alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (adaptiveSizePolicy.cpp)

This example Java source code file (adaptiveSizePolicy.cpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

adaptivesizemajorgcdecaytimescale, adaptiveweightedaverage, forcedynamicnumberofgcthreads, linearleastsquarefit, max2, min2, minimum, null, printgcdetails, size_format, tenuring, verbose

The adaptiveSizePolicy.cpp Java example source code

/*
 * Copyright (c) 2004, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "gc_implementation/shared/adaptiveSizePolicy.hpp"
#include "gc_interface/gcCause.hpp"
#include "memory/collectorPolicy.hpp"
#include "runtime/timer.hpp"
#include "utilities/ostream.hpp"
#include "utilities/workgroup.hpp"
elapsedTimer AdaptiveSizePolicy::_minor_timer;
elapsedTimer AdaptiveSizePolicy::_major_timer;
bool AdaptiveSizePolicy::_debug_perturbation = false;

// The throughput goal is implemented as
//      _throughput_goal = 1 - ( 1 / (1 + gc_cost_ratio))
// gc_cost_ratio is the ratio
//      application cost / gc cost
// For example a gc_cost_ratio of 4 translates into a
// throughput goal of .80

AdaptiveSizePolicy::AdaptiveSizePolicy(size_t init_eden_size,
                                       size_t init_promo_size,
                                       size_t init_survivor_size,
                                       double gc_pause_goal_sec,
                                       uint gc_cost_ratio) :
    _eden_size(init_eden_size),
    _promo_size(init_promo_size),
    _survivor_size(init_survivor_size),
    _gc_pause_goal_sec(gc_pause_goal_sec),
    _throughput_goal(1.0 - double(1.0 / (1.0 + (double) gc_cost_ratio))),
    _gc_overhead_limit_exceeded(false),
    _print_gc_overhead_limit_would_be_exceeded(false),
    _gc_overhead_limit_count(0),
    _latest_minor_mutator_interval_seconds(0),
    _threshold_tolerance_percent(1.0 + ThresholdTolerance/100.0),
    _young_gen_change_for_minor_throughput(0),
    _old_gen_change_for_major_throughput(0) {
  assert(AdaptiveSizePolicyGCTimeLimitThreshold > 0,
    "No opportunity to clear SoftReferences before GC overhead limit");
  _avg_minor_pause    =
    new AdaptivePaddedAverage(AdaptiveTimeWeight, PausePadding);
  _avg_minor_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
  _avg_minor_gc_cost  = new AdaptiveWeightedAverage(AdaptiveTimeWeight);
  _avg_major_gc_cost  = new AdaptiveWeightedAverage(AdaptiveTimeWeight);

  _avg_young_live     = new AdaptiveWeightedAverage(AdaptiveSizePolicyWeight);
  _avg_old_live       = new AdaptiveWeightedAverage(AdaptiveSizePolicyWeight);
  _avg_eden_live      = new AdaptiveWeightedAverage(AdaptiveSizePolicyWeight);

  _avg_survived       = new AdaptivePaddedAverage(AdaptiveSizePolicyWeight,
                                                  SurvivorPadding);
  _avg_pretenured     = new AdaptivePaddedNoZeroDevAverage(
                                                  AdaptiveSizePolicyWeight,
                                                  SurvivorPadding);

  _minor_pause_old_estimator =
    new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
  _minor_pause_young_estimator =
    new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
  _minor_collection_estimator =
    new LinearLeastSquareFit(AdaptiveSizePolicyWeight);
  _major_collection_estimator =
    new LinearLeastSquareFit(AdaptiveSizePolicyWeight);

  // Start the timers
  _minor_timer.start();

  _young_gen_policy_is_ready = false;
}

//  If the number of GC threads was set on the command line,
// use it.
//  Else
//    Calculate the number of GC threads based on the number of Java threads.
//    Calculate the number of GC threads based on the size of the heap.
//    Use the larger.

int AdaptiveSizePolicy::calc_default_active_workers(uintx total_workers,
                                            const uintx min_workers,
                                            uintx active_workers,
                                            uintx application_workers) {
  // If the user has specifically set the number of
  // GC threads, use them.

  // If the user has turned off using a dynamic number of GC threads
  // or the users has requested a specific number, set the active
  // number of workers to all the workers.

  uintx new_active_workers = total_workers;
  uintx prev_active_workers = active_workers;
  uintx active_workers_by_JT = 0;
  uintx active_workers_by_heap_size = 0;

  // Always use at least min_workers but use up to
  // GCThreadsPerJavaThreads * application threads.
  active_workers_by_JT =
    MAX2((uintx) GCWorkersPerJavaThread * application_workers,
         min_workers);

  // Choose a number of GC threads based on the current size
  // of the heap.  This may be complicated because the size of
  // the heap depends on factors such as the thoughput goal.
  // Still a large heap should be collected by more GC threads.
  active_workers_by_heap_size =
      MAX2((size_t) 2U, Universe::heap()->capacity() / HeapSizePerGCThread);

  uintx max_active_workers =
    MAX2(active_workers_by_JT, active_workers_by_heap_size);

  // Limit the number of workers to the the number created,
  // (workers()).
  new_active_workers = MIN2(max_active_workers,
                                (uintx) total_workers);

  // Increase GC workers instantly but decrease them more
  // slowly.
  if (new_active_workers < prev_active_workers) {
    new_active_workers =
      MAX2(min_workers, (prev_active_workers + new_active_workers) / 2);
  }

  // Check once more that the number of workers is within the limits.
  assert(min_workers <= total_workers, "Minimum workers not consistent with total workers");
  assert(new_active_workers >= min_workers, "Minimum workers not observed");
  assert(new_active_workers <= total_workers, "Total workers not observed");

  if (ForceDynamicNumberOfGCThreads) {
    // Assume this is debugging and jiggle the number of GC threads.
    if (new_active_workers == prev_active_workers) {
      if (new_active_workers < total_workers) {
        new_active_workers++;
      } else if (new_active_workers > min_workers) {
        new_active_workers--;
      }
    }
    if (new_active_workers == total_workers) {
      if (_debug_perturbation) {
        new_active_workers =  min_workers;
      }
      _debug_perturbation = !_debug_perturbation;
    }
    assert((new_active_workers <= (uintx) ParallelGCThreads) &&
           (new_active_workers >= min_workers),
      "Jiggled active workers too much");
  }

  if (TraceDynamicGCThreads) {
     gclog_or_tty->print_cr("GCTaskManager::calc_default_active_workers() : "
       "active_workers(): %d  new_acitve_workers: %d  "
       "prev_active_workers: %d\n"
       " active_workers_by_JT: %d  active_workers_by_heap_size: %d",
       active_workers, new_active_workers, prev_active_workers,
       active_workers_by_JT, active_workers_by_heap_size);
  }
  assert(new_active_workers > 0, "Always need at least 1");
  return new_active_workers;
}

int AdaptiveSizePolicy::calc_active_workers(uintx total_workers,
                                            uintx active_workers,
                                            uintx application_workers) {
  // If the user has specifically set the number of
  // GC threads, use them.

  // If the user has turned off using a dynamic number of GC threads
  // or the users has requested a specific number, set the active
  // number of workers to all the workers.

  int new_active_workers;
  if (!UseDynamicNumberOfGCThreads ||
     (!FLAG_IS_DEFAULT(ParallelGCThreads) && !ForceDynamicNumberOfGCThreads)) {
    new_active_workers = total_workers;
  } else {
    new_active_workers = calc_default_active_workers(total_workers,
                                                     2, /* Minimum number of workers */
                                                     active_workers,
                                                     application_workers);
  }
  assert(new_active_workers > 0, "Always need at least 1");
  return new_active_workers;
}

int AdaptiveSizePolicy::calc_active_conc_workers(uintx total_workers,
                                                 uintx active_workers,
                                                 uintx application_workers) {
  if (!UseDynamicNumberOfGCThreads ||
     (!FLAG_IS_DEFAULT(ConcGCThreads) && !ForceDynamicNumberOfGCThreads)) {
    return ConcGCThreads;
  } else {
    int no_of_gc_threads = calc_default_active_workers(
                             total_workers,
                             1, /* Minimum number of workers */
                             active_workers,
                             application_workers);
    return no_of_gc_threads;
  }
}

bool AdaptiveSizePolicy::tenuring_threshold_change() const {
  return decrement_tenuring_threshold_for_gc_cost() ||
         increment_tenuring_threshold_for_gc_cost() ||
         decrement_tenuring_threshold_for_survivor_limit();
}

void AdaptiveSizePolicy::minor_collection_begin() {
  // Update the interval time
  _minor_timer.stop();
  // Save most recent collection time
  _latest_minor_mutator_interval_seconds = _minor_timer.seconds();
  _minor_timer.reset();
  _minor_timer.start();
}

void AdaptiveSizePolicy::update_minor_pause_young_estimator(
    double minor_pause_in_ms) {
  double eden_size_in_mbytes = ((double)_eden_size)/((double)M);
  _minor_pause_young_estimator->update(eden_size_in_mbytes,
    minor_pause_in_ms);
}

void AdaptiveSizePolicy::minor_collection_end(GCCause::Cause gc_cause) {
  // Update the pause time.
  _minor_timer.stop();

  if (gc_cause != GCCause::_java_lang_system_gc ||
      UseAdaptiveSizePolicyWithSystemGC) {
    double minor_pause_in_seconds = _minor_timer.seconds();
    double minor_pause_in_ms = minor_pause_in_seconds * MILLIUNITS;

    // Sample for performance counter
    _avg_minor_pause->sample(minor_pause_in_seconds);

    // Cost of collection (unit-less)
    double collection_cost = 0.0;
    if ((_latest_minor_mutator_interval_seconds > 0.0) &&
        (minor_pause_in_seconds > 0.0)) {
      double interval_in_seconds =
        _latest_minor_mutator_interval_seconds + minor_pause_in_seconds;
      collection_cost =
        minor_pause_in_seconds / interval_in_seconds;
      _avg_minor_gc_cost->sample(collection_cost);
      // Sample for performance counter
      _avg_minor_interval->sample(interval_in_seconds);
    }

    // The policy does not have enough data until at least some
    // minor collections have been done.
    _young_gen_policy_is_ready =
      (_avg_minor_gc_cost->count() >= AdaptiveSizePolicyReadyThreshold);

    // Calculate variables used to estimate pause time vs. gen sizes
    double eden_size_in_mbytes = ((double)_eden_size)/((double)M);
    update_minor_pause_young_estimator(minor_pause_in_ms);
    update_minor_pause_old_estimator(minor_pause_in_ms);

    if (PrintAdaptiveSizePolicy && Verbose) {
      gclog_or_tty->print("AdaptiveSizePolicy::minor_collection_end: "
        "minor gc cost: %f  average: %f", collection_cost,
        _avg_minor_gc_cost->average());
      gclog_or_tty->print_cr("  minor pause: %f minor period %f",
        minor_pause_in_ms,
        _latest_minor_mutator_interval_seconds * MILLIUNITS);
    }

    // Calculate variable used to estimate collection cost vs. gen sizes
    assert(collection_cost >= 0.0, "Expected to be non-negative");
    _minor_collection_estimator->update(eden_size_in_mbytes, collection_cost);
  }

  // Interval times use this timer to measure the mutator time.
  // Reset the timer after the GC pause.
  _minor_timer.reset();
  _minor_timer.start();
}

size_t AdaptiveSizePolicy::eden_increment(size_t cur_eden,
                                            uint percent_change) {
  size_t eden_heap_delta;
  eden_heap_delta = cur_eden / 100 * percent_change;
  return eden_heap_delta;
}

size_t AdaptiveSizePolicy::eden_increment(size_t cur_eden) {
  return eden_increment(cur_eden, YoungGenerationSizeIncrement);
}

size_t AdaptiveSizePolicy::eden_decrement(size_t cur_eden) {
  size_t eden_heap_delta = eden_increment(cur_eden) /
    AdaptiveSizeDecrementScaleFactor;
  return eden_heap_delta;
}

size_t AdaptiveSizePolicy::promo_increment(size_t cur_promo,
                                             uint percent_change) {
  size_t promo_heap_delta;
  promo_heap_delta = cur_promo / 100 * percent_change;
  return promo_heap_delta;
}

size_t AdaptiveSizePolicy::promo_increment(size_t cur_promo) {
  return promo_increment(cur_promo, TenuredGenerationSizeIncrement);
}

size_t AdaptiveSizePolicy::promo_decrement(size_t cur_promo) {
  size_t promo_heap_delta = promo_increment(cur_promo);
  promo_heap_delta = promo_heap_delta / AdaptiveSizeDecrementScaleFactor;
  return promo_heap_delta;
}

double AdaptiveSizePolicy::time_since_major_gc() const {
  _major_timer.stop();
  double result = _major_timer.seconds();
  _major_timer.start();
  return result;
}

// Linear decay of major gc cost
double AdaptiveSizePolicy::decaying_major_gc_cost() const {
  double major_interval = major_gc_interval_average_for_decay();
  double major_gc_cost_average = major_gc_cost();
  double decayed_major_gc_cost = major_gc_cost_average;
  if(time_since_major_gc() > 0.0) {
    decayed_major_gc_cost = major_gc_cost() *
      (((double) AdaptiveSizeMajorGCDecayTimeScale) * major_interval)
      / time_since_major_gc();
  }

  // The decayed cost should always be smaller than the
  // average cost but the vagaries of finite arithmetic could
  // produce a larger value in decayed_major_gc_cost so protect
  // against that.
  return MIN2(major_gc_cost_average, decayed_major_gc_cost);
}

// Use a value of the major gc cost that has been decayed
// by the factor
//
//      average-interval-between-major-gc * AdaptiveSizeMajorGCDecayTimeScale /
//        time-since-last-major-gc
//
// if the average-interval-between-major-gc * AdaptiveSizeMajorGCDecayTimeScale
// is less than time-since-last-major-gc.
//
// In cases where there are initial major gc's that
// are of a relatively high cost but no later major
// gc's, the total gc cost can remain high because
// the major gc cost remains unchanged (since there are no major
// gc's).  In such a situation the value of the unchanging
// major gc cost can keep the mutator throughput below
// the goal when in fact the major gc cost is becoming diminishingly
// small.  Use the decaying gc cost only to decide whether to
// adjust for throughput.  Using it also to determine the adjustment
// to be made for throughput also seems reasonable but there is
// no test case to use to decide if it is the right thing to do
// don't do it yet.

double AdaptiveSizePolicy::decaying_gc_cost() const {
  double decayed_major_gc_cost = major_gc_cost();
  double avg_major_interval = major_gc_interval_average_for_decay();
  if (UseAdaptiveSizeDecayMajorGCCost &&
      (AdaptiveSizeMajorGCDecayTimeScale > 0) &&
      (avg_major_interval > 0.00)) {
    double time_since_last_major_gc = time_since_major_gc();

    // Decay the major gc cost?
    if (time_since_last_major_gc >
        ((double) AdaptiveSizeMajorGCDecayTimeScale) * avg_major_interval) {

      // Decay using the time-since-last-major-gc
      decayed_major_gc_cost = decaying_major_gc_cost();
      if (PrintGCDetails && Verbose) {
        gclog_or_tty->print_cr("\ndecaying_gc_cost: major interval average:"
          " %f  time since last major gc: %f",
          avg_major_interval, time_since_last_major_gc);
        gclog_or_tty->print_cr("  major gc cost: %f  decayed major gc cost: %f",
          major_gc_cost(), decayed_major_gc_cost);
      }
    }
  }
  double result = MIN2(1.0, decayed_major_gc_cost + minor_gc_cost());
  return result;
}


void AdaptiveSizePolicy::clear_generation_free_space_flags() {
  set_change_young_gen_for_min_pauses(0);
  set_change_old_gen_for_maj_pauses(0);

  set_change_old_gen_for_throughput(0);
  set_change_young_gen_for_throughput(0);
  set_decrease_for_footprint(0);
  set_decide_at_full_gc(0);
}

void AdaptiveSizePolicy::check_gc_overhead_limit(
                                          size_t young_live,
                                          size_t eden_live,
                                          size_t max_old_gen_size,
                                          size_t max_eden_size,
                                          bool   is_full_gc,
                                          GCCause::Cause gc_cause,
                                          CollectorPolicy* collector_policy) {

  // Ignore explicit GC's.  Exiting here does not set the flag and
  // does not reset the count.  Updating of the averages for system
  // GC's is still controlled by UseAdaptiveSizePolicyWithSystemGC.
  if (GCCause::is_user_requested_gc(gc_cause) ||
      GCCause::is_serviceability_requested_gc(gc_cause)) {
    return;
  }
  // eden_limit is the upper limit on the size of eden based on
  // the maximum size of the young generation and the sizes
  // of the survivor space.
  // The question being asked is whether the gc costs are high
  // and the space being recovered by a collection is low.
  // free_in_young_gen is the free space in the young generation
  // after a collection and promo_live is the free space in the old
  // generation after a collection.
  //
  // Use the minimum of the current value of the live in the
  // young gen or the average of the live in the young gen.
  // If the current value drops quickly, that should be taken
  // into account (i.e., don't trigger if the amount of free
  // space has suddenly jumped up).  If the current is much
  // higher than the average, use the average since it represents
  // the longer term behavor.
  const size_t live_in_eden =
    MIN2(eden_live, (size_t) avg_eden_live()->average());
  const size_t free_in_eden = max_eden_size > live_in_eden ?
    max_eden_size - live_in_eden : 0;
  const size_t free_in_old_gen = (size_t)(max_old_gen_size - avg_old_live()->average());
  const size_t total_free_limit = free_in_old_gen + free_in_eden;
  const size_t total_mem = max_old_gen_size + max_eden_size;
  const double mem_free_limit = total_mem * (GCHeapFreeLimit/100.0);
  const double mem_free_old_limit = max_old_gen_size * (GCHeapFreeLimit/100.0);
  const double mem_free_eden_limit = max_eden_size * (GCHeapFreeLimit/100.0);
  const double gc_cost_limit = GCTimeLimit/100.0;
  size_t promo_limit = (size_t)(max_old_gen_size - avg_old_live()->average());
  // But don't force a promo size below the current promo size. Otherwise,
  // the promo size will shrink for no good reason.
  promo_limit = MAX2(promo_limit, _promo_size);


  if (PrintAdaptiveSizePolicy && (Verbose ||
      (free_in_old_gen < (size_t) mem_free_old_limit &&
       free_in_eden < (size_t) mem_free_eden_limit))) {
    gclog_or_tty->print_cr(
          "PSAdaptiveSizePolicy::check_gc_overhead_limit:"
          " promo_limit: " SIZE_FORMAT
          " max_eden_size: " SIZE_FORMAT
          " total_free_limit: " SIZE_FORMAT
          " max_old_gen_size: " SIZE_FORMAT
          " max_eden_size: " SIZE_FORMAT
          " mem_free_limit: " SIZE_FORMAT,
          promo_limit, max_eden_size, total_free_limit,
          max_old_gen_size, max_eden_size,
          (size_t) mem_free_limit);
  }

  bool print_gc_overhead_limit_would_be_exceeded = false;
  if (is_full_gc) {
    if (gc_cost() > gc_cost_limit &&
      free_in_old_gen < (size_t) mem_free_old_limit &&
      free_in_eden < (size_t) mem_free_eden_limit) {
      // Collections, on average, are taking too much time, and
      //      gc_cost() > gc_cost_limit
      // we have too little space available after a full gc.
      //      total_free_limit < mem_free_limit
      // where
      //   total_free_limit is the free space available in
      //     both generations
      //   total_mem is the total space available for allocation
      //     in both generations (survivor spaces are not included
      //     just as they are not included in eden_limit).
      //   mem_free_limit is a fraction of total_mem judged to be an
      //     acceptable amount that is still unused.
      // The heap can ask for the value of this variable when deciding
      // whether to thrown an OutOfMemory error.
      // Note that the gc time limit test only works for the collections
      // of the young gen + tenured gen and not for collections of the
      // permanent gen.  That is because the calculation of the space
      // freed by the collection is the free space in the young gen +
      // tenured gen.
      // At this point the GC overhead limit is being exceeded.
      inc_gc_overhead_limit_count();
      if (UseGCOverheadLimit) {
        if (gc_overhead_limit_count() >=
            AdaptiveSizePolicyGCTimeLimitThreshold){
          // All conditions have been met for throwing an out-of-memory
          set_gc_overhead_limit_exceeded(true);
          // Avoid consecutive OOM due to the gc time limit by resetting
          // the counter.
          reset_gc_overhead_limit_count();
        } else {
          // The required consecutive collections which exceed the
          // GC time limit may or may not have been reached. We
          // are approaching that condition and so as not to
          // throw an out-of-memory before all SoftRef's have been
          // cleared, set _should_clear_all_soft_refs in CollectorPolicy.
          // The clearing will be done on the next GC.
          bool near_limit = gc_overhead_limit_near();
          if (near_limit) {
            collector_policy->set_should_clear_all_soft_refs(true);
            if (PrintGCDetails && Verbose) {
              gclog_or_tty->print_cr("  Nearing GC overhead limit, "
                "will be clearing all SoftReference");
            }
          }
        }
      }
      // Set this even when the overhead limit will not
      // cause an out-of-memory.  Diagnostic message indicating
      // that the overhead limit is being exceeded is sometimes
      // printed.
      print_gc_overhead_limit_would_be_exceeded = true;

    } else {
      // Did not exceed overhead limits
      reset_gc_overhead_limit_count();
    }
  }

  if (UseGCOverheadLimit && PrintGCDetails && Verbose) {
    if (gc_overhead_limit_exceeded()) {
      gclog_or_tty->print_cr("      GC is exceeding overhead limit "
        "of %d%%", GCTimeLimit);
      reset_gc_overhead_limit_count();
    } else if (print_gc_overhead_limit_would_be_exceeded) {
      assert(gc_overhead_limit_count() > 0, "Should not be printing");
      gclog_or_tty->print_cr("      GC would exceed overhead limit "
        "of %d%% %d consecutive time(s)",
        GCTimeLimit, gc_overhead_limit_count());
    }
  }
}
// Printing

bool AdaptiveSizePolicy::print_adaptive_size_policy_on(outputStream* st) const {

  //  Should only be used with adaptive size policy turned on.
  // Otherwise, there may be variables that are undefined.
  if (!UseAdaptiveSizePolicy) return false;

  // Print goal for which action is needed.
  char* action = NULL;
  bool change_for_pause = false;
  if ((change_old_gen_for_maj_pauses() ==
         decrease_old_gen_for_maj_pauses_true) ||
      (change_young_gen_for_min_pauses() ==
         decrease_young_gen_for_min_pauses_true)) {
    action = (char*) " *** pause time goal ***";
    change_for_pause = true;
  } else if ((change_old_gen_for_throughput() ==
               increase_old_gen_for_throughput_true) ||
            (change_young_gen_for_throughput() ==
               increase_young_gen_for_througput_true)) {
    action = (char*) " *** throughput goal ***";
  } else if (decrease_for_footprint()) {
    action = (char*) " *** reduced footprint ***";
  } else {
    // No actions were taken.  This can legitimately be the
    // situation if not enough data has been gathered to make
    // decisions.
    return false;
  }

  // Pauses
  // Currently the size of the old gen is only adjusted to
  // change the major pause times.
  char* young_gen_action = NULL;
  char* tenured_gen_action = NULL;

  char* shrink_msg = (char*) "(attempted to shrink)";
  char* grow_msg = (char*) "(attempted to grow)";
  char* no_change_msg = (char*) "(no change)";
  if (change_young_gen_for_min_pauses() ==
      decrease_young_gen_for_min_pauses_true) {
    young_gen_action = shrink_msg;
  } else if (change_for_pause) {
    young_gen_action = no_change_msg;
  }

  if (change_old_gen_for_maj_pauses() == decrease_old_gen_for_maj_pauses_true) {
    tenured_gen_action = shrink_msg;
  } else if (change_for_pause) {
    tenured_gen_action = no_change_msg;
  }

  // Throughput
  if (change_old_gen_for_throughput() == increase_old_gen_for_throughput_true) {
    assert(change_young_gen_for_throughput() ==
           increase_young_gen_for_througput_true,
           "Both generations should be growing");
    young_gen_action = grow_msg;
    tenured_gen_action = grow_msg;
  } else if (change_young_gen_for_throughput() ==
             increase_young_gen_for_througput_true) {
    // Only the young generation may grow at start up (before
    // enough full collections have been done to grow the old generation).
    young_gen_action = grow_msg;
    tenured_gen_action = no_change_msg;
  }

  // Minimum footprint
  if (decrease_for_footprint() != 0) {
    young_gen_action = shrink_msg;
    tenured_gen_action = shrink_msg;
  }

  st->print_cr("    UseAdaptiveSizePolicy actions to meet %s", action);
  st->print_cr("                       GC overhead (%%)");
  st->print_cr("    Young generation:     %7.2f\t  %s",
    100.0 * avg_minor_gc_cost()->average(),
    young_gen_action);
  st->print_cr("    Tenured generation:   %7.2f\t  %s",
    100.0 * avg_major_gc_cost()->average(),
    tenured_gen_action);
  return true;
}

bool AdaptiveSizePolicy::print_adaptive_size_policy_on(
                                            outputStream* st,
                                            uint tenuring_threshold_arg) const {
  if (!AdaptiveSizePolicy::print_adaptive_size_policy_on(st)) {
    return false;
  }

  // Tenuring threshold
  bool tenuring_threshold_changed = true;
  if (decrement_tenuring_threshold_for_survivor_limit()) {
    st->print("    Tenuring threshold:    (attempted to decrease to avoid"
              " survivor space overflow) = ");
  } else if (decrement_tenuring_threshold_for_gc_cost()) {
    st->print("    Tenuring threshold:    (attempted to decrease to balance"
              " GC costs) = ");
  } else if (increment_tenuring_threshold_for_gc_cost()) {
    st->print("    Tenuring threshold:    (attempted to increase to balance"
              " GC costs) = ");
  } else {
    tenuring_threshold_changed = false;
    assert(!tenuring_threshold_change(), "(no change was attempted)");
  }
  if (tenuring_threshold_changed) {
    st->print_cr("%u", tenuring_threshold_arg);
  }
  return true;
}

Other Java examples (source code examples)

Here is a short list of links related to this Java adaptiveSizePolicy.cpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.