEXTREG(xmm3)); map->set_callee_saved(STACK_OFFSET(xmm4H_off), NEXTREG(xmm4)); map->set_callee_saved(STACK_OFFSET(xmm5H_off), NEXTREG(xmm5)); map->set_callee_saved(STACK_OFFSET(xmm6H_off), NEXTREG(xmm6)); map->set_callee_saved(STACK_OFFSET(xmm7H_off), NEXTREG(xmm7)); #undef NEXTREG #undef STACK_OFFSET } return map; } void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) { // Recover XMM & FPU state int additional_frame_bytes = 0; #ifdef COMPILER2 if (restore_vectors) { assert(UseAVX > 0, "256bit vectors are supported only with AVX"); assert(MaxVectorSize == 32, "only 256bit vectors are supported now"); additional_frame_bytes = 128; } #else assert(!restore_vectors, "vectors are generated only by C2"); #endif if (UseSSE == 1) { assert(additional_frame_bytes == 0, ""); __ movflt(xmm0,Address(rsp,xmm0_off*wordSize)); __ movflt(xmm1,Address(rsp,xmm1_off*wordSize)); __ movflt(xmm2,Address(rsp,xmm2_off*wordSize)); __ movflt(xmm3,Address(rsp,xmm3_off*wordSize)); __ movflt(xmm4,Address(rsp,xmm4_off*wordSize)); __ movflt(xmm5,Address(rsp,xmm5_off*wordSize)); __ movflt(xmm6,Address(rsp,xmm6_off*wordSize)); __ movflt(xmm7,Address(rsp,xmm7_off*wordSize)); } else if (UseSSE >= 2) { #define STACK_ADDRESS(x) Address(rsp,(x)*wordSize + additional_frame_bytes) __ movdqu(xmm0,STACK_ADDRESS(xmm0_off)); __ movdqu(xmm1,STACK_ADDRESS(xmm1_off)); __ movdqu(xmm2,STACK_ADDRESS(xmm2_off)); __ movdqu(xmm3,STACK_ADDRESS(xmm3_off)); __ movdqu(xmm4,STACK_ADDRESS(xmm4_off)); __ movdqu(xmm5,STACK_ADDRESS(xmm5_off)); __ movdqu(xmm6,STACK_ADDRESS(xmm6_off)); __ movdqu(xmm7,STACK_ADDRESS(xmm7_off)); #undef STACK_ADDRESS } if (restore_vectors) { // Restore upper half of YMM registes. assert(additional_frame_bytes == 128, ""); __ vinsertf128h(xmm0, Address(rsp, 0)); __ vinsertf128h(xmm1, Address(rsp, 16)); __ vinsertf128h(xmm2, Address(rsp, 32)); __ vinsertf128h(xmm3, Address(rsp, 48)); __ vinsertf128h(xmm4, Address(rsp, 64)); __ vinsertf128h(xmm5, Address(rsp, 80)); __ vinsertf128h(xmm6, Address(rsp, 96)); __ vinsertf128h(xmm7, Address(rsp,112)); __ addptr(rsp, additional_frame_bytes); } __ pop_FPU_state(); __ addptr(rsp, FPU_regs_live*wordSize); // Pop FPU registers __ popf(); __ popa(); // Get the rbp, described implicitly by the frame sender code (no oopMap) __ pop(rbp); } void RegisterSaver::restore_result_registers(MacroAssembler* masm) { // Just restore result register. Only used by deoptimization. By // now any callee save register that needs to be restore to a c2 // caller of the deoptee has been extracted into the vframeArray // and will be stuffed into the c2i adapter we create for later // restoration so only result registers need to be restored here. // __ frstor(Address(rsp, 0)); // Restore fpu state // Recover XMM & FPU state if( UseSSE == 1 ) { __ movflt(xmm0, Address(rsp, xmm0_off*wordSize)); } else if( UseSSE >= 2 ) { __ movdbl(xmm0, Address(rsp, xmm0_off*wordSize)); } __ movptr(rax, Address(rsp, rax_off*wordSize)); __ movptr(rdx, Address(rsp, rdx_off*wordSize)); // Pop all of the register save are off the stack except the return address __ addptr(rsp, return_off * wordSize); } // Is vector's size (in bytes) bigger than a size saved by default? // 16 bytes XMM registers are saved by default using SSE2 movdqu instructions. // Note, MaxVectorSize == 0 with UseSSE < 2 and vectors are not generated. bool SharedRuntime::is_wide_vector(int size) { return size > 16; } // The java_calling_convention describes stack locations as ideal slots on // a frame with no abi restrictions. Since we must observe abi restrictions // (like the placement of the register window) the slots must be biased by // the following value. static int reg2offset_in(VMReg r) { // Account for saved rbp, and return address // This should really be in_preserve_stack_slots return (r->reg2stack() + 2) * VMRegImpl::stack_slot_size; } static int reg2offset_out(VMReg r) { return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; } // --------------------------------------------------------------------------- // Read the array of BasicTypes from a signature, and compute where the // arguments should go. Values in the VMRegPair regs array refer to 4-byte // quantities. Values less than SharedInfo::stack0 are registers, those above // refer to 4-byte stack slots. All stack slots are based off of the stack pointer // as framesizes are fixed. // VMRegImpl::stack0 refers to the first slot 0(sp). // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. Register // up to RegisterImpl::number_of_registers) are the 32-bit // integer registers. // Pass first two oop/int args in registers ECX and EDX. // Pass first two float/double args in registers XMM0 and XMM1. // Doubles have precedence, so if you pass a mix of floats and doubles // the doubles will grab the registers before the floats will. // Note: the INPUTS in sig_bt are in units of Java argument words, which are // either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit // units regardless of build. Of course for i486 there is no 64 bit build // --------------------------------------------------------------------------- // The compiled Java calling convention. // Pass first two oop/int args in registers ECX and EDX. // Pass first two float/double args in registers XMM0 and XMM1. // Doubles have precedence, so if you pass a mix of floats and doubles // the doubles will grab the registers before the floats will. int SharedRuntime::java_calling_convention(const BasicType *sig_bt, VMRegPair *regs, int total_args_passed, int is_outgoing) { uint stack = 0; // Starting stack position for args on stack // Pass first two oop/int args in registers ECX and EDX. uint reg_arg0 = 9999; uint reg_arg1 = 9999; // Pass first two float/double args in registers XMM0 and XMM1. // Doubles have precedence, so if you pass a mix of floats and doubles // the doubles will grab the registers before the floats will. // CNC - TURNED OFF FOR non-SSE. // On Intel we have to round all doubles (and most floats) at // call sites by storing to the stack in any case. // UseSSE=0 ==> Don't Use ==> 9999+0 // UseSSE=1 ==> Floats only ==> 9999+1 // UseSSE>=2 ==> Floats or doubles ==> 9999+2 enum { fltarg_dontuse = 9999+0, fltarg_float_only = 9999+1, fltarg_flt_dbl = 9999+2 }; uint fargs = (UseSSE>=2) ? 2 : UseSSE; uint freg_arg0 = 9999+fargs; uint freg_arg1 = 9999+fargs; // Pass doubles & longs aligned on the stack. First count stack slots for doubles int i; for( i = 0; i < total_args_passed; i++) { if( sig_bt[i] == T_DOUBLE ) { // first 2 doubles go in registers if( freg_arg0 == fltarg_flt_dbl ) freg_arg0 = i; else if( freg_arg1 == fltarg_flt_dbl ) freg_arg1 = i; else // Else double is passed low on the stack to be aligned. stack += 2; } else if( sig_bt[i] == T_LONG ) { stack += 2; } } int dstack = 0; // Separate counter for placing doubles // Now pick where all else goes. for( i = 0; i < total_args_passed; i++) { // From the type and the argument number (count) compute the location switch( sig_bt[i] ) { case T_SHORT: case T_CHAR: case T_BYTE: case T_BOOLEAN: case T_INT: case T_ARRAY: case T_OBJECT: case T_ADDRESS: if( reg_arg0 == 9999 ) { reg_arg0 = i; regs[i].set1(rcx->as_VMReg()); } else if( reg_arg1 == 9999 ) { reg_arg1 = i; regs[i].set1(rdx->as_VMReg()); } else { regs[i].set1(VMRegImpl::stack2reg(stack++)); } break; case T_FLOAT: if( freg_arg0 == fltarg_flt_dbl || freg_arg0 == fltarg_float_only ) { freg_arg0 = i; regs[i].set1(xmm0->as_VMReg()); } else if( freg_arg1 == fltarg_flt_dbl || freg_arg1 == fltarg_float_only ) { freg_arg1 = i; regs[i].set1(xmm1->as_VMReg()); } else { regs[i].set1(VMRegImpl::stack2reg(stack++)); } break; case T_LONG: assert(sig_bt[i+1] == T_VOID, "missing Half" ); regs[i].set2(VMRegImpl::stack2reg(dstack)); dstack += 2; break; case T_DOUBLE: assert(sig_bt[i+1] == T_VOID, "missing Half" ); if( freg_arg0 == (uint)i ) { regs[i].set2(xmm0->as_VMReg()); } else if( freg_arg1 == (uint)i ) { regs[i].set2(xmm1->as_VMReg()); } else { regs[i].set2(VMRegImpl::stack2reg(dstack)); dstack += 2; } break; case T_VOID: regs[i].set_bad(); break; break; default: ShouldNotReachHere(); break; } } // return value can be odd number of VMRegImpl stack slots make multiple of 2 return round_to(stack, 2); } // Patch the callers callsite with entry to compiled code if it exists. static void patch_callers_callsite(MacroAssembler *masm) { Label L; __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD); __ jcc(Assembler::equal, L); // Schedule the branch target address early. // Call into the VM to patch the caller, then jump to compiled callee // rax, isn't live so capture return address while we easily can __ movptr(rax, Address(rsp, 0)); __ pusha(); __ pushf(); if (UseSSE == 1) { __ subptr(rsp, 2*wordSize); __ movflt(Address(rsp, 0), xmm0); __ movflt(Address(rsp, wordSize), xmm1); } if (UseSSE >= 2) { __ subptr(rsp, 4*wordSize); __ movdbl(Address(rsp, 0), xmm0); __ movdbl(Address(rsp, 2*wordSize), xmm1); } #ifdef COMPILER2 // C2 may leave the stack dirty if not in SSE2+ mode if (UseSSE >= 2) { __ verify_FPU(0, "c2i transition should have clean FPU stack"); } else { __ empty_FPU_stack(); } #endif /* COMPILER2 */ // VM needs caller's callsite __ push(rax); // VM needs target method __ push(rbx); __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite))); __ addptr(rsp, 2*wordSize); if (UseSSE == 1) { __ movflt(xmm0, Address(rsp, 0)); __ movflt(xmm1, Address(rsp, wordSize)); __ addptr(rsp, 2*wordSize); } if (UseSSE >= 2) { __ movdbl(xmm0, Address(rsp, 0)); __ movdbl(xmm1, Address(rsp, 2*wordSize)); __ addptr(rsp, 4*wordSize); } __ popf(); __ popa(); __ bind(L); } static void move_c2i_double(MacroAssembler *masm, XMMRegister r, int st_off) { int next_off = st_off - Interpreter::stackElementSize; __ movdbl(Address(rsp, next_off), r); } static void gen_c2i_adapter(MacroAssembler *masm, int total_args_passed, int comp_args_on_stack, const BasicType *sig_bt, const VMRegPair *regs, Label& skip_fixup) { // Before we get into the guts of the C2I adapter, see if we should be here // at all. We've come from compiled code and are attempting to jump to the // interpreter, which means the caller made a static call to get here // (vcalls always get a compiled target if there is one). Check for a // compiled target. If there is one, we need to patch the caller's call. patch_callers_callsite(masm); __ bind(skip_fixup); #ifdef COMPILER2 // C2 may leave the stack dirty if not in SSE2+ mode if (UseSSE >= 2) { __ verify_FPU(0, "c2i transition should have clean FPU stack"); } else { __ empty_FPU_stack(); } #endif /* COMPILER2 */ // Since all args are passed on the stack, total_args_passed * interpreter_ // stack_element_size is the // space we need. int extraspace = total_args_passed * Interpreter::stackElementSize; // Get return address __ pop(rax); // set senderSP value __ movptr(rsi, rsp); __ subptr(rsp, extraspace); // Now write the args into the outgoing interpreter space for (int i = 0; i < total_args_passed; i++) { if (sig_bt[i] == T_VOID) { assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half"); continue; } // st_off points to lowest address on stack. int st_off = ((total_args_passed - 1) - i) * Interpreter::stackElementSize; int next_off = st_off - Interpreter::stackElementSize; // Say 4 args: // i st_off // 0 12 T_LONG // 1 8 T_VOID // 2 4 T_OBJECT // 3 0 T_BOOL VMReg r_1 = regs[i].first(); VMReg r_2 = regs[i].second(); if (!r_1->is_valid()) { assert(!r_2->is_valid(), ""); continue; } if (r_1->is_stack()) { // memory to memory use fpu stack top int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace; if (!r_2->is_valid()) { __ movl(rdi, Address(rsp, ld_off)); __ movptr(Address(rsp, st_off), rdi); } else { // ld_off == LSW, ld_off+VMRegImpl::stack_slot_size == MSW // st_off == MSW, st_off-wordSize == LSW __ movptr(rdi, Address(rsp, ld_off)); __ movptr(Address(rsp, next_off), rdi); #ifndef _LP64 __ movptr(rdi, Address(rsp, ld_off + wordSize)); __ movptr(Address(rsp, st_off), rdi); #else #ifdef ASSERT // Overwrite the unused slot with known junk __ mov64(rax, CONST64(0xdeadffffdeadaaaa)); __ movptr(Address(rsp, st_off), rax); #endif /* ASSERT */ #endif // _LP64 } } else if (r_1->is_Register()) { Register r = r_1->as_Register(); if (!r_2->is_valid()) { __ movl(Address(rsp, st_off), r); } else { // long/double in gpr NOT_LP64(ShouldNotReachHere()); // Two VMRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG // T_DOUBLE and T_LONG use two slots in the interpreter if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { // long/double in gpr #ifdef ASSERT // Overwrite the unused slot with known junk LP64_ONLY(__ mov64(rax, CONST64(0xdeadffffdeadaaab))); __ movptr(Address(rsp, st_off), rax); #endif /* ASSERT */ __ movptr(Address(rsp, next_off), r); } else { __ movptr(Address(rsp, st_off), r); } } } else { assert(r_1->is_XMMRegister(), ""); if (!r_2->is_valid()) { __ movflt(Address(rsp, st_off), r_1->as_XMMRegister()); } else { assert(sig_bt[i] == T_DOUBLE || sig_bt[i] == T_LONG, "wrong type"); move_c2i_double(masm, r_1->as_XMMRegister(), st_off); } } } // Schedule the branch target address early. __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset()))); // And repush original return address __ push(rax); __ jmp(rcx); } static void move_i2c_double(MacroAssembler *masm, XMMRegister r, Register saved_sp, int ld_off) { int next_val_off = ld_off - Interpreter::stackElementSize; __ movdbl(r, Address(saved_sp, next_val_off)); } static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg, address code_start, address code_end, Label& L_ok) { Label L_fail; __ lea(temp_reg, ExternalAddress(code_start)); __ cmpptr(pc_reg, temp_reg); __ jcc(Assembler::belowEqual, L_fail); __ lea(temp_reg, ExternalAddress(code_end)); __ cmpptr(pc_reg, temp_reg); __ jcc(Assembler::below, L_ok); __ bind(L_fail); } static void gen_i2c_adapter(MacroAssembler *masm, int total_args_passed, int comp_args_on_stack, const BasicType *sig_bt, const VMRegPair *regs) { // Note: rsi contains the senderSP on entry. We must preserve it since // we may do a i2c -> c2i transition if we lose a race where compiled // code goes non-entrant while we get args ready. // Adapters can be frameless because they do not require the caller // to perform additional cleanup work, such as correcting the stack pointer. // An i2c adapter is frameless because the *caller* frame, which is interpreted, // routinely repairs its own stack pointer (from interpreter_frame_last_sp), // even if a callee has modified the stack pointer. // A c2i adapter is frameless because the *callee* frame, which is interpreted, // routinely repairs its caller's stack pointer (from sender_sp, which is set // up via the senderSP register). // In other words, if *either* the caller or callee is interpreted, we can // get the stack pointer repaired after a call. // This is why c2i and i2c adapters cannot be indefinitely composed. // In particular, if a c2i adapter were to somehow call an i2c adapter, // both caller and callee would be compiled methods, and neither would // clean up the stack pointer changes performed by the two adapters. // If this happens, control eventually transfers back to the compiled // caller, but with an uncorrected stack, causing delayed havoc. // Pick up the return address __ movptr(rax, Address(rsp, 0)); if (VerifyAdapterCalls && (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) { // So, let's test for cascading c2i/i2c adapters right now. // assert(Interpreter::contains($return_addr) || // StubRoutines::contains($return_addr), // "i2c adapter must return to an interpreter frame"); __ block_comment("verify_i2c { "); Label L_ok; if (Interpreter::code() != NULL) range_check(masm, rax, rdi, Interpreter::code()->code_start(), Interpreter::code()->code_end(), L_ok); if (StubRoutines::code1() != NULL) range_check(masm, rax, rdi, StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(), L_ok); if (StubRoutines::code2() != NULL) range_check(masm, rax, rdi, StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(), L_ok); const char* msg = "i2c adapter must return to an interpreter frame"; __ block_comment(msg); __ stop(msg); __ bind(L_ok); __ block_comment("} verify_i2ce "); } // Must preserve original SP for loading incoming arguments because // we need to align the outgoing SP for compiled code. __ movptr(rdi, rsp); // Cut-out for having no stack args. Since up to 2 int/oop args are passed // in registers, we will occasionally have no stack args. int comp_words_on_stack = 0; if (comp_args_on_stack) { // Sig words on the stack are greater-than VMRegImpl::stack0. Those in // registers are below. By subtracting stack0, we either get a negative // number (all values in registers) or the maximum stack slot accessed. // int comp_args_on_stack = VMRegImpl::reg2stack(max_arg); // Convert 4-byte stack slots to words. comp_words_on_stack = round_to(comp_args_on_stack*4, wordSize)>>LogBytesPerWord; // Round up to miminum stack alignment, in wordSize comp_words_on_stack = round_to(comp_words_on_stack, 2); __ subptr(rsp, comp_words_on_stack * wordSize); } // Align the outgoing SP __ andptr(rsp, -(StackAlignmentInBytes)); // push the return address on the stack (note that pushing, rather // than storing it, yields the correct frame alignment for the callee) __ push(rax); // Put saved SP in another register const Register saved_sp = rax; __ movptr(saved_sp, rdi); // Will jump to the compiled code just as if compiled code was doing it. // Pre-load the register-jump target early, to schedule it better. __ movptr(rdi, Address(rbx, in_bytes(Method::from_compiled_offset()))); // Now generate the shuffle code. Pick up all register args and move the // rest through the floating point stack top. for (int i = 0; i < total_args_passed; i++) { if (sig_bt[i] == T_VOID) { // Longs and doubles are passed in native word order, but misaligned // in the 32-bit build. assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half"); continue; } // Pick up 0, 1 or 2 words from SP+offset. assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(), "scrambled load targets?"); // Load in argument order going down. int ld_off = (total_args_passed - i) * Interpreter::stackElementSize; // Point to interpreter value (vs. tag) int next_off = ld_off - Interpreter::stackElementSize; // // // VMReg r_1 = regs[i].first(); VMReg r_2 = regs[i].second(); if (!r_1->is_valid()) { assert(!r_2->is_valid(), ""); continue; } if (r_1->is_stack()) { // Convert stack slot to an SP offset (+ wordSize to account for return address ) int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize; // We can use rsi as a temp here because compiled code doesn't need rsi as an input // and if we end up going thru a c2i because of a miss a reasonable value of rsi // we be generated. if (!r_2->is_valid()) { // __ fld_s(Address(saved_sp, ld_off)); // __ fstp_s(Address(rsp, st_off)); __ movl(rsi, Address(saved_sp, ld_off)); __ movptr(Address(rsp, st_off), rsi); } else { // Interpreter local[n] == MSW, local[n+1] == LSW however locals // are accessed as negative so LSW is at LOW address // ld_off is MSW so get LSW // st_off is LSW (i.e. reg.first()) // __ fld_d(Address(saved_sp, next_off)); // __ fstp_d(Address(rsp, st_off)); // // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case // So we must adjust where to pick up the data to match the interpreter. // // Interpreter local[n] == MSW, local[n+1] == LSW however locals // are accessed as negative so LSW is at LOW address // ld_off is MSW so get LSW const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)? next_off : ld_off; __ movptr(rsi, Address(saved_sp, offset)); __ movptr(Address(rsp, st_off), rsi); #ifndef _LP64 __ movptr(rsi, Address(saved_sp, ld_off)); __ movptr(Address(rsp, st_off + wordSize), rsi); #endif // _LP64 } } else if (r_1->is_Register()) { // Register argument Register r = r_1->as_Register(); assert(r != rax, "must be different"); if (r_2->is_valid()) { // // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case // So we must adjust where to pick up the data to match the interpreter. const int offset = (NOT_LP64(true ||) sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)? next_off : ld_off; // this can be a misaligned move __ movptr(r, Address(saved_sp, offset)); #ifndef _LP64 assert(r_2->as_Register() != rax, "need another temporary register"); // Remember r_1 is low address (and LSB on x86) // So r_2 gets loaded from high address regardless of the platform __ movptr(r_2->as_Register(), Address(saved_sp, ld_off)); #endif // _LP64 } else { __ movl(r, Address(saved_sp, ld_off)); } } else { assert(r_1->is_XMMRegister(), ""); if (!r_2->is_valid()) { __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off)); } else { move_i2c_double(masm, r_1->as_XMMRegister(), saved_sp, ld_off); } } } // 6243940 We might end up in handle_wrong_method if // the callee is deoptimized as we race thru here. If that // happens we don't want to take a safepoint because the // caller frame will look interpreted and arguments are now // "compiled" so it is much better to make this transition // invisible to the stack walking code. Unfortunately if // we try and find the callee by normal means a safepoint // is possible. So we stash the desired callee in the thread // and the vm will find there should this case occur. __ get_thread(rax); __ movptr(Address(rax, JavaThread::callee_target_offset()), rbx); // move Method* to rax, in case we end up in an c2i adapter. // the c2i adapters expect Method* in rax, (c2) because c2's // resolve stubs return the result (the method) in rax,. // I'd love to fix this. __ mov(rax, rbx); __ jmp(rdi); } // --------------------------------------------------------------- AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm, int total_args_passed, int comp_args_on_stack, const BasicType *sig_bt, const VMRegPair *regs, AdapterFingerPrint* fingerprint) { address i2c_entry = __ pc(); gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs); // ------------------------------------------------------------------------- // Generate a C2I adapter. On entry we know rbx, holds the Method* during calls // to the interpreter. The args start out packed in the compiled layout. They // need to be unpacked into the interpreter layout. This will almost always // require some stack space. We grow the current (compiled) stack, then repack // the args. We finally end in a jump to the generic interpreter entry point. // On exit from the interpreter, the interpreter will restore our SP (lest the // compiled code, which relys solely on SP and not EBP, get sick). address c2i_unverified_entry = __ pc(); Label skip_fixup; Register holder = rax; Register receiver = rcx; Register temp = rbx; { Label missed; __ movptr(temp, Address(receiver, oopDesc::klass_offset_in_bytes())); __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset())); __ movptr(rbx, Address(holder, CompiledICHolder::holder_method_offset())); __ jcc(Assembler::notEqual, missed); // Method might have been compiled since the call site was patched to // interpreted if that is the case treat it as a miss so we can get // the call site corrected. __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD); __ jcc(Assembler::equal, skip_fixup); __ bind(missed); __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); } address c2i_entry = __ pc(); gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup); __ flush(); return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry); } int SharedRuntime::c_calling_convention(const BasicType *sig_bt, VMRegPair *regs, int total_args_passed) { // We return the amount of VMRegImpl stack slots we need to reserve for all // the arguments NOT counting out_preserve_stack_slots. uint stack = 0; // All arguments on stack for( int i = 0; i < total_args_passed; i++) { // From the type and the argument number (count) compute the location switch( sig_bt[i] ) { case T_BOOLEAN: case T_CHAR: case T_FLOAT: case T_BYTE: case T_SHORT: case T_INT: case T_OBJECT: case T_ARRAY: case T_ADDRESS: case T_METADATA: regs[i].set1(VMRegImpl::stack2reg(stack++)); break; case T_LONG: case T_DOUBLE: // The stack numbering is reversed from Java // Since C arguments do not get reversed, the ordering for // doubles on the stack must be opposite the Java convention assert(sig_bt[i+1] == T_VOID, "missing Half" ); regs[i].set2(VMRegImpl::stack2reg(stack)); stack += 2; break; case T_VOID: regs[i].set_bad(); break; default: ShouldNotReachHere(); break; } } return stack; } // A simple move of integer like type static void simple_move32(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { if (src.first()->is_stack()) { if (dst.first()->is_stack()) { // stack to stack // __ ld(FP, reg2offset(src.first()) + STACK_BIAS, L5); // __ st(L5, SP, reg2offset(dst.first()) + STACK_BIAS); __ movl2ptr(rax, Address(rbp, reg2offset_in(src.first()))); __ movptr(Address(rsp, reg2offset_out(dst.first())), rax); } else { // stack to reg __ movl2ptr(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()))); } } else if (dst.first()->is_stack()) { // reg to stack // no need to sign extend on 64bit __ movptr(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register()); } else { if (dst.first() != src.first()) { __ mov(dst.first()->as_Register(), src.first()->as_Register()); } } } // An oop arg. Must pass a handle not the oop itself static void object_move(MacroAssembler* masm, OopMap* map, int oop_handle_offset, int framesize_in_slots, VMRegPair src, VMRegPair dst, bool is_receiver, int* receiver_offset) { // Because of the calling conventions we know that src can be a // register or a stack location. dst can only be a stack location. assert(dst.first()->is_stack(), "must be stack"); // must pass a handle. First figure out the location we use as a handle if (src.first()->is_stack()) { // Oop is already on the stack as an argument Register rHandle = rax; Label nil; __ xorptr(rHandle, rHandle); __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD); __ jcc(Assembler::equal, nil); __ lea(rHandle, Address(rbp, reg2offset_in(src.first()))); __ bind(nil); __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle); int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); if (is_receiver) { *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; } } else { // Oop is in an a register we must store it to the space we reserve // on the stack for oop_handles const Register rOop = src.first()->as_Register(); const Register rHandle = rax; int oop_slot = (rOop == rcx ? 0 : 1) * VMRegImpl::slots_per_word + oop_handle_offset; int offset = oop_slot*VMRegImpl::stack_slot_size; Label skip; __ movptr(Address(rsp, offset), rOop); map->set_oop(VMRegImpl::stack2reg(oop_slot)); __ xorptr(rHandle, rHandle); __ cmpptr(rOop, (int32_t)NULL_WORD); __ jcc(Assembler::equal, skip); __ lea(rHandle, Address(rsp, offset)); __ bind(skip); // Store the handle parameter __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle); if (is_receiver) { *receiver_offset = offset; } } } // A float arg may have to do float reg int reg conversion static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move"); // Because of the calling convention we know that src is either a stack location // or an xmm register. dst can only be a stack location. assert(dst.first()->is_stack() && ( src.first()->is_stack() || src.first()->is_XMMRegister()), "bad parameters"); if (src.first()->is_stack()) { __ movl(rax, Address(rbp, reg2offset_in(src.first()))); __ movptr(Address(rsp, reg2offset_out(dst.first())), rax); } else { // reg to stack __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister()); } } // A long move static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { // The only legal possibility for a long_move VMRegPair is: // 1: two stack slots (possibly unaligned) // as neither the java or C calling convention will use registers // for longs. if (src.first()->is_stack() && dst.first()->is_stack()) { assert(src.second()->is_stack() && dst.second()->is_stack(), "must be all stack"); __ movptr(rax, Address(rbp, reg2offset_in(src.first()))); NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second())))); __ movptr(Address(rsp, reg2offset_out(dst.first())), rax); NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx)); } else { ShouldNotReachHere(); } } // A double move static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) { // The only legal possibilities for a double_move VMRegPair are: // The painful thing here is that like long_move a VMRegPair might be // Because of the calling convention we know that src is either // 1: a single physical register (xmm registers only) // 2: two stack slots (possibly unaligned) // dst can only be a pair of stack slots. assert(dst.first()->is_stack() && (src.first()->is_XMMRegister() || src.first()->is_stack()), "bad args"); if (src.first()->is_stack()) { // source is all stack __ movptr(rax, Address(rbp, reg2offset_in(src.first()))); NOT_LP64(__ movptr(rbx, Address(rbp, reg2offset_in(src.second())))); __ movptr(Address(rsp, reg2offset_out(dst.first())), rax); NOT_LP64(__ movptr(Address(rsp, reg2offset_out(dst.second())), rbx)); } else { // reg to stack // No worries about stack alignment __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister()); } } void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { // We always ignore the frame_slots arg and just use the space just below frame pointer // which by this time is free to use switch (ret_type) { case T_FLOAT: __ fstp_s(Address(rbp, -wordSize)); break; case T_DOUBLE: __ fstp_d(Address(rbp, -2*wordSize)); break; case T_VOID: break; case T_LONG: __ movptr(Address(rbp, -wordSize), rax); NOT_LP64(__ movptr(Address(rbp, -2*wordSize), rdx)); break; default: { __ movptr(Address(rbp, -wordSize), rax); } } } void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { // We always ignore the frame_slots arg and just use the space just below frame pointer // which by this time is free to use switch (ret_type) { case T_FLOAT: __ fld_s(Address(rbp, -wordSize)); break; case T_DOUBLE: __ fld_d(Address(rbp, -2*wordSize)); break; case T_LONG: __ movptr(rax, Address(rbp, -wordSize)); NOT_LP64(__ movptr(rdx, Address(rbp, -2*wordSize))); break; case T_VOID: break; default: { __ movptr(rax, Address(rbp, -wordSize)); } } } static void save_or_restore_arguments(MacroAssembler* masm, const int stack_slots, const int total_in_args, const int arg_save_area, OopMap* map, VMRegPair* in_regs, BasicType* in_sig_bt) { // if map is non-NULL then the code should store the values, // otherwise it should load them. int handle_index = 0; // Save down double word first for ( int i = 0; i < total_in_args; i++) { if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) { int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area; int offset = slot * VMRegImpl::stack_slot_size; handle_index += 2; assert(handle_index <= stack_slots, "overflow"); if (map != NULL) { __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister()); } else { __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset)); } } if (in_regs[i].first()->is_Register() && in_sig_bt[i] == T_LONG) { int slot = handle_index * VMRegImpl::slots_per_word + arg_save_area; int offset = slot * VMRegImpl::stack_slot_size; handle_index += 2; assert(handle_index <= stack_slots, "overflow"); if (map != NULL) { __ movl(Address(rsp, offset), in_regs[i].first()->as_Register()); if (in_regs[i].second()->is_Register()) { __ movl(Address(rsp, offset + 4), in_regs[i].second()->as_Register()); } } else { __ movl(in_regs[i].first()->as_Register(), Address(rsp, offset)); if (in_regs[i].second()->is_Register()) { __ movl(in_regs[i].second()->as_Register(), Address(rsp, offset + 4)); } } } } // Save or restore single word registers for ( int i = 0; i < total_in_args; i++) { if (in_regs[i].first()->is_Register()) { int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area; int offset = slot * VMRegImpl::stack_slot_size; assert(handle_index <= stack_slots, "overflow"); if (in_sig_bt[i] == T_ARRAY && map != NULL) { map->set_oop(VMRegImpl::stack2reg(slot));; } // Value is in an input register pass we must flush it to the stack const Register reg = in_regs[i].first()->as_Register(); switch (in_sig_bt[i]) { case T_ARRAY: if (map != NULL) { __ movptr(Address(rsp, offset), reg); } else { __ movptr(reg, Address(rsp, offset)); } break; case T_BOOLEAN: case T_CHAR: case T_BYTE: case T_SHORT: case T_INT: if (map != NULL) { __ movl(Address(rsp, offset), reg); } else { __ movl(reg, Address(rsp, offset)); } break; case T_OBJECT: default: ShouldNotReachHere(); } } else if (in_regs[i].first()->is_XMMRegister()) { if (in_sig_bt[i] == T_FLOAT) { int slot = handle_index++ * VMRegImpl::slots_per_word + arg_save_area; int offset = slot * VMRegImpl::stack_slot_size; assert(handle_index <= stack_slots, "overflow"); if (map != NULL) { __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister()); } else { __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset)); } } } else if (in_regs[i].first()->is_stack()) { if (in_sig_bt[i] == T_ARRAY && map != NULL) { int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots)); } } } } // Check GC_locker::needs_gc and enter the runtime if it's true. This // keeps a new JNI critical region from starting until a GC has been // forced. Save down any oops in registers and describe them in an // OopMap. static void check_needs_gc_for_critical_native(MacroAssembler* masm, Register thread, int stack_slots, int total_c_args, int total_in_args, int arg_save_area, OopMapSet* oop_maps, VMRegPair* in_regs, BasicType* in_sig_bt) { __ block_comment("check GC_locker::needs_gc"); Label cont; __ cmp8(ExternalAddress((address)GC_locker::needs_gc_address()), false); __ jcc(Assembler::equal, cont); // Save down any incoming oops and call into the runtime to halt for a GC OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); save_or_restore_arguments(masm, stack_slots, total_in_args, arg_save_area, map, in_regs, in_sig_bt); address the_pc = __ pc(); oop_maps->add_gc_map( __ offset(), map); __ set_last_Java_frame(thread, rsp, noreg, the_pc); __ block_comment("block_for_jni_critical"); __ push(thread); __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical))); __ increment(rsp, wordSize); __ get_thread(thread); __ reset_last_Java_frame(thread, false, true); save_or_restore_arguments(masm, stack_slots, total_in_args, arg_save_area, NULL, in_regs, in_sig_bt); __ bind(cont); #ifdef ASSERT if (StressCriticalJNINatives) { // Stress register saving OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); save_or_restore_arguments(masm, stack_slots, total_in_args, arg_save_area, map, in_regs, in_sig_bt); // Destroy argument registers for (int i = 0; i < total_in_args - 1; i++) { if (in_regs[i].first()->is_Register()) { const Register reg = in_regs[i].first()->as_Register(); __ xorptr(reg, reg); } else if (in_regs[i].first()->is_XMMRegister()) { __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister()); } else if (in_regs[i].first()->is_FloatRegister()) { ShouldNotReachHere(); } else if (in_regs[i].first()->is_stack()) { // Nothing to do } else { ShouldNotReachHere(); } if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) { i++; } } save_or_restore_arguments(masm, stack_slots, total_in_args, arg_save_area, NULL, in_regs, in_sig_bt); } #endif } // Unpack an array argument into a pointer to the body and the length // if the array is non-null, otherwise pass 0 for both. static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) { Register tmp_reg = rax; assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg, "possible collision"); assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg, "possible collision"); // Pass the length, ptr pair Label is_null, done; VMRegPair tmp(tmp_reg->as_VMReg()); if (reg.first()->is_stack()) { // Load the arg up from the stack simple_move32(masm, reg, tmp); reg = tmp; } __ testptr(reg.first()->as_Register(), reg.first()->as_Register()); __ jccb(Assembler::equal, is_null); __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type))); simple_move32(masm, tmp, body_arg); // load the length relative to the body. __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(in_elem_type))); simple_move32(masm, tmp, length_arg); __ jmpb(done); __ bind(is_null); // Pass zeros __ xorptr(tmp_reg, tmp_reg); simple_move32(masm, tmp, body_arg); simple_move32(masm, tmp, length_arg); __ bind(done); } static void verify_oop_args(MacroAssembler* masm, methodHandle method, const BasicType* sig_bt, const VMRegPair* regs) { Register temp_reg = rbx; // not part of any compiled calling seq if (VerifyOops) { for (int i = 0; i < method->size_of_parameters(); i++) { if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ARRAY) { VMReg r = regs[i].first(); assert(r->is_valid(), "bad oop arg"); if (r->is_stack()) { __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize)); __ verify_oop(temp_reg); } else { __ verify_oop(r->as_Register()); } } } } } static void gen_special_dispatch(MacroAssembler* masm, methodHandle method, const BasicType* sig_bt, const VMRegPair* regs) { verify_oop_args(masm, method, sig_bt, regs); vmIntrinsics::ID iid = method->intrinsic_id(); // Now write the args into the outgoing interpreter space bool has_receiver = false; Register receiver_reg = noreg; int member_arg_pos = -1; Register member_reg = noreg; int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid); if (ref_kind != 0) { member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument member_reg = rbx; // known to be free at this point has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind); } else if (iid == vmIntrinsics::_invokeBasic) { has_receiver = true; } else { fatal(err_msg_res("unexpected intrinsic id %d", iid)); } if (member_reg != noreg) { // Load the member_arg into register, if necessary. SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs); VMReg r = regs[member_arg_pos].first(); if (r->is_stack()) { __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize)); } else { // no data motion is needed member_reg = r->as_Register(); } } if (has_receiver) { // Make sure the receiver is loaded into a register. assert(method->size_of_parameters() > 0, "oob"); assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object"); VMReg r = regs[0].first(); assert(r->is_valid(), "bad receiver arg"); if (r->is_stack()) { // Porting note: This assumes that compiled calling conventions always // pass the receiver oop in a register. If this is not true on some // platform, pick a temp and load the receiver from stack. fatal("receiver always in a register"); receiver_reg = rcx; // known to be free at this point __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize)); } else { // no data motion is needed receiver_reg = r->as_Register(); } } // Figure out which address we are really jumping to: MethodHandles::generate_method_handle_dispatch(masm, iid, receiver_reg, member_reg, /*for_compiler_entry:*/ true); } // --------------------------------------------------------------------------- // Generate a native wrapper for a given method. The method takes arguments // in the Java compiled code convention, marshals them to the native // convention (handlizes oops, etc), transitions to native, makes the call, // returns to java state (possibly blocking), unhandlizes any result and // returns. // // Critical native functions are a shorthand for the use of // GetPrimtiveArrayCritical and disallow the use of any other JNI // functions. The wrapper is expected to unpack the arguments before // passing them to the callee and perform checks before and after the // native call to ensure that they GC_locker // lock_critical/unlock_critical semantics are followed. Some other // parts of JNI setup are skipped like the tear down of the JNI handle // block and the check for pending exceptions it's impossible for them // to be thrown. // // They are roughly structured like this: // if (GC_locker::needs_gc()) // SharedRuntime::block_for_jni_critical(); // tranistion to thread_in_native // unpack arrray arguments and call native entry point // check for safepoint in progress // check if any thread suspend flags are set // call into JVM and possible unlock the JNI critical // if a GC was suppressed while in the critical native. // transition back to thread_in_Java // return to caller // nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm, methodHandle method, int compile_id, BasicType* in_sig_bt, VMRegPair* in_regs, BasicType ret_type) { if (method->is_method_handle_intrinsic()) { vmIntrinsics::ID iid = method->intrinsic_id(); intptr_t start = (intptr_t)__ pc(); int vep_offset = ((intptr_t)__ pc()) - start; gen_special_dispatch(masm, method, in_sig_bt, in_regs); int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period __ flush(); int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually return nmethod::new_native_nmethod(method, compile_id, masm->code(), vep_offset, frame_complete, stack_slots / VMRegImpl::slots_per_word, in_ByteSize(-1), in_ByteSize(-1), (OopMapSet*)NULL); } bool is_critical_native = true; address native_func = method->critical_native_function(); if (native_func == NULL) { native_func = method->native_function(); is_critical_native = false; } assert(native_func != NULL, "must have function"); // An OopMap for lock (and class if static) OopMapSet *oop_maps = new OopMapSet(); // We have received a description of where all the java arg are located // on entry to the wrapper. We need to convert these args to where // the jni function will expect them. To figure out where they go // we convert the java signature to a C signature by inserting // the hidden arguments as arg[0] and possibly arg[1] (static method) const int total_in_args = method->size_of_parameters(); int total_c_args = total_in_args; if (!is_critical_native) { total_c_args += 1; if (method->is_static()) { total_c_args++; } } else { for (int i = 0; i < total_in_args; i++) { if (in_sig_bt[i] == T_ARRAY) { total_c_args++; } } } BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args); VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args); BasicType* in_elem_bt = NULL; int argc = 0; if (!is_critical_native) { out_sig_bt[argc++] = T_ADDRESS; if (method->is_static()) { out_sig_bt[argc++] = T_OBJECT; } for (int i = 0; i < total_in_args ; i++ ) { out_sig_bt[argc++] = in_sig_bt[i]; } } else { Thread* THREAD = Thread::current(); in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args); SignatureStream ss(method->signature()); for (int i = 0; i < total_in_args ; i++ ) { if (in_sig_bt[i] == T_ARRAY) { // Arrays are passed as int, elem* pair out_sig_bt[argc++] = T_INT; out_sig_bt[argc++] = T_ADDRESS; Symbol* atype = ss.as_symbol(CHECK_NULL); const char* at = atype->as_C_string(); if (strlen(at) == 2) { assert(at[0] == '[', "must be"); switch (at[1]) { case 'B': in_elem_bt[i] = T_BYTE; break; case 'C': in_elem_bt[i] = T_CHAR; break; case 'D': in_elem_bt[i] = T_DOUBLE; break; case 'F': in_elem_bt[i] = T_FLOAT; break; case 'I': in_elem_bt[i] = T_INT; break; case 'J': in_elem_bt[i] = T_LONG; break; case 'S': in_elem_bt[i] = T_SHORT; break; case 'Z': in_elem_bt[i] = T_BOOLEAN; break; default: ShouldNotReachHere(); } } } else { out_sig_bt[argc++] = in_sig_bt[i]; in_elem_bt[i] = T_VOID; } if (in_sig_bt[i] != T_VOID) { assert(in_sig_bt[i] == ss.type(), "must match"); ss.next(); } } } // Now figure out where the args must be stored and how much stack space // they require. int out_arg_slots; out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args); // Compute framesize for the wrapper. We need to handlize all oops in // registers a max of 2 on x86. // Calculate the total number of stack slots we will need. // First count the abi requirement plus all of the outgoing args int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots; // Now the space for the inbound oop handle area int total_save_slots = 2 * VMRegImpl::slots_per_word; // 2 arguments passed in registers if (is_critical_native) { // Critical natives may have to call out so they need a save area // for register arguments. int double_slots = 0; int single_slots = 0; for ( int i = 0; i < total_in_args; i++) { if (in_regs[i].first()->is_Register()) { const Register reg = in_regs[i].first()->as_Register(); switch (in_sig_bt[i]) { case T_ARRAY: // critical array (uses 2 slots on LP64) case T_BOOLEAN: case T_BYTE: case T_SHORT: case T_CHAR: case T_INT: single_slots++; break; case T_LONG: double_slots++; break; default: ShouldNotReachHere(); } } else if (in_regs[i].first()->is_XMMRegister()) { switch (in_sig_bt[i]) { case T_FLOAT: single_slots++; break; case T_DOUBLE: double_slots++; break; default: ShouldNotReachHere(); } } else if (in_regs[i].first()->is_FloatRegister()) { ShouldNotReachHere(); } } total_save_slots = double_slots * 2 + single_slots; // align the save area if (double_slots != 0) { stack_slots = round_to(stack_slots, 2); } } int oop_handle_offset = stack_slots; stack_slots += total_save_slots; // Now any space we need for handlizing a klass if static method int klass_slot_offset = 0; int klass_offset = -1; int lock_slot_offset = 0; bool is_static = false; if (method->is_static()) { klass_slot_offset = stack_slots; stack_slots += VMRegImpl::slots_per_word; klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size; is_static = true; } // Plus a lock if needed if (method->is_synchronized()) { lock_slot_offset = stack_slots; stack_slots += VMRegImpl::slots_per_word; } // Now a place (+2) to save return values or temp during shuffling // + 2 for return address (which we own) and saved rbp, stack_slots += 4; // Ok The space we have allocated will look like: // // // FP-> | | // |---------------------| // | 2 slots for moves | // |---------------------| // | lock box (if sync) | // |---------------------| <- lock_slot_offset (-lock_slot_rbp_offset) // | klass (if static) | // |---------------------| <- klass_slot_offset // | oopHandle area | // |---------------------| <- oop_handle_offset (a max of 2 registers) // | outbound memory | // | based arguments | // | | // |---------------------| // | | // SP-> | out_preserved_slots | // // // **************************************************************************** // WARNING - on Windows Java Natives use pascal calling convention and pop the // arguments off of the stack after the jni call. Before the call we can use // instructions that are SP relative. After the jni call we switch to FP // relative instructions instead of re-adjusting the stack on windows. // **************************************************************************** // Now compute actual number of stack words we need rounding to make // stack properly aligned. stack_slots = round_to(stack_slots, StackAlignmentInSlots); int stack_size = stack_slots * VMRegImpl::stack_slot_size; intptr_t start = (intptr_t)__ pc(); // First thing make an ic check to see if we should even be here // We are free to use all registers as temps without saving them and // restoring them except rbp. rbp is the only callee save register // as far as the interpreter and the compiler(s) are concerned. const Register ic_reg = rax; const Register receiver = rcx; Label hit; Label exception_pending; __ verify_oop(receiver); __ cmpptr(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes())); __ jcc(Assembler::equal, hit); __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); // verified entry must be aligned for code patching. // and the first 5 bytes must be in the same cache line // if we align at 8 then we will be sure 5 bytes are in the same line __ align(8); __ bind(hit); int vep_offset = ((intptr_t)__ pc()) - start; #ifdef COMPILER1 if (InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) { // Object.hashCode can pull the hashCode from the header word // instead of doing a full VM transition once it's been computed. // Since hashCode is usually polymorphic at call sites we can't do // this optimization at the call site without a lot of work. Label slowCase; Register receiver = rcx; Register result = rax; __ movptr(result, Address(receiver, oopDesc::mark_offset_in_bytes())); // check if locked __ testptr(result, markOopDesc::unlocked_value); __ jcc (Assembler::zero, slowCase); if (UseBiasedLocking) { // Check if biased and fall through to runtime if so __ testptr(result, markOopDesc::biased_lock_bit_in_place); __ jcc (Assembler::notZero, slowCase); } // get hash __ andptr(result, markOopDesc::hash_mask_in_place); // test if hashCode exists __ jcc (Assembler::zero, slowCase); __ shrptr(result, markOopDesc::hash_shift); __ ret(0); __ bind (slowCase); } #endif // COMPILER1 // The instruction at the verified entry point must be 5 bytes or longer // because it can be patched on the fly by make_non_entrant. The stack bang // instruction fits that requirement. // Generate stack overflow check if (UseStackBanging) { __ bang_stack_with_offset(StackShadowPages*os::vm_page_size()); } else { // need a 5 byte instruction to allow MT safe patching to non-entrant __ fat_nop(); } // Generate a new frame for the wrapper. __ enter(); // -2 because return address is already present and so is saved rbp __ subptr(rsp, stack_size - 2*wordSize); // Frame is now completed as far as size and linkage. int frame_complete = ((intptr_t)__ pc()) - start; // Calculate the difference between rsp and rbp,. We need to know it // after the native call because on windows Java Natives will pop // the arguments and it is painful to do rsp relative addressing // in a platform independent way. So after the call we switch to // rbp, relative addressing. int fp_adjustment = stack_size - 2*wordSize; #ifdef COMPILER2 // C2 may leave the stack dirty if not in SSE2+ mode if (UseSSE >= 2) { __ verify_FPU(0, "c2i transition should have clean FPU stack"); } else { __ empty_FPU_stack(); } #endif /* COMPILER2 */ // Compute the rbp, offset for any slots used after the jni call int lock_slot_rbp_offset = (lock_slot_offset*VMRegImpl::stack_slot_size) - fp_adjustment; // We use rdi as a thread pointer because it is callee save and // if we load it once it is usable thru the entire wrapper const Register thread = rdi; // We use rsi as the oop handle for the receiver/klass // It is callee save so it survives the call to native const Register oop_handle_reg = rsi; __ get_thread(thread); if (is_critical_native) { check_needs_gc_for_critical_native(masm, thread, stack_slots, total_c_args, total_in_args, oop_handle_offset, oop_maps, in_regs, in_sig_bt); } // // We immediately shuffle the arguments so that any vm call we have to // make from here on out (sync slow path, jvmti, etc.) we will have // captured the oops from our caller and have a valid oopMap for // them. // ----------------- // The Grand Shuffle // // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv* // and, if static, the class mirror instead of a receiver. This pretty much // guarantees that register layout will not match (and x86 doesn't use reg // parms though amd does). Since the native abi doesn't use register args // and the java conventions does we don't have to worry about collisions. // All of our moved are reg->stack or stack->stack. // We ignore the extra arguments during the shuffle and handle them at the // last moment. The shuffle is described by the two calling convention // vectors we have in our possession. We simply walk the java vector to // get the source locations and the c vector to get the destinations. int c_arg = is_critical_native ? 0 : (method->is_static() ? 2 : 1 ); // Record rsp-based slot for receiver on stack for non-static methods int receiver_offset = -1; // This is a trick. We double the stack slots so we can claim // the oops in the caller's frame. Since we are sure to have // more args than the caller doubling is enough to make // sure we can capture all the incoming oop args from the // caller. // OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); // Mark location of rbp, // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, rbp->as_VMReg()); // We know that we only have args in at most two integer registers (rcx, rdx). So rax, rbx // Are free to temporaries if we have to do stack to steck moves. // All inbound args are referenced based on rbp, and all outbound args via rsp. for (int i = 0; i < total_in_args ; i++, c_arg++ ) { switch (in_sig_bt[i]) { case T_ARRAY: if (is_critical_native) { unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]); c_arg++; break; } case T_OBJECT: assert(!is_critical_native, "no oop arguments"); object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg], ((i == 0) && (!is_static)), &receiver_offset); break; case T_VOID: break; case T_FLOAT: float_move(masm, in_regs[i], out_regs[c_arg]); break; case T_DOUBLE: assert( i + 1 < total_in_args && in_sig_bt[i + 1] == T_VOID && out_sig_bt[c_arg+1] == T_VOID, "bad arg list"); double_move(masm, in_regs[i], out_regs[c_arg]); break; case T_LONG : long_move(masm, in_regs[i], out_regs[c_arg]); break; case T_ADDRESS: assert(false, "found T_ADDRESS in java args"); default: simple_move32(masm, in_regs[i], out_regs[c_arg]); } } // Pre-load a static method's oop into rsi. Used both by locking code and // the normal JNI call code. if (method->is_static() && !is_critical_native) { // load opp into a register __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror())); // Now handlize the static class mirror it's known not-null. __ movptr(Address(rsp, klass_offset), oop_handle_reg); map->set_oop(VMRegImpl::stack2reg(klass_slot_offset)); // Now get the handle __ lea(oop_handle_reg, Address(rsp, klass_offset)); // store the klass handle as second argument __ movptr(Address(rsp, wordSize), oop_handle_reg); } // Change state to native (we save the return address in the thread, since it might not // be pushed on the stack when we do a a stack traversal). It is enough that the pc() // points into the right code segment. It does not have to be the correct return pc. // We use the same pc/oopMap repeatedly when we call out intptr_t the_pc = (intptr_t) __ pc(); oop_maps->add_gc_map(the_pc - start, map); __ set_last_Java_frame(thread, rsp, noreg, (address)the_pc); // We have all of the arguments setup at this point. We must not touch any register // argument registers at this point (what if we save/restore them there are no oop? { SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0); __ mov_metadata(rax, method()); __ call_VM_leaf( CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), thread, rax); } // RedefineClasses() tracing support for obsolete method entry if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) { __ mov_metadata(rax, method()); __ call_VM_leaf( CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), thread, rax); } // These are register definitions we need for locking/unlocking const Register swap_reg = rax; // Must use rax, for cmpxchg instruction const Register obj_reg = rcx; // Will contain the oop const Register lock_reg = rdx; // Address of compiler lock object (BasicLock) Label slow_path_lock; Label lock_done; // Lock a synchronized method if (method->is_synchronized()) { assert(!is_critical_native, "unhandled"); const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes(); // Get the handle (the 2nd argument) __ movptr(oop_handle_reg, Address(rsp, wordSize)); // Get address of the box __ lea(lock_reg, Address(rbp, lock_slot_rbp_offset)); // Load the oop from the handle __ movptr(obj_reg, Address(oop_handle_reg, 0)); if (UseBiasedLocking) { // Note that oop_handle_reg is trashed during this call __ biased_locking_enter(lock_reg, obj_reg, swap_reg, oop_handle_reg, false, lock_done, &slow_path_lock); } // Load immediate 1 into swap_reg %rax, __ movptr(swap_reg, 1); // Load (object->mark() | 1) into swap_reg %rax, __ orptr(swap_reg, Address(obj_reg, 0)); // Save (object->mark() | 1) into BasicLock's displaced header __ movptr(Address(lock_reg, mark_word_offset), swap_reg); if (os::is_MP()) { __ lock(); } // src -> dest iff dest == rax, else rax, <- dest // *obj_reg = lock_reg iff *obj_reg == rax, else rax, = *(obj_reg) __ cmpxchgptr(lock_reg, Address(obj_reg, 0)); __ jcc(Assembler::equal, lock_done); // Test if the oopMark is an obvious stack pointer, i.e., // 1) (mark & 3) == 0, and // 2) rsp <= mark < mark + os::pagesize() // These 3 tests can be done by evaluating the following // expression: ((mark - rsp) & (3 - os::vm_page_size())), // assuming both stack pointer and pagesize have their // least significant 2 bits clear. // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg __ subptr(swap_reg, rsp); __ andptr(swap_reg, 3 - os::vm_page_size()); // Save the test result, for recursive case, the result is zero __ movptr(Address(lock_reg, mark_word_offset), swap_reg); __ jcc(Assembler::notEqual, slow_path_lock); // Slow path will re-enter here __ bind(lock_done); if (UseBiasedLocking) { // Re-fetch oop_handle_reg as we trashed it above __ movptr(oop_handle_reg, Address(rsp, wordSize)); } } // Finally just about ready to make the JNI call // get JNIEnv* which is first argument to native if (!is_critical_native) { __ lea(rdx, Address(thread, in_bytes(JavaThread::jni_environment_offset()))); __ movptr(Address(rsp, 0), rdx); } // Now set thread in native __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native); __ call(RuntimeAddress(native_func)); // Verify or restore cpu control state after JNI call __ restore_cpu_control_state_after_jni(); // WARNING - on Windows Java Natives use pascal calling convention and pop the // arguments off of the stack. We could just re-adjust the stack pointer here // and continue to do SP relative addressing but we instead switch to FP // relative addressing. // Unpack native results. switch (ret_type) { case T_BOOLEAN: __ c2bool(rax); break; case T_CHAR : __ andptr(rax, 0xFFFF); break; case T_BYTE : __ sign_extend_byte (rax); break; case T_SHORT : __ sign_extend_short(rax); break; case T_INT : /* nothing to do */ break; case T_DOUBLE : case T_FLOAT : // Result is in st0 we'll save as needed break; case T_ARRAY: // Really a handle case T_OBJECT: // Really a handle break; // can't de-handlize until after safepoint check case T_VOID: break; case T_LONG: break; default : ShouldNotReachHere(); } // Switch thread to "native transition" state before reading the synchronization state. // This additional state is necessary because reading and testing the synchronization // state is not atomic w.r.t. GC, as this scenario demonstrates: // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted. // VM thread changes sync state to synchronizing and suspends threads for GC. // Thread A is resumed to finish this native method, but doesn't block here since it // didn't see any synchronization is progress, and escapes. __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_native_trans); if(os::is_MP()) { if (UseMembar) { // Force this write out before the read below __ membar(Assembler::Membar_mask_bits( Assembler::LoadLoad | Assembler::LoadStore | Assembler::StoreLoad | Assembler::StoreStore)); } else { // Write serialization page so VM thread can do a pseudo remote membar. // We use the current thread pointer to calculate a thread specific // offset to write to within the page. This minimizes bus traffic // due to cache line collision. __ serialize_memory(thread, rcx); } } if (AlwaysRestoreFPU) { // Make sure the control word is correct. __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std())); } Label after_transition; // check for safepoint operation in progress and/or pending suspend requests { Label Continue; __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()), SafepointSynchronize::_not_synchronized); Label L; __ jcc(Assembler::notEqual, L); __ cmpl(Address(thread, JavaThread::suspend_flags_offset()), 0); __ jcc(Assembler::equal, Continue); __ bind(L); // Don't use call_VM as it will see a possible pending exception and forward it // and never return here preventing us from clearing _last_native_pc down below. // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are // preserved and correspond to the bcp/locals pointers. So we do a runtime call // by hand. // save_native_result(masm, ret_type, stack_slots); __ push(thread); if (!is_critical_native) { __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans))); } else { __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition))); } __ increment(rsp, wordSize); // Restore any method result value restore_native_result(masm, ret_type, stack_slots); if (is_critical_native) { // The call above performed the transition to thread_in_Java so // skip the transition logic below. __ jmpb(after_transition); } __ bind(Continue); } // change thread state __ movl(Address(thread, JavaThread::thread_state_offset()), _thread_in_Java); __ bind(after_transition); Label reguard; Label reguard_done; __ cmpl(Address(thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled); __ jcc(Assembler::equal, reguard); // slow path reguard re-enters here __ bind(reguard_done); // Handle possible exception (will unlock if necessary) // native result if any is live // Unlock Label slow_path_unlock; Label unlock_done; if (method->is_synchronized()) { Label done; // Get locked oop from the handle we passed to jni __ movptr(obj_reg, Address(oop_handle_reg, 0)); if (UseBiasedLocking) { __ biased_locking_exit(obj_reg, rbx, done); } // Simple recursive lock? __ cmpptr(Address(rbp, lock_slot_rbp_offset), (int32_t)NULL_WORD); __ jcc(Assembler::equal, done); // Must save rax, if if it is live now because cmpxchg must use it if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { save_native_result(masm, ret_type, stack_slots); } // get old displaced header __ movptr(rbx, Address(rbp, lock_slot_rbp_offset)); // get address of the stack lock __ lea(rax, Address(rbp, lock_slot_rbp_offset)); // Atomic swap old header if oop still contains the stack lock if (os::is_MP()) { __ lock(); } // src -> dest iff dest == rax, else rax, <- dest // *obj_reg = rbx, iff *obj_reg == rax, else rax, = *(obj_reg) __ cmpxchgptr(rbx, Address(obj_reg, 0)); __ jcc(Assembler::notEqual, slow_path_unlock); // slow path re-enters here __ bind(unlock_done); if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { restore_native_result(masm, ret_type, stack_slots); } __ bind(done); } { SkipIfEqual skip_if(masm, &DTraceMethodProbes, 0); // Tell dtrace about this method exit save_native_result(masm, ret_type, stack_slots); __ mov_metadata(rax, method()); __ call_VM_leaf( CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), thread, rax); restore_native_result(masm, ret_type, stack_slots); } // We can finally stop using that last_Java_frame we setup ages ago __ reset_last_Java_frame(thread, false, true); // Unpack oop result if (ret_type == T_OBJECT || ret_type == T_ARRAY) { Label L; __ cmpptr(rax, (int32_t)NULL_WORD); __ jcc(Assembler::equal, L); __ movptr(rax, Address(rax, 0)); __ bind(L); __ verify_oop(rax); } if (!is_critical_native) { // reset handle block __ movptr(rcx, Address(thread, JavaThread::active_handles_offset())); __ movptr(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), NULL_WORD); // Any exception pending? __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD); __ jcc(Assembler::notEqual, exception_pending); } // no exception, we're almost done // check that only result value is on FPU stack __ verify_FPU(ret_type == T_FLOAT || ret_type == T_DOUBLE ? 1 : 0, "native_wrapper normal exit"); // Fixup floating pointer results so that result looks like a return from a compiled method if (ret_type == T_FLOAT) { if (UseSSE >= 1) { // Pop st0 and store as float and reload into xmm register __ fstp_s(Address(rbp, -4)); __ movflt(xmm0, Address(rbp, -4)); } } else if (ret_type == T_DOUBLE) { if (UseSSE >= 2) { // Pop st0 and store as double and reload into xmm register __ fstp_d(Address(rbp, -8)); __ movdbl(xmm0, Address(rbp, -8)); } } // Return __ leave(); __ ret(0); // Unexpected paths are out of line and go here // Slow path locking & unlocking if (method->is_synchronized()) { // BEGIN Slow path lock __ bind(slow_path_lock); // has last_Java_frame setup. No exceptions so do vanilla call not call_VM // args are (oop obj, BasicLock* lock, JavaThread* thread) __ push(thread); __ push(lock_reg); __ push(obj_reg); __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C))); __ addptr(rsp, 3*wordSize); #ifdef ASSERT { Label L; __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD); __ jcc(Assembler::equal, L); __ stop("no pending exception allowed on exit from monitorenter"); __ bind(L); } #endif __ jmp(lock_done); // END Slow path lock // BEGIN Slow path unlock __ bind(slow_path_unlock); // Slow path unlock if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { save_native_result(masm, ret_type, stack_slots); } // Save pending exception around call to VM (which contains an EXCEPTION_MARK) __ pushptr(Address(thread, in_bytes(Thread::pending_exception_offset()))); __ movptr(Address(thread, in_bytes(Thread::pending_exception_offset())), NULL_WORD); // should be a peal // +wordSize because of the push above __ lea(rax, Address(rbp, lock_slot_rbp_offset)); __ push(rax); __ push(obj_reg); __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C))); __ addptr(rsp, 2*wordSize); #ifdef ASSERT { Label L; __ cmpptr(Address(thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD); __ jcc(Assembler::equal, L); __ stop("no pending exception allowed on exit complete_monitor_unlocking_C"); __ bind(L); } #endif /* ASSERT */ __ popptr(Address(thread, in_bytes(Thread::pending_exception_offset()))); if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { restore_native_result(masm, ret_type, stack_slots); } __ jmp(unlock_done); // END Slow path unlock } // SLOW PATH Reguard the stack if needed __ bind(reguard); save_native_result(masm, ret_type, stack_slots); { __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages))); } restore_native_result(masm, ret_type, stack_slots); __ jmp(reguard_done); // BEGIN EXCEPTION PROCESSING if (!is_critical_native) { // Forward the exception __ bind(exception_pending); // remove possible return value from FPU register stack __ empty_FPU_stack(); // pop our frame __ leave(); // and forward the exception __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); } __ flush(); nmethod *nm = nmethod::new_native_nmethod(method, compile_id, masm->code(), vep_offset, frame_complete, stack_slots / VMRegImpl::slots_per_word, (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)), in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size), oop_maps); if (is_critical_native) { nm->set_lazy_critical_native(true); } return nm; } #ifdef HAVE_DTRACE_H // --------------------------------------------------------------------------- // Generate a dtrace nmethod for a given signature. The method takes arguments // in the Java compiled code convention, marshals them to the native // abi and then leaves nops at the position you would expect to call a native // function. When the probe is enabled the nops are replaced with a trap // instruction that dtrace inserts and the trace will cause a notification // to dtrace. // // The probes are only able to take primitive types and java/lang/String as // arguments. No other java types are allowed. Strings are converted to utf8 // strings so that from dtrace point of view java strings are converted to C // strings. There is an arbitrary fixed limit on the total space that a method // can use for converting the strings. (256 chars per string in the signature). // So any java string larger then this is truncated. nmethod *SharedRuntime::generate_dtrace_nmethod( MacroAssembler *masm, methodHandle method) { // generate_dtrace_nmethod is guarded by a mutex so we are sure to // be single threaded in this method. assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be"); // Fill in the signature array, for the calling-convention call. int total_args_passed = method->size_of_parameters(); BasicType* in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed); VMRegPair *in_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); // The signature we are going to use for the trap that dtrace will see // java/lang/String is converted. We drop "this" and any other object // is converted to NULL. (A one-slot java/lang/Long object reference // is converted to a two-slot long, which is why we double the allocation). BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2); VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2); int i=0; int total_strings = 0; int first_arg_to_pass = 0; int total_c_args = 0; if( !method->is_static() ) { // Pass in receiver first in_sig_bt[i++] = T_OBJECT; first_arg_to_pass = 1; } // We need to convert the java args to where a native (non-jni) function // would expect them. To figure out where they go we convert the java // signature to a C signature. SignatureStream ss(method->signature()); for ( ; !ss.at_return_type(); ss.next()) { BasicType bt = ss.type(); in_sig_bt[i++] = bt; // Collect remaining bits of signature out_sig_bt[total_c_args++] = bt; if( bt == T_OBJECT) { Symbol* s = ss.as_symbol_or_null(); // symbol is created if (s == vmSymbols::java_lang_String()) { total_strings++; out_sig_bt[total_c_args-1] = T_ADDRESS; } else if (s == vmSymbols::java_lang_Boolean() || s == vmSymbols::java_lang_Character() || s == vmSymbols::java_lang_Byte() || s == vmSymbols::java_lang_Short() || s == vmSymbols::java_lang_Integer() || s == vmSymbols::java_lang_Float()) { out_sig_bt[total_c_args-1] = T_INT; } else if (s == vmSymbols::java_lang_Long() || s == vmSymbols::java_lang_Double()) { out_sig_bt[total_c_args-1] = T_LONG; out_sig_bt[total_c_args++] = T_VOID; } } else if ( bt == T_LONG || bt == T_DOUBLE ) { in_sig_bt[i++] = T_VOID; // Longs & doubles take 2 Java slots out_sig_bt[total_c_args++] = T_VOID; } } assert(i==total_args_passed, "validly parsed signature"); // Now get the compiled-Java layout as input arguments int comp_args_on_stack; comp_args_on_stack = SharedRuntime::java_calling_convention( in_sig_bt, in_regs, total_args_passed, false); // Now figure out where the args must be stored and how much stack space // they require (neglecting out_preserve_stack_slots). int out_arg_slots; out_arg_slots = c_calling_convention(out_sig_bt, out_regs, total_c_args); // Calculate the total number of stack slots we will need. // First count the abi requirement plus all of the outgoing args int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots; // Now space for the string(s) we must convert int* string_locs = NEW_RESOURCE_ARRAY(int, total_strings + 1); for (i = 0; i < total_strings ; i++) { string_locs[i] = stack_slots; stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size; } // + 2 for return address (which we own) and saved rbp, stack_slots += 2; // Ok The space we have allocated will look like: // // // FP-> | | // |---------------------| // | string[n] | // |---------------------| <- string_locs[n] // | string[n-1] | // |---------------------| <- string_locs[n-1] // | ... | // | ... | // |---------------------| <- string_locs[1] // | string[0] | // |---------------------| <- string_locs[0] // | outbound memory | // | based arguments | // | | // |---------------------| // | | // SP-> | out_preserved_slots | // // // Now compute actual number of stack words we need rounding to make // stack properly aligned. stack_slots = round_to(stack_slots, 2 * VMRegImpl::slots_per_word); int stack_size = stack_slots * VMRegImpl::stack_slot_size; intptr_t start = (intptr_t)__ pc(); // First thing make an ic check to see if we should even be here // We are free to use all registers as temps without saving them and // restoring them except rbp. rbp, is the only callee save register // as far as the interpreter and the compiler(s) are concerned. const Register ic_reg = rax; const Register receiver = rcx; Label hit; Label exception_pending; __ verify_oop(receiver); __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes())); __ jcc(Assembler::equal, hit); __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); // verified entry must be aligned for code patching. // and the first 5 bytes must be in the same cache line // if we align at 8 then we will be sure 5 bytes are in the same line __ align(8); __ bind(hit); int vep_offset = ((intptr_t)__ pc()) - start; // The instruction at the verified entry point must be 5 bytes or longer // because it can be patched on the fly by make_non_entrant. The stack bang // instruction fits that requirement. // Generate stack overflow check if (UseStackBanging) { if (stack_size <= StackShadowPages*os::vm_page_size()) { __ bang_stack_with_offset(StackShadowPages*os::vm_page_size()); } else { __ movl(rax, stack_size); __ bang_stack_size(rax, rbx); } } else { // need a 5 byte instruction to allow MT safe patching to non-entrant __ fat_nop(); } assert(((int)__ pc() - start - vep_offset) >= 5, "valid size for make_non_entrant"); // Generate a new frame for the wrapper. __ enter(); // -2 because return address is already present and so is saved rbp, if (stack_size - 2*wordSize != 0) { __ subl(rsp, stack_size - 2*wordSize); } // Frame is now completed as far a size and linkage. int frame_complete = ((intptr_t)__ pc()) - start; // First thing we do store all the args as if we are doing the call. // Since the C calling convention is stack based that ensures that // all the Java register args are stored before we need to convert any // string we might have. int sid = 0; int c_arg, j_arg; int string_reg = 0; for (j_arg = first_arg_to_pass, c_arg = 0 ; j_arg < total_args_passed ; j_arg++, c_arg++ ) { VMRegPair src = in_regs[j_arg]; VMRegPair dst = out_regs[c_arg]; assert(dst.first()->is_stack() || in_sig_bt[j_arg] == T_VOID, "stack based abi assumed"); switch (in_sig_bt[j_arg]) { case T_ARRAY: case T_OBJECT: if (out_sig_bt[c_arg] == T_ADDRESS) { // Any register based arg for a java string after the first // will be destroyed by the call to get_utf so we store // the original value in the location the utf string address // will eventually be stored. if (src.first()->is_reg()) { if (string_reg++ != 0) { simple_move32(masm, src, dst); } } } else if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) { // need to unbox a one-word value Register in_reg = rax; if ( src.first()->is_reg() ) { in_reg = src.first()->as_Register(); } else { simple_move32(masm, src, in_reg->as_VMReg()); } Label skipUnbox; __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD); if ( out_sig_bt[c_arg] == T_LONG ) { __ movl(Address(rsp, reg2offset_out(dst.second())), NULL_WORD); } __ testl(in_reg, in_reg); __ jcc(Assembler::zero, skipUnbox); assert(dst.first()->is_stack() && (!dst.second()->is_valid() || dst.second()->is_stack()), "value(s) must go into stack slots"); BasicType bt = out_sig_bt[c_arg]; int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt); if ( bt == T_LONG ) { __ movl(rbx, Address(in_reg, box_offset + VMRegImpl::stack_slot_size)); __ movl(Address(rsp, reg2offset_out(dst.second())), rbx); } __ movl(in_reg, Address(in_reg, box_offset)); __ movl(Address(rsp, reg2offset_out(dst.first())), in_reg); __ bind(skipUnbox); } else { // Convert the arg to NULL __ movl(Address(rsp, reg2offset_out(dst.first())), NULL_WORD); } if (out_sig_bt[c_arg] == T_LONG) { assert(out_sig_bt[c_arg+1] == T_VOID, "must be"); ++c_arg; // Move over the T_VOID To keep the loop indices in sync } break; case T_VOID: break; case T_FLOAT: float_move(masm, src, dst); break; case T_DOUBLE: assert( j_arg + 1 < total_args_passed && in_sig_bt[j_arg + 1] == T_VOID, "bad arg list"); double_move(masm, src, dst); break; case T_LONG : long_move(masm, src, dst); break; case T_ADDRESS: assert(false, "found T_ADDRESS in java args"); default: simple_move32(masm, src, dst); } } // Now we must convert any string we have to utf8 // for (sid = 0, j_arg = first_arg_to_pass, c_arg = 0 ; sid < total_strings ; j_arg++, c_arg++ ) { if (out_sig_bt[c_arg] == T_ADDRESS) { Address utf8_addr = Address( rsp, string_locs[sid++] * VMRegImpl::stack_slot_size); __ leal(rax, utf8_addr); // The first string we find might still be in the original java arg // register VMReg orig_loc = in_regs[j_arg].first(); Register string_oop; // This is where the argument will eventually reside Address dest = Address(rsp, reg2offset_out(out_regs[c_arg].first())); if (sid == 1 && orig_loc->is_reg()) { string_oop = orig_loc->as_Register(); assert(string_oop != rax, "smashed arg"); } else { if (orig_loc->is_reg()) { // Get the copy of the jls object __ movl(rcx, dest); } else { // arg is still in the original location __ movl(rcx, Address(rbp, reg2offset_in(orig_loc))); } string_oop = rcx; } Label nullString; __ movl(dest, NULL_WORD); __ testl(string_oop, string_oop); __ jcc(Assembler::zero, nullString); // Now we can store the address of the utf string as the argument __ movl(dest, rax); // And do the conversion __ call_VM_leaf(CAST_FROM_FN_PTR( address, SharedRuntime::get_utf), string_oop, rax); __ bind(nullString); } if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) { assert(out_sig_bt[c_arg+1] == T_VOID, "must be"); ++c_arg; // Move over the T_VOID To keep the loop indices in sync } } // Ok now we are done. Need to place the nop that dtrace wants in order to // patch in the trap int patch_offset = ((intptr_t)__ pc()) - start; __ nop(); // Return __ leave(); __ ret(0); __ flush(); nmethod *nm = nmethod::new_dtrace_nmethod( method, masm->code(), vep_offset, patch_offset, frame_complete, stack_slots / VMRegImpl::slots_per_word); return nm; } #endif // HAVE_DTRACE_H // this function returns the adjust size (in number of words) to a c2i adapter // activation for use during deoptimization int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) { return (callee_locals - callee_parameters) * Interpreter::stackElementWords; } uint SharedRuntime::out_preserve_stack_slots() { return 0; } //------------------------------generate_deopt_blob---------------------------- void SharedRuntime::generate_deopt_blob() { // allocate space for the code ResourceMark rm; // setup code generation tools CodeBuffer buffer("deopt_blob", 1024, 1024); MacroAssembler* masm = new MacroAssembler(&buffer); int frame_size_in_words; OopMap* map = NULL; // Account for the extra args we place on the stack // by the time we call fetch_unroll_info const int additional_words = 2; // deopt kind, thread OopMapSet *oop_maps = new OopMapSet(); // ------------- // This code enters when returning to a de-optimized nmethod. A return // address has been pushed on the the stack, and return values are in // registers. // If we are doing a normal deopt then we were called from the patched // nmethod from the point we returned to the nmethod. So the return // address on the stack is wrong by NativeCall::instruction_size // We will adjust the value to it looks like we have the original return // address on the stack (like when we eagerly deoptimized). // In the case of an exception pending with deoptimized then we enter // with a return address on the stack that points after the call we patched // into the exception handler. We have the following register state: // rax,: exception // rbx,: exception handler // rdx: throwing pc // So in this case we simply jam rdx into the useless return address and // the stack looks just like we want. // // At this point we need to de-opt. We save the argument return // registers. We call the first C routine, fetch_unroll_info(). This // routine captures the return values and returns a structure which // describes the current frame size and the sizes of all replacement frames. // The current frame is compiled code and may contain many inlined // functions, each with their own JVM state. We pop the current frame, then // push all the new frames. Then we call the C routine unpack_frames() to // populate these frames. Finally unpack_frames() returns us the new target // address. Notice that callee-save registers are BLOWN here; they have // already been captured in the vframeArray at the time the return PC was // patched. address start = __ pc(); Label cont; // Prolog for non exception case! // Save everything in sight. map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false); // Normal deoptimization __ push(Deoptimization::Unpack_deopt); __ jmp(cont); int reexecute_offset = __ pc() - start; // Reexecute case // return address is the pc describes what bci to do re-execute at // No need to update map as each call to save_live_registers will produce identical oopmap (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false); __ push(Deoptimization::Unpack_reexecute); __ jmp(cont); int exception_offset = __ pc() - start; // Prolog for exception case // all registers are dead at this entry point, except for rax, and // rdx which contain the exception oop and exception pc // respectively. Set them in TLS and fall thru to the // unpack_with_exception_in_tls entry point. __ get_thread(rdi); __ movptr(Address(rdi, JavaThread::exception_pc_offset()), rdx); __ movptr(Address(rdi, JavaThread::exception_oop_offset()), rax); int exception_in_tls_offset = __ pc() - start; // new implementation because exception oop is now passed in JavaThread // Prolog for exception case // All registers must be preserved because they might be used by LinearScan // Exceptiop oop and throwing PC are passed in JavaThread // tos: stack at point of call to method that threw the exception (i.e. only // args are on the stack, no return address) // make room on stack for the return address // It will be patched later with the throwing pc. The correct value is not // available now because loading it from memory would destroy registers. __ push(0); // Save everything in sight. // No need to update map as each call to save_live_registers will produce identical oopmap (void) RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false); // Now it is safe to overwrite any register // store the correct deoptimization type __ push(Deoptimization::Unpack_exception); // load throwing pc from JavaThread and patch it as the return address // of the current frame. Then clear the field in JavaThread __ get_thread(rdi); __ movptr(rdx, Address(rdi, JavaThread::exception_pc_offset())); __ movptr(Address(rbp, wordSize), rdx); __ movptr(Address(rdi, JavaThread::exception_pc_offset()), NULL_WORD); #ifdef ASSERT // verify that there is really an exception oop in JavaThread __ movptr(rax, Address(rdi, JavaThread::exception_oop_offset())); __ verify_oop(rax); // verify that there is no pending exception Label no_pending_exception; __ movptr(rax, Address(rdi, Thread::pending_exception_offset())); __ testptr(rax, rax); __ jcc(Assembler::zero, no_pending_exception); __ stop("must not have pending exception here"); __ bind(no_pending_exception); #endif __ bind(cont); // Compiled code leaves the floating point stack dirty, empty it. __ empty_FPU_stack(); // Call C code. Need thread and this frame, but NOT official VM entry // crud. We cannot block on this call, no GC can happen. __ get_thread(rcx); __ push(rcx); // fetch_unroll_info needs to call last_java_frame() __ set_last_Java_frame(rcx, noreg, noreg, NULL); __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info))); // Need to have an oopmap that tells fetch_unroll_info where to // find any register it might need. oop_maps->add_gc_map( __ pc()-start, map); // Discard arg to fetch_unroll_info __ pop(rcx); __ get_thread(rcx); __ reset_last_Java_frame(rcx, false, false); // Load UnrollBlock into EDI __ mov(rdi, rax); // Move the unpack kind to a safe place in the UnrollBlock because // we are very short of registers Address unpack_kind(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()); // retrieve the deopt kind from where we left it. __ pop(rax); __ movl(unpack_kind, rax); // save the unpack_kind value Label noException; __ cmpl(rax, Deoptimization::Unpack_exception); // Was exception pending? __ jcc(Assembler::notEqual, noException); __ movptr(rax, Address(rcx, JavaThread::exception_oop_offset())); __ movptr(rdx, Address(rcx, JavaThread::exception_pc_offset())); __ movptr(Address(rcx, JavaThread::exception_oop_offset()), NULL_WORD); __ movptr(Address(rcx, JavaThread::exception_pc_offset()), NULL_WORD); __ verify_oop(rax); // Overwrite the result registers with the exception results. __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax); __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx); __ bind(noException); // Stack is back to only having register save data on the stack. // Now restore the result registers. Everything else is either dead or captured // in the vframeArray. RegisterSaver::restore_result_registers(masm); // Non standard control word may be leaked out through a safepoint blob, and we can // deopt at a poll point with the non standard control word. However, we should make // sure the control word is correct after restore_result_registers. __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std())); // All of the register save area has been popped of the stack. Only the // return address remains. // Pop all the frames we must move/replace. // // Frame picture (youngest to oldest) // 1: self-frame (no frame link) // 2: deopting frame (no frame link) // 3: caller of deopting frame (could be compiled/interpreted). // // Note: by leaving the return address of self-frame on the stack // and using the size of frame 2 to adjust the stack // when we are done the return to frame 3 will still be on the stack. // Pop deoptimized frame __ addptr(rsp, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes())); // sp should be pointing at the return address to the caller (3) // Pick up the initial fp we should save // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved) __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes())); // Stack bang to make sure there's enough room for these interpreter frames. if (UseStackBanging) { __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes())); __ bang_stack_size(rbx, rcx); } // Load array of frame pcs into ECX __ movptr(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes())); __ pop(rsi); // trash the old pc // Load array of frame sizes into ESI __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes())); Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes()); __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes())); __ movl(counter, rbx); // Now adjust the caller's stack to make up for the extra locals // but record the original sp so that we can save it in the skeletal interpreter // frame and the stack walking of interpreter_sender will get the unextended sp // value and not the "real" sp value. Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes()); __ movptr(sp_temp, rsp); __ movl2ptr(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes())); __ subptr(rsp, rbx); // Push interpreter frames in a loop Label loop; __ bind(loop); __ movptr(rbx, Address(rsi, 0)); // Load frame size #ifdef CC_INTERP __ subptr(rbx, 4*wordSize); // we'll push pc and ebp by hand and #ifdef ASSERT __ push(0xDEADDEAD); // Make a recognizable pattern __ push(0xDEADDEAD); #else /* ASSERT */ __ subptr(rsp, 2*wordSize); // skip the "static long no_param" #endif /* ASSERT */ #else /* CC_INTERP */ __ subptr(rbx, 2*wordSize); // we'll push pc and rbp, by hand #endif /* CC_INTERP */ __ pushptr(Address(rcx, 0)); // save return address __ enter(); // save old & set new rbp, __ subptr(rsp, rbx); // Prolog! __ movptr(rbx, sp_temp); // sender's sp #ifdef CC_INTERP __ movptr(Address(rbp, -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))), rbx); // Make it walkable #else /* CC_INTERP */ // This value is corrected by layout_activation_impl __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD); __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable #endif /* CC_INTERP */ __ movptr(sp_temp, rsp); // pass to next frame __ addptr(rsi, wordSize); // Bump array pointer (sizes) __ addptr(rcx, wordSize); // Bump array pointer (pcs) __ decrementl(counter); // decrement counter __ jcc(Assembler::notZero, loop); __ pushptr(Address(rcx, 0)); // save final return address // Re-push self-frame __ enter(); // save old & set new rbp, // Return address and rbp, are in place // We'll push additional args later. Just allocate a full sized // register save area __ subptr(rsp, (frame_size_in_words-additional_words - 2) * wordSize); // Restore frame locals after moving the frame __ movptr(Address(rsp, RegisterSaver::raxOffset()*wordSize), rax); __ movptr(Address(rsp, RegisterSaver::rdxOffset()*wordSize), rdx); __ fstp_d(Address(rsp, RegisterSaver::fpResultOffset()*wordSize)); // Pop float stack and store in local if( UseSSE>=2 ) __ movdbl(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0); if( UseSSE==1 ) __ movflt(Address(rsp, RegisterSaver::xmm0Offset()*wordSize), xmm0); // Set up the args to unpack_frame __ pushl(unpack_kind); // get the unpack_kind value __ get_thread(rcx); __ push(rcx); // set last_Java_sp, last_Java_fp __ set_last_Java_frame(rcx, noreg, rbp, NULL); // Call C code. Need thread but NOT official VM entry // crud. We cannot block on this call, no GC can happen. Call should // restore return values to their stack-slots with the new SP. __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames))); // Set an oopmap for the call site oop_maps->add_gc_map( __ pc()-start, new OopMap( frame_size_in_words, 0 )); // rax, contains the return result type __ push(rax); __ get_thread(rcx); __ reset_last_Java_frame(rcx, false, false); // Collect return values __ movptr(rax,Address(rsp, (RegisterSaver::raxOffset() + additional_words + 1)*wordSize)); __ movptr(rdx,Address(rsp, (RegisterSaver::rdxOffset() + additional_words + 1)*wordSize)); // Clear floating point stack before returning to interpreter __ empty_FPU_stack(); // Check if we should push the float or double return value. Label results_done, yes_double_value; __ cmpl(Address(rsp, 0), T_DOUBLE); __ jcc (Assembler::zero, yes_double_value); __ cmpl(Address(rsp, 0), T_FLOAT); __ jcc (Assembler::notZero, results_done); // return float value as expected by interpreter if( UseSSE>=1 ) __ movflt(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize)); else __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize)); __ jmp(results_done); // return double value as expected by interpreter __ bind(yes_double_value); if( UseSSE>=2 ) __ movdbl(xmm0, Address(rsp, (RegisterSaver::xmm0Offset() + additional_words + 1)*wordSize)); else __ fld_d(Address(rsp, (RegisterSaver::fpResultOffset() + additional_words + 1)*wordSize)); __ bind(results_done); // Pop self-frame. __ leave(); // Epilog! // Jump to interpreter __ ret(0); // ------------- // make sure all code is generated masm->flush(); _deopt_blob = DeoptimizationBlob::create( &buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words); _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset); } #ifdef COMPILER2 //------------------------------generate_uncommon_trap_blob-------------------- void SharedRuntime::generate_uncommon_trap_blob() { // allocate space for the code ResourceMark rm; // setup code generation tools CodeBuffer buffer("uncommon_trap_blob", 512, 512); MacroAssembler* masm = new MacroAssembler(&buffer); enum frame_layout { arg0_off, // thread sp + 0 // Arg location for arg1_off, // unloaded_class_index sp + 1 // calling C // The frame sender code expects that rbp will be in the "natural" place and // will override any oopMap setting for it. We must therefore force the layout // so that it agrees with the frame sender code. rbp_off, // callee saved register sp + 2 return_off, // slot for return address sp + 3 framesize }; address start = __ pc(); // Push self-frame. __ subptr(rsp, return_off*wordSize); // Epilog! // rbp, is an implicitly saved callee saved register (i.e. the calling // convention will save restore it in prolog/epilog) Other than that // there are no callee save registers no that adapter frames are gone. __ movptr(Address(rsp, rbp_off*wordSize), rbp); // Clear the floating point exception stack __ empty_FPU_stack(); // set last_Java_sp __ get_thread(rdx); __ set_last_Java_frame(rdx, noreg, noreg, NULL); // Call C code. Need thread but NOT official VM entry // crud. We cannot block on this call, no GC can happen. Call should // capture callee-saved registers as well as return values. __ movptr(Address(rsp, arg0_off*wordSize), rdx); // argument already in ECX __ movl(Address(rsp, arg1_off*wordSize),rcx); __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap))); // Set an oopmap for the call site OopMapSet *oop_maps = new OopMapSet(); OopMap* map = new OopMap( framesize, 0 ); // No oopMap for rbp, it is known implicitly oop_maps->add_gc_map( __ pc()-start, map); __ get_thread(rcx); __ reset_last_Java_frame(rcx, false, false); // Load UnrollBlock into EDI __ movptr(rdi, rax); // Pop all the frames we must move/replace. // // Frame picture (youngest to oldest) // 1: self-frame (no frame link) // 2: deopting frame (no frame link) // 3: caller of deopting frame (could be compiled/interpreted). // Pop self-frame. We have no frame, and must rely only on EAX and ESP. __ addptr(rsp,(framesize-1)*wordSize); // Epilog! // Pop deoptimized frame __ movl2ptr(rcx, Address(rdi,Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes())); __ addptr(rsp, rcx); // sp should be pointing at the return address to the caller (3) // Pick up the initial fp we should save // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved) __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes())); // Stack bang to make sure there's enough room for these interpreter frames. if (UseStackBanging) { __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes())); __ bang_stack_size(rbx, rcx); } // Load array of frame pcs into ECX __ movl(rcx,Address(rdi,Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes())); __ pop(rsi); // trash the pc // Load array of frame sizes into ESI __ movptr(rsi,Address(rdi,Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes())); Address counter(rdi, Deoptimization::UnrollBlock::counter_temp_offset_in_bytes()); __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes())); __ movl(counter, rbx); // Now adjust the caller's stack to make up for the extra locals // but record the original sp so that we can save it in the skeletal interpreter // frame and the stack walking of interpreter_sender will get the unextended sp // value and not the "real" sp value. Address sp_temp(rdi, Deoptimization::UnrollBlock::sender_sp_temp_offset_in_bytes()); __ movptr(sp_temp, rsp); __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes())); __ subptr(rsp, rbx); // Push interpreter frames in a loop Label loop; __ bind(loop); __ movptr(rbx, Address(rsi, 0)); // Load frame size #ifdef CC_INTERP __ subptr(rbx, 4*wordSize); // we'll push pc and ebp by hand and #ifdef ASSERT __ push(0xDEADDEAD); // Make a recognizable pattern __ push(0xDEADDEAD); // (parm to RecursiveInterpreter...) #else /* ASSERT */ __ subptr(rsp, 2*wordSize); // skip the "static long no_param" #endif /* ASSERT */ #else /* CC_INTERP */ __ subptr(rbx, 2*wordSize); // we'll push pc and rbp, by hand #endif /* CC_INTERP */ __ pushptr(Address(rcx, 0)); // save return address __ enter(); // save old & set new rbp, __ subptr(rsp, rbx); // Prolog! __ movptr(rbx, sp_temp); // sender's sp #ifdef CC_INTERP __ movptr(Address(rbp, -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))), rbx); // Make it walkable #else /* CC_INTERP */ // This value is corrected by layout_activation_impl __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD ); __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), rbx); // Make it walkable #endif /* CC_INTERP */ __ movptr(sp_temp, rsp); // pass to next frame __ addptr(rsi, wordSize); // Bump array pointer (sizes) __ addptr(rcx, wordSize); // Bump array pointer (pcs) __ decrementl(counter); // decrement counter __ jcc(Assembler::notZero, loop); __ pushptr(Address(rcx, 0)); // save final return address // Re-push self-frame __ enter(); // save old & set new rbp, __ subptr(rsp, (framesize-2) * wordSize); // Prolog! // set last_Java_sp, last_Java_fp __ get_thread(rdi); __ set_last_Java_frame(rdi, noreg, rbp, NULL); // Call C code. Need thread but NOT official VM entry // crud. We cannot block on this call, no GC can happen. Call should // restore return values to their stack-slots with the new SP. __ movptr(Address(rsp,arg0_off*wordSize),rdi); __ movl(Address(rsp,arg1_off*wordSize), Deoptimization::Unpack_uncommon_trap); __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames))); // Set an oopmap for the call site oop_maps->add_gc_map( __ pc()-start, new OopMap( framesize, 0 ) ); __ get_thread(rdi); __ reset_last_Java_frame(rdi, true, false); // Pop self-frame. __ leave(); // Epilog! // Jump to interpreter __ ret(0); // ------------- // make sure all code is generated masm->flush(); _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, framesize); } #endif // COMPILER2 //------------------------------generate_handler_blob------ // // Generate a special Compile2Runtime blob that saves all registers, // setup oopmap, and calls safepoint code to stop the compiled code for // a safepoint. // SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) { // Account for thread arg in our frame const int additional_words = 1; int frame_size_in_words; assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before"); ResourceMark rm; OopMapSet *oop_maps = new OopMapSet(); OopMap* map; // allocate space for the code // setup code generation tools CodeBuffer buffer("handler_blob", 1024, 512); MacroAssembler* masm = new MacroAssembler(&buffer); const Register java_thread = rdi; // callee-saved for VC++ address start = __ pc(); address call_pc = NULL; bool cause_return = (poll_type == POLL_AT_RETURN); bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP); // If cause_return is true we are at a poll_return and there is // the return address on the stack to the caller on the nmethod // that is safepoint. We can leave this return on the stack and // effectively complete the return and safepoint in the caller. // Otherwise we push space for a return address that the safepoint // handler will install later to make the stack walking sensible. if (!cause_return) __ push(rbx); // Make room for return address (or push it again) map = RegisterSaver::save_live_registers(masm, additional_words, &frame_size_in_words, false, save_vectors); // The following is basically a call_VM. However, we need the precise // address of the call in order to generate an oopmap. Hence, we do all the // work ourselves. // Push thread argument and setup last_Java_sp __ get_thread(java_thread); __ push(java_thread); __ set_last_Java_frame(java_thread, noreg, noreg, NULL); // if this was not a poll_return then we need to correct the return address now. if (!cause_return) { __ movptr(rax, Address(java_thread, JavaThread::saved_exception_pc_offset())); __ movptr(Address(rbp, wordSize), rax); } // do the call __ call(RuntimeAddress(call_ptr)); // Set an oopmap for the call site. This oopmap will map all // oop-registers and debug-info registers as callee-saved. This // will allow deoptimization at this safepoint to find all possible // debug-info recordings, as well as let GC find all oops. oop_maps->add_gc_map( __ pc() - start, map); // Discard arg __ pop(rcx); Label noException; // Clear last_Java_sp again __ get_thread(java_thread); __ reset_last_Java_frame(java_thread, false, false); __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD); __ jcc(Assembler::equal, noException); // Exception pending RegisterSaver::restore_live_registers(masm, save_vectors); __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); __ bind(noException); // Normal exit, register restoring and exit RegisterSaver::restore_live_registers(masm, save_vectors); __ ret(0); // make sure all code is generated masm->flush(); // Fill-out other meta info return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words); } // // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss // // Generate a stub that calls into vm to find out the proper destination // of a java call. All the argument registers are live at this point // but since this is generic code we don't know what they are and the caller // must do any gc of the args. // RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) { assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before"); // allocate space for the code ResourceMark rm; CodeBuffer buffer(name, 1000, 512); MacroAssembler* masm = new MacroAssembler(&buffer); int frame_size_words; enum frame_layout { thread_off, extra_words }; OopMapSet *oop_maps = new OopMapSet(); OopMap* map = NULL; int start = __ offset(); map = RegisterSaver::save_live_registers(masm, extra_words, &frame_size_words); int frame_complete = __ offset(); const Register thread = rdi; __ get_thread(rdi); __ push(thread); __ set_last_Java_frame(thread, noreg, rbp, NULL); __ call(RuntimeAddress(destination)); // Set an oopmap for the call site. // We need this not only for callee-saved registers, but also for volatile // registers that the compiler might be keeping live across a safepoint. oop_maps->add_gc_map( __ offset() - start, map); // rax, contains the address we are going to jump to assuming no exception got installed __ addptr(rsp, wordSize); // clear last_Java_sp __ reset_last_Java_frame(thread, true, false); // check for pending exceptions Label pending; __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD); __ jcc(Assembler::notEqual, pending); // get the returned Method* __ get_vm_result_2(rbx, thread); __ movptr(Address(rsp, RegisterSaver::rbx_offset() * wordSize), rbx); __ movptr(Address(rsp, RegisterSaver::rax_offset() * wordSize), rax); RegisterSaver::restore_live_registers(masm); // We are back the the original state on entry and ready to go. __ jmp(rax); // Pending exception after the safepoint __ bind(pending); RegisterSaver::restore_live_registers(masm); // exception pending => remove activation and forward to exception handler __ get_thread(thread); __ movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD); __ movptr(rax, Address(thread, Thread::pending_exception_offset())); __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); // ------------- // make sure all code is generated masm->flush(); // return the blob // frame_size_words or bytes?? return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_words, oop_maps, true); } Other Java examples (source code examples)Here is a short list of links related to this Java sharedRuntime_x86_32.cpp source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.