alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (assembler.cpp)

This example Java source code file (assembler.cpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

abstractassembler\:\:delayed_value_addr, codebuffer, codebuffer\:\:sect_insts, codesection, dc_limit, delayedconstant, delayedconstant\:\:add, delayedconstant\:\:update_all, delayedconstant\:\:value_fn_t, label, null, register, registerorconstant, usestackbanging

The assembler.cpp Java example source code

/*
 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "asm/macroAssembler.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "asm/codeBuffer.hpp"
#include "runtime/atomic.hpp"
#include "runtime/atomic.inline.hpp"
#include "runtime/icache.hpp"
#include "runtime/os.hpp"


// Implementation of AbstractAssembler
//
// The AbstractAssembler is generating code into a CodeBuffer. To make code generation faster,
// the assembler keeps a copy of the code buffers boundaries & modifies them when
// emitting bytes rather than using the code buffers accessor functions all the time.
// The code buffer is updated via set_code_end(...) after emitting a whole instruction.

AbstractAssembler::AbstractAssembler(CodeBuffer* code) {
  if (code == NULL)  return;
  CodeSection* cs = code->insts();
  cs->clear_mark();   // new assembler kills old mark
  if (cs->start() == NULL)  {
    vm_exit_out_of_memory(0, OOM_MMAP_ERROR, err_msg("CodeCache: no room for %s",
                                     code->name()));
  }
  _code_section = cs;
  _oop_recorder= code->oop_recorder();
  DEBUG_ONLY( _short_branch_delta = 0; )
}

void AbstractAssembler::set_code_section(CodeSection* cs) {
  assert(cs->outer() == code_section()->outer(), "sanity");
  assert(cs->is_allocated(), "need to pre-allocate this section");
  cs->clear_mark();  // new assembly into this section kills old mark
  _code_section = cs;
}

// Inform CodeBuffer that incoming code and relocation will be for stubs
address AbstractAssembler::start_a_stub(int required_space) {
  CodeBuffer*  cb = code();
  CodeSection* cs = cb->stubs();
  assert(_code_section == cb->insts(), "not in insts?");
  if (cs->maybe_expand_to_ensure_remaining(required_space)
      && cb->blob() == NULL) {
    return NULL;
  }
  set_code_section(cs);
  return pc();
}

// Inform CodeBuffer that incoming code and relocation will be code
// Should not be called if start_a_stub() returned NULL
void AbstractAssembler::end_a_stub() {
  assert(_code_section == code()->stubs(), "not in stubs?");
  set_code_section(code()->insts());
}

// Inform CodeBuffer that incoming code and relocation will be for stubs
address AbstractAssembler::start_a_const(int required_space, int required_align) {
  CodeBuffer*  cb = code();
  CodeSection* cs = cb->consts();
  assert(_code_section == cb->insts() || _code_section == cb->stubs(), "not in insts/stubs?");
  address end = cs->end();
  int pad = -(intptr_t)end & (required_align-1);
  if (cs->maybe_expand_to_ensure_remaining(pad + required_space)) {
    if (cb->blob() == NULL)  return NULL;
    end = cs->end();  // refresh pointer
  }
  if (pad > 0) {
    while (--pad >= 0) { *end++ = 0; }
    cs->set_end(end);
  }
  set_code_section(cs);
  return end;
}

// Inform CodeBuffer that incoming code and relocation will be code
// in section cs (insts or stubs).
void AbstractAssembler::end_a_const(CodeSection* cs) {
  assert(_code_section == code()->consts(), "not in consts?");
  set_code_section(cs);
}

void AbstractAssembler::flush() {
  ICache::invalidate_range(addr_at(0), offset());
}

void AbstractAssembler::bind(Label& L) {
  if (L.is_bound()) {
    // Assembler can bind a label more than once to the same place.
    guarantee(L.loc() == locator(), "attempt to redefine label");
    return;
  }
  L.bind_loc(locator());
  L.patch_instructions((MacroAssembler*)this);
}

void AbstractAssembler::generate_stack_overflow_check( int frame_size_in_bytes) {
  if (UseStackBanging) {
    // Each code entry causes one stack bang n pages down the stack where n
    // is configurable by StackShadowPages.  The setting depends on the maximum
    // depth of VM call stack or native before going back into java code,
    // since only java code can raise a stack overflow exception using the
    // stack banging mechanism.  The VM and native code does not detect stack
    // overflow.
    // The code in JavaCalls::call() checks that there is at least n pages
    // available, so all entry code needs to do is bang once for the end of
    // this shadow zone.
    // The entry code may need to bang additional pages if the framesize
    // is greater than a page.

    const int page_size = os::vm_page_size();
    int bang_end = StackShadowPages*page_size;

    // This is how far the previous frame's stack banging extended.
    const int bang_end_safe = bang_end;

    if (frame_size_in_bytes > page_size) {
      bang_end += frame_size_in_bytes;
    }

    int bang_offset = bang_end_safe;
    while (bang_offset <= bang_end) {
      // Need at least one stack bang at end of shadow zone.
      bang_stack_with_offset(bang_offset);
      bang_offset += page_size;
    }
  } // end (UseStackBanging)
}

void Label::add_patch_at(CodeBuffer* cb, int branch_loc) {
  assert(_loc == -1, "Label is unbound");
  if (_patch_index < PatchCacheSize) {
    _patches[_patch_index] = branch_loc;
  } else {
    if (_patch_overflow == NULL) {
      _patch_overflow = cb->create_patch_overflow();
    }
    _patch_overflow->push(branch_loc);
  }
  ++_patch_index;
}

void Label::patch_instructions(MacroAssembler* masm) {
  assert(is_bound(), "Label is bound");
  CodeBuffer* cb = masm->code();
  int target_sect = CodeBuffer::locator_sect(loc());
  address target = cb->locator_address(loc());
  while (_patch_index > 0) {
    --_patch_index;
    int branch_loc;
    if (_patch_index >= PatchCacheSize) {
      branch_loc = _patch_overflow->pop();
    } else {
      branch_loc = _patches[_patch_index];
    }
    int branch_sect = CodeBuffer::locator_sect(branch_loc);
    address branch = cb->locator_address(branch_loc);
    if (branch_sect == CodeBuffer::SECT_CONSTS) {
      // The thing to patch is a constant word.
      *(address*)branch = target;
      continue;
    }

#ifdef ASSERT
    // Cross-section branches only work if the
    // intermediate section boundaries are frozen.
    if (target_sect != branch_sect) {
      for (int n = MIN2(target_sect, branch_sect),
               nlimit = (target_sect + branch_sect) - n;
           n < nlimit; n++) {
        CodeSection* cs = cb->code_section(n);
        assert(cs->is_frozen(), "cross-section branch needs stable offsets");
      }
    }
#endif //ASSERT

    // Push the target offset into the branch instruction.
    masm->pd_patch_instruction(branch, target);
  }
}

struct DelayedConstant {
  typedef void (*value_fn_t)();
  BasicType type;
  intptr_t value;
  value_fn_t value_fn;
  // This limit of 20 is generous for initial uses.
  // The limit needs to be large enough to store the field offsets
  // into classes which do not have statically fixed layouts.
  // (Initial use is for method handle object offsets.)
  // Look for uses of "delayed_value" in the source code
  // and make sure this number is generous enough to handle all of them.
  enum { DC_LIMIT = 20 };
  static DelayedConstant delayed_constants[DC_LIMIT];
  static DelayedConstant* add(BasicType type, value_fn_t value_fn);
  bool match(BasicType t, value_fn_t cfn) {
    return type == t && value_fn == cfn;
  }
  static void update_all();
};

DelayedConstant DelayedConstant::delayed_constants[DC_LIMIT];
// Default C structure initialization rules have the following effect here:
// = { { (BasicType)0, (intptr_t)NULL }, ... };

DelayedConstant* DelayedConstant::add(BasicType type,
                                      DelayedConstant::value_fn_t cfn) {
  for (int i = 0; i < DC_LIMIT; i++) {
    DelayedConstant* dcon = &delayed_constants[i];
    if (dcon->match(type, cfn))
      return dcon;
    if (dcon->value_fn == NULL) {
      // (cmpxchg not because this is multi-threaded but because I'm paranoid)
      if (Atomic::cmpxchg_ptr(CAST_FROM_FN_PTR(void*, cfn), &dcon->value_fn, NULL) == NULL) {
        dcon->type = type;
        return dcon;
      }
    }
  }
  // If this assert is hit (in pre-integration testing!) then re-evaluate
  // the comment on the definition of DC_LIMIT.
  guarantee(false, "too many delayed constants");
  return NULL;
}

void DelayedConstant::update_all() {
  for (int i = 0; i < DC_LIMIT; i++) {
    DelayedConstant* dcon = &delayed_constants[i];
    if (dcon->value_fn != NULL && dcon->value == 0) {
      typedef int     (*int_fn_t)();
      typedef address (*address_fn_t)();
      switch (dcon->type) {
      case T_INT:     dcon->value = (intptr_t) ((int_fn_t)    dcon->value_fn)(); break;
      case T_ADDRESS: dcon->value = (intptr_t) ((address_fn_t)dcon->value_fn)(); break;
      }
    }
  }
}

RegisterOrConstant AbstractAssembler::delayed_value(int(*value_fn)(), Register tmp, int offset) {
  intptr_t val = (intptr_t) (*value_fn)();
  if (val != 0)  return val + offset;
  return delayed_value_impl(delayed_value_addr(value_fn), tmp, offset);
}
RegisterOrConstant AbstractAssembler::delayed_value(address(*value_fn)(), Register tmp, int offset) {
  intptr_t val = (intptr_t) (*value_fn)();
  if (val != 0)  return val + offset;
  return delayed_value_impl(delayed_value_addr(value_fn), tmp, offset);
}
intptr_t* AbstractAssembler::delayed_value_addr(int(*value_fn)()) {
  DelayedConstant* dcon = DelayedConstant::add(T_INT, (DelayedConstant::value_fn_t) value_fn);
  return &dcon->value;
}
intptr_t* AbstractAssembler::delayed_value_addr(address(*value_fn)()) {
  DelayedConstant* dcon = DelayedConstant::add(T_ADDRESS, (DelayedConstant::value_fn_t) value_fn);
  return &dcon->value;
}
void AbstractAssembler::update_delayed_values() {
  DelayedConstant::update_all();
}

void AbstractAssembler::block_comment(const char* comment) {
  if (sect() == CodeBuffer::SECT_INSTS) {
    code_section()->outer()->block_comment(offset(), comment);
  }
}

const char* AbstractAssembler::code_string(const char* str) {
  if (sect() == CodeBuffer::SECT_INSTS || sect() == CodeBuffer::SECT_STUBS) {
    return code_section()->outer()->code_string(str);
  }
  return NULL;
}

bool MacroAssembler::needs_explicit_null_check(intptr_t offset) {
  // Exception handler checks the nmethod's implicit null checks table
  // only when this method returns false.
#ifdef _LP64
  if (UseCompressedOops && Universe::narrow_oop_base() != NULL) {
    assert (Universe::heap() != NULL, "java heap should be initialized");
    // The first page after heap_base is unmapped and
    // the 'offset' is equal to [heap_base + offset] for
    // narrow oop implicit null checks.
    uintptr_t base = (uintptr_t)Universe::narrow_oop_base();
    if ((uintptr_t)offset >= base) {
      // Normalize offset for the next check.
      offset = (intptr_t)(pointer_delta((void*)offset, (void*)base, 1));
    }
  }
#endif
  return offset < 0 || os::vm_page_size() <= offset;
}

Other Java examples (source code examples)

Here is a short list of links related to this Java assembler.cpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.