alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (genCollectedHeap.cpp)

This example Java source code file (genCollectedHeap.cpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

gccause\:\:_gc_locker, gencollectedheap\:\:genclosure, generation, gengcepilogueclosure, heap_lock, heapword, include_all_gcs, not_product, null, printgcdetails, reservedspace, scratchblock, size_format, useconcmarksweepgc

The genCollectedHeap.cpp Java example source code

/*
 * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#include "precompiled.hpp"
#include "classfile/symbolTable.hpp"
#include "classfile/systemDictionary.hpp"
#include "classfile/vmSymbols.hpp"
#include "code/icBuffer.hpp"
#include "gc_implementation/shared/collectorCounters.hpp"
#include "gc_implementation/shared/gcTraceTime.hpp"
#include "gc_implementation/shared/vmGCOperations.hpp"
#include "gc_interface/collectedHeap.inline.hpp"
#include "memory/filemap.hpp"
#include "memory/gcLocker.inline.hpp"
#include "memory/genCollectedHeap.hpp"
#include "memory/genOopClosures.inline.hpp"
#include "memory/generation.inline.hpp"
#include "memory/generationSpec.hpp"
#include "memory/resourceArea.hpp"
#include "memory/sharedHeap.hpp"
#include "memory/space.hpp"
#include "oops/oop.inline.hpp"
#include "oops/oop.inline2.hpp"
#include "runtime/biasedLocking.hpp"
#include "runtime/fprofiler.hpp"
#include "runtime/handles.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/java.hpp"
#include "runtime/vmThread.hpp"
#include "services/memoryService.hpp"
#include "utilities/vmError.hpp"
#include "utilities/workgroup.hpp"
#include "utilities/macros.hpp"
#if INCLUDE_ALL_GCS
#include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
#include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
#endif // INCLUDE_ALL_GCS

GenCollectedHeap* GenCollectedHeap::_gch;
NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)

// The set of potentially parallel tasks in strong root scanning.
enum GCH_process_strong_roots_tasks {
  // We probably want to parallelize both of these internally, but for now...
  GCH_PS_younger_gens,
  // Leave this one last.
  GCH_PS_NumElements
};

GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
  SharedHeap(policy),
  _gen_policy(policy),
  _gen_process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
  _full_collections_completed(0)
{
  if (_gen_process_strong_tasks == NULL ||
      !_gen_process_strong_tasks->valid()) {
    vm_exit_during_initialization("Failed necessary allocation.");
  }
  assert(policy != NULL, "Sanity check");
}

jint GenCollectedHeap::initialize() {
  CollectedHeap::pre_initialize();

  int i;
  _n_gens = gen_policy()->number_of_generations();

  // While there are no constraints in the GC code that HeapWordSize
  // be any particular value, there are multiple other areas in the
  // system which believe this to be true (e.g. oop->object_size in some
  // cases incorrectly returns the size in wordSize units rather than
  // HeapWordSize).
  guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");

  // The heap must be at least as aligned as generations.
  size_t gen_alignment = Generation::GenGrain;

  _gen_specs = gen_policy()->generations();

  // Make sure the sizes are all aligned.
  for (i = 0; i < _n_gens; i++) {
    _gen_specs[i]->align(gen_alignment);
  }

  // Allocate space for the heap.

  char* heap_address;
  size_t total_reserved = 0;
  int n_covered_regions = 0;
  ReservedSpace heap_rs;

  size_t heap_alignment = collector_policy()->heap_alignment();

  heap_address = allocate(heap_alignment, &total_reserved,
                          &n_covered_regions, &heap_rs);

  if (!heap_rs.is_reserved()) {
    vm_shutdown_during_initialization(
      "Could not reserve enough space for object heap");
    return JNI_ENOMEM;
  }

  _reserved = MemRegion((HeapWord*)heap_rs.base(),
                        (HeapWord*)(heap_rs.base() + heap_rs.size()));

  // It is important to do this in a way such that concurrent readers can't
  // temporarily think somethings in the heap.  (Seen this happen in asserts.)
  _reserved.set_word_size(0);
  _reserved.set_start((HeapWord*)heap_rs.base());
  size_t actual_heap_size = heap_rs.size();
  _reserved.set_end((HeapWord*)(heap_rs.base() + actual_heap_size));

  _rem_set = collector_policy()->create_rem_set(_reserved, n_covered_regions);
  set_barrier_set(rem_set()->bs());

  _gch = this;

  for (i = 0; i < _n_gens; i++) {
    ReservedSpace this_rs = heap_rs.first_part(_gen_specs[i]->max_size(), false, false);
    _gens[i] = _gen_specs[i]->init(this_rs, i, rem_set());
    heap_rs = heap_rs.last_part(_gen_specs[i]->max_size());
  }
  clear_incremental_collection_failed();

#if INCLUDE_ALL_GCS
  // If we are running CMS, create the collector responsible
  // for collecting the CMS generations.
  if (collector_policy()->is_concurrent_mark_sweep_policy()) {
    bool success = create_cms_collector();
    if (!success) return JNI_ENOMEM;
  }
#endif // INCLUDE_ALL_GCS

  return JNI_OK;
}


char* GenCollectedHeap::allocate(size_t alignment,
                                 size_t* _total_reserved,
                                 int* _n_covered_regions,
                                 ReservedSpace* heap_rs){
  const char overflow_msg[] = "The size of the object heap + VM data exceeds "
    "the maximum representable size";

  // Now figure out the total size.
  size_t total_reserved = 0;
  int n_covered_regions = 0;
  const size_t pageSize = UseLargePages ?
      os::large_page_size() : os::vm_page_size();

  assert(alignment % pageSize == 0, "Must be");

  for (int i = 0; i < _n_gens; i++) {
    total_reserved += _gen_specs[i]->max_size();
    if (total_reserved < _gen_specs[i]->max_size()) {
      vm_exit_during_initialization(overflow_msg);
    }
    n_covered_regions += _gen_specs[i]->n_covered_regions();
  }
  assert(total_reserved % alignment == 0,
         err_msg("Gen size; total_reserved=" SIZE_FORMAT ", alignment="
                 SIZE_FORMAT, total_reserved, alignment));

  // Needed until the cardtable is fixed to have the right number
  // of covered regions.
  n_covered_regions += 2;

  *_total_reserved = total_reserved;
  *_n_covered_regions = n_covered_regions;

  *heap_rs = Universe::reserve_heap(total_reserved, alignment);
  return heap_rs->base();
}


void GenCollectedHeap::post_initialize() {
  SharedHeap::post_initialize();
  TwoGenerationCollectorPolicy *policy =
    (TwoGenerationCollectorPolicy *)collector_policy();
  guarantee(policy->is_two_generation_policy(), "Illegal policy type");
  DefNewGeneration* def_new_gen = (DefNewGeneration*) get_gen(0);
  assert(def_new_gen->kind() == Generation::DefNew ||
         def_new_gen->kind() == Generation::ParNew ||
         def_new_gen->kind() == Generation::ASParNew,
         "Wrong generation kind");

  Generation* old_gen = get_gen(1);
  assert(old_gen->kind() == Generation::ConcurrentMarkSweep ||
         old_gen->kind() == Generation::ASConcurrentMarkSweep ||
         old_gen->kind() == Generation::MarkSweepCompact,
    "Wrong generation kind");

  policy->initialize_size_policy(def_new_gen->eden()->capacity(),
                                 old_gen->capacity(),
                                 def_new_gen->from()->capacity());
  policy->initialize_gc_policy_counters();
}

void GenCollectedHeap::ref_processing_init() {
  SharedHeap::ref_processing_init();
  for (int i = 0; i < _n_gens; i++) {
    _gens[i]->ref_processor_init();
  }
}

size_t GenCollectedHeap::capacity() const {
  size_t res = 0;
  for (int i = 0; i < _n_gens; i++) {
    res += _gens[i]->capacity();
  }
  return res;
}

size_t GenCollectedHeap::used() const {
  size_t res = 0;
  for (int i = 0; i < _n_gens; i++) {
    res += _gens[i]->used();
  }
  return res;
}

// Save the "used_region" for generations level and lower.
void GenCollectedHeap::save_used_regions(int level) {
  assert(level < _n_gens, "Illegal level parameter");
  for (int i = level; i >= 0; i--) {
    _gens[i]->save_used_region();
  }
}

size_t GenCollectedHeap::max_capacity() const {
  size_t res = 0;
  for (int i = 0; i < _n_gens; i++) {
    res += _gens[i]->max_capacity();
  }
  return res;
}

// Update the _full_collections_completed counter
// at the end of a stop-world full GC.
unsigned int GenCollectedHeap::update_full_collections_completed() {
  MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
  assert(_full_collections_completed <= _total_full_collections,
         "Can't complete more collections than were started");
  _full_collections_completed = _total_full_collections;
  ml.notify_all();
  return _full_collections_completed;
}

// Update the _full_collections_completed counter, as appropriate,
// at the end of a concurrent GC cycle. Note the conditional update
// below to allow this method to be called by a concurrent collector
// without synchronizing in any manner with the VM thread (which
// may already have initiated a STW full collection "concurrently").
unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
  MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
  assert((_full_collections_completed <= _total_full_collections) &&
         (count <= _total_full_collections),
         "Can't complete more collections than were started");
  if (count > _full_collections_completed) {
    _full_collections_completed = count;
    ml.notify_all();
  }
  return _full_collections_completed;
}


#ifndef PRODUCT
// Override of memory state checking method in CollectedHeap:
// Some collectors (CMS for example) can't have badHeapWordVal written
// in the first two words of an object. (For instance , in the case of
// CMS these words hold state used to synchronize between certain
// (concurrent) GC steps and direct allocating mutators.)
// The skip_header_HeapWords() method below, allows us to skip
// over the requisite number of HeapWord's. Note that (for
// generational collectors) this means that those many words are
// skipped in each object, irrespective of the generation in which
// that object lives. The resultant loss of precision seems to be
// harmless and the pain of avoiding that imprecision appears somewhat
// higher than we are prepared to pay for such rudimentary debugging
// support.
void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
                                                         size_t size) {
  if (CheckMemoryInitialization && ZapUnusedHeapArea) {
    // We are asked to check a size in HeapWords,
    // but the memory is mangled in juint words.
    juint* start = (juint*) (addr + skip_header_HeapWords());
    juint* end   = (juint*) (addr + size);
    for (juint* slot = start; slot < end; slot += 1) {
      assert(*slot == badHeapWordVal,
             "Found non badHeapWordValue in pre-allocation check");
    }
  }
}
#endif

HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
                                               bool is_tlab,
                                               bool first_only) {
  HeapWord* res;
  for (int i = 0; i < _n_gens; i++) {
    if (_gens[i]->should_allocate(size, is_tlab)) {
      res = _gens[i]->allocate(size, is_tlab);
      if (res != NULL) return res;
      else if (first_only) break;
    }
  }
  // Otherwise...
  return NULL;
}

HeapWord* GenCollectedHeap::mem_allocate(size_t size,
                                         bool* gc_overhead_limit_was_exceeded) {
  return collector_policy()->mem_allocate_work(size,
                                               false /* is_tlab */,
                                               gc_overhead_limit_was_exceeded);
}

bool GenCollectedHeap::must_clear_all_soft_refs() {
  return _gc_cause == GCCause::_last_ditch_collection;
}

bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
  return UseConcMarkSweepGC &&
         ((cause == GCCause::_gc_locker && GCLockerInvokesConcurrent) ||
          (cause == GCCause::_java_lang_system_gc && ExplicitGCInvokesConcurrent));
}

void GenCollectedHeap::do_collection(bool  full,
                                     bool   clear_all_soft_refs,
                                     size_t size,
                                     bool   is_tlab,
                                     int    max_level) {
  bool prepared_for_verification = false;
  ResourceMark rm;
  DEBUG_ONLY(Thread* my_thread = Thread::current();)

  assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  assert(my_thread->is_VM_thread() ||
         my_thread->is_ConcurrentGC_thread(),
         "incorrect thread type capability");
  assert(Heap_lock->is_locked(),
         "the requesting thread should have the Heap_lock");
  guarantee(!is_gc_active(), "collection is not reentrant");
  assert(max_level < n_gens(), "sanity check");

  if (GC_locker::check_active_before_gc()) {
    return; // GC is disabled (e.g. JNI GetXXXCritical operation)
  }

  const bool do_clear_all_soft_refs = clear_all_soft_refs ||
                          collector_policy()->should_clear_all_soft_refs();

  ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());

  const size_t metadata_prev_used = MetaspaceAux::allocated_used_bytes();

  print_heap_before_gc();

  {
    FlagSetting fl(_is_gc_active, true);

    bool complete = full && (max_level == (n_gens()-1));
    const char* gc_cause_prefix = complete ? "Full GC" : "GC";
    gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
    TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
    GCTraceTime t(GCCauseString(gc_cause_prefix, gc_cause()), PrintGCDetails, false, NULL);

    gc_prologue(complete);
    increment_total_collections(complete);

    size_t gch_prev_used = used();

    int starting_level = 0;
    if (full) {
      // Search for the oldest generation which will collect all younger
      // generations, and start collection loop there.
      for (int i = max_level; i >= 0; i--) {
        if (_gens[i]->full_collects_younger_generations()) {
          starting_level = i;
          break;
        }
      }
    }

    bool must_restore_marks_for_biased_locking = false;

    int max_level_collected = starting_level;
    for (int i = starting_level; i <= max_level; i++) {
      if (_gens[i]->should_collect(full, size, is_tlab)) {
        if (i == n_gens() - 1) {  // a major collection is to happen
          if (!complete) {
            // The full_collections increment was missed above.
            increment_total_full_collections();
          }
          pre_full_gc_dump(NULL);    // do any pre full gc dumps
        }
        // Timer for individual generations. Last argument is false: no CR
        // FIXME: We should try to start the timing earlier to cover more of the GC pause
        GCTraceTime t1(_gens[i]->short_name(), PrintGCDetails, false, NULL);
        TraceCollectorStats tcs(_gens[i]->counters());
        TraceMemoryManagerStats tmms(_gens[i]->kind(),gc_cause());

        size_t prev_used = _gens[i]->used();
        _gens[i]->stat_record()->invocations++;
        _gens[i]->stat_record()->accumulated_time.start();

        // Must be done anew before each collection because
        // a previous collection will do mangling and will
        // change top of some spaces.
        record_gen_tops_before_GC();

        if (PrintGC && Verbose) {
          gclog_or_tty->print("level=%d invoke=%d size=" SIZE_FORMAT,
                     i,
                     _gens[i]->stat_record()->invocations,
                     size*HeapWordSize);
        }

        if (VerifyBeforeGC && i >= VerifyGCLevel &&
            total_collections() >= VerifyGCStartAt) {
          HandleMark hm;  // Discard invalid handles created during verification
          if (!prepared_for_verification) {
            prepare_for_verify();
            prepared_for_verification = true;
          }
          Universe::verify(" VerifyBeforeGC:");
        }
        COMPILER2_PRESENT(DerivedPointerTable::clear());

        if (!must_restore_marks_for_biased_locking &&
            _gens[i]->performs_in_place_marking()) {
          // We perform this mark word preservation work lazily
          // because it's only at this point that we know whether we
          // absolutely have to do it; we want to avoid doing it for
          // scavenge-only collections where it's unnecessary
          must_restore_marks_for_biased_locking = true;
          BiasedLocking::preserve_marks();
        }

        // Do collection work
        {
          // Note on ref discovery: For what appear to be historical reasons,
          // GCH enables and disabled (by enqueing) refs discovery.
          // In the future this should be moved into the generation's
          // collect method so that ref discovery and enqueueing concerns
          // are local to a generation. The collect method could return
          // an appropriate indication in the case that notification on
          // the ref lock was needed. This will make the treatment of
          // weak refs more uniform (and indeed remove such concerns
          // from GCH). XXX

          HandleMark hm;  // Discard invalid handles created during gc
          save_marks();   // save marks for all gens
          // We want to discover references, but not process them yet.
          // This mode is disabled in process_discovered_references if the
          // generation does some collection work, or in
          // enqueue_discovered_references if the generation returns
          // without doing any work.
          ReferenceProcessor* rp = _gens[i]->ref_processor();
          // If the discovery of ("weak") refs in this generation is
          // atomic wrt other collectors in this configuration, we
          // are guaranteed to have empty discovered ref lists.
          if (rp->discovery_is_atomic()) {
            rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
            rp->setup_policy(do_clear_all_soft_refs);
          } else {
            // collect() below will enable discovery as appropriate
          }
          _gens[i]->collect(full, do_clear_all_soft_refs, size, is_tlab);
          if (!rp->enqueuing_is_done()) {
            rp->enqueue_discovered_references();
          } else {
            rp->set_enqueuing_is_done(false);
          }
          rp->verify_no_references_recorded();
        }
        max_level_collected = i;

        // Determine if allocation request was met.
        if (size > 0) {
          if (!is_tlab || _gens[i]->supports_tlab_allocation()) {
            if (size*HeapWordSize <= _gens[i]->unsafe_max_alloc_nogc()) {
              size = 0;
            }
          }
        }

        COMPILER2_PRESENT(DerivedPointerTable::update_pointers());

        _gens[i]->stat_record()->accumulated_time.stop();

        update_gc_stats(i, full);

        if (VerifyAfterGC && i >= VerifyGCLevel &&
            total_collections() >= VerifyGCStartAt) {
          HandleMark hm;  // Discard invalid handles created during verification
          Universe::verify(" VerifyAfterGC:");
        }

        if (PrintGCDetails) {
          gclog_or_tty->print(":");
          _gens[i]->print_heap_change(prev_used);
        }
      }
    }

    // Update "complete" boolean wrt what actually transpired --
    // for instance, a promotion failure could have led to
    // a whole heap collection.
    complete = complete || (max_level_collected == n_gens() - 1);

    if (complete) { // We did a "major" collection
      // FIXME: See comment at pre_full_gc_dump call
      post_full_gc_dump(NULL);   // do any post full gc dumps
    }

    if (PrintGCDetails) {
      print_heap_change(gch_prev_used);

      // Print metaspace info for full GC with PrintGCDetails flag.
      if (complete) {
        MetaspaceAux::print_metaspace_change(metadata_prev_used);
      }
    }

    for (int j = max_level_collected; j >= 0; j -= 1) {
      // Adjust generation sizes.
      _gens[j]->compute_new_size();
    }

    if (complete) {
      // Delete metaspaces for unloaded class loaders and clean up loader_data graph
      ClassLoaderDataGraph::purge();
      MetaspaceAux::verify_metrics();
      // Resize the metaspace capacity after full collections
      MetaspaceGC::compute_new_size();
      update_full_collections_completed();
    }

    // Track memory usage and detect low memory after GC finishes
    MemoryService::track_memory_usage();

    gc_epilogue(complete);

    if (must_restore_marks_for_biased_locking) {
      BiasedLocking::restore_marks();
    }
  }

  AdaptiveSizePolicy* sp = gen_policy()->size_policy();
  AdaptiveSizePolicyOutput(sp, total_collections());

  print_heap_after_gc();

#ifdef TRACESPINNING
  ParallelTaskTerminator::print_termination_counts();
#endif
}

HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
  return collector_policy()->satisfy_failed_allocation(size, is_tlab);
}

void GenCollectedHeap::set_par_threads(uint t) {
  SharedHeap::set_par_threads(t);
  _gen_process_strong_tasks->set_n_threads(t);
}

void GenCollectedHeap::
gen_process_strong_roots(int level,
                         bool younger_gens_as_roots,
                         bool activate_scope,
                         bool is_scavenging,
                         SharedHeap::ScanningOption so,
                         OopsInGenClosure* not_older_gens,
                         bool do_code_roots,
                         OopsInGenClosure* older_gens,
                         KlassClosure* klass_closure) {
  // General strong roots.

  if (!do_code_roots) {
    SharedHeap::process_strong_roots(activate_scope, is_scavenging, so,
                                     not_older_gens, NULL, klass_closure);
  } else {
    bool do_code_marking = (activate_scope || nmethod::oops_do_marking_is_active());
    CodeBlobToOopClosure code_roots(not_older_gens, /*do_marking=*/ do_code_marking);
    SharedHeap::process_strong_roots(activate_scope, is_scavenging, so,
                                     not_older_gens, &code_roots, klass_closure);
  }

  if (younger_gens_as_roots) {
    if (!_gen_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
      for (int i = 0; i < level; i++) {
        not_older_gens->set_generation(_gens[i]);
        _gens[i]->oop_iterate(not_older_gens);
      }
      not_older_gens->reset_generation();
    }
  }
  // When collection is parallel, all threads get to cooperate to do
  // older-gen scanning.
  for (int i = level+1; i < _n_gens; i++) {
    older_gens->set_generation(_gens[i]);
    rem_set()->younger_refs_iterate(_gens[i], older_gens);
    older_gens->reset_generation();
  }

  _gen_process_strong_tasks->all_tasks_completed();
}

void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure,
                                              CodeBlobClosure* code_roots) {
  SharedHeap::process_weak_roots(root_closure, code_roots);
  // "Local" "weak" refs
  for (int i = 0; i < _n_gens; i++) {
    _gens[i]->ref_processor()->weak_oops_do(root_closure);
  }
}

#define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
void GenCollectedHeap::                                                 \
oop_since_save_marks_iterate(int level,                                 \
                             OopClosureType* cur,                       \
                             OopClosureType* older) {                   \
  _gens[level]->oop_since_save_marks_iterate##nv_suffix(cur);           \
  for (int i = level+1; i < n_gens(); i++) {                            \
    _gens[i]->oop_since_save_marks_iterate##nv_suffix(older);           \
  }                                                                     \
}

ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)

#undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN

bool GenCollectedHeap::no_allocs_since_save_marks(int level) {
  for (int i = level; i < _n_gens; i++) {
    if (!_gens[i]->no_allocs_since_save_marks()) return false;
  }
  return true;
}

bool GenCollectedHeap::supports_inline_contig_alloc() const {
  return _gens[0]->supports_inline_contig_alloc();
}

HeapWord** GenCollectedHeap::top_addr() const {
  return _gens[0]->top_addr();
}

HeapWord** GenCollectedHeap::end_addr() const {
  return _gens[0]->end_addr();
}

size_t GenCollectedHeap::unsafe_max_alloc() {
  return _gens[0]->unsafe_max_alloc_nogc();
}

// public collection interfaces

void GenCollectedHeap::collect(GCCause::Cause cause) {
  if (should_do_concurrent_full_gc(cause)) {
#if INCLUDE_ALL_GCS
    // mostly concurrent full collection
    collect_mostly_concurrent(cause);
#else  // INCLUDE_ALL_GCS
    ShouldNotReachHere();
#endif // INCLUDE_ALL_GCS
  } else {
#ifdef ASSERT
    if (cause == GCCause::_scavenge_alot) {
      // minor collection only
      collect(cause, 0);
    } else {
      // Stop-the-world full collection
      collect(cause, n_gens() - 1);
    }
#else
    // Stop-the-world full collection
    collect(cause, n_gens() - 1);
#endif
  }
}

void GenCollectedHeap::collect(GCCause::Cause cause, int max_level) {
  // The caller doesn't have the Heap_lock
  assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
  MutexLocker ml(Heap_lock);
  collect_locked(cause, max_level);
}

void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
  // The caller has the Heap_lock
  assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
  collect_locked(cause, n_gens() - 1);
}

// this is the private collection interface
// The Heap_lock is expected to be held on entry.

void GenCollectedHeap::collect_locked(GCCause::Cause cause, int max_level) {
  // Read the GC count while holding the Heap_lock
  unsigned int gc_count_before      = total_collections();
  unsigned int full_gc_count_before = total_full_collections();
  {
    MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
    VM_GenCollectFull op(gc_count_before, full_gc_count_before,
                         cause, max_level);
    VMThread::execute(&op);
  }
}

#if INCLUDE_ALL_GCS
bool GenCollectedHeap::create_cms_collector() {

  assert(((_gens[1]->kind() == Generation::ConcurrentMarkSweep) ||
         (_gens[1]->kind() == Generation::ASConcurrentMarkSweep)),
         "Unexpected generation kinds");
  // Skip two header words in the block content verification
  NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();)
  CMSCollector* collector = new CMSCollector(
    (ConcurrentMarkSweepGeneration*)_gens[1],
    _rem_set->as_CardTableRS(),
    (ConcurrentMarkSweepPolicy*) collector_policy());

  if (collector == NULL || !collector->completed_initialization()) {
    if (collector) {
      delete collector;  // Be nice in embedded situation
    }
    vm_shutdown_during_initialization("Could not create CMS collector");
    return false;
  }
  return true;  // success
}

void GenCollectedHeap::collect_mostly_concurrent(GCCause::Cause cause) {
  assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");

  MutexLocker ml(Heap_lock);
  // Read the GC counts while holding the Heap_lock
  unsigned int full_gc_count_before = total_full_collections();
  unsigned int gc_count_before      = total_collections();
  {
    MutexUnlocker mu(Heap_lock);
    VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
    VMThread::execute(&op);
  }
}
#endif // INCLUDE_ALL_GCS

void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
   do_full_collection(clear_all_soft_refs, _n_gens - 1);
}

void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
                                          int max_level) {
  int local_max_level;
  if (!incremental_collection_will_fail(false /* don't consult_young */) &&
      gc_cause() == GCCause::_gc_locker) {
    local_max_level = 0;
  } else {
    local_max_level = max_level;
  }

  do_collection(true                 /* full */,
                clear_all_soft_refs  /* clear_all_soft_refs */,
                0                    /* size */,
                false                /* is_tlab */,
                local_max_level      /* max_level */);
  // Hack XXX FIX ME !!!
  // A scavenge may not have been attempted, or may have
  // been attempted and failed, because the old gen was too full
  if (local_max_level == 0 && gc_cause() == GCCause::_gc_locker &&
      incremental_collection_will_fail(false /* don't consult_young */)) {
    if (PrintGCDetails) {
      gclog_or_tty->print_cr("GC locker: Trying a full collection "
                             "because scavenge failed");
    }
    // This time allow the old gen to be collected as well
    do_collection(true                 /* full */,
                  clear_all_soft_refs  /* clear_all_soft_refs */,
                  0                    /* size */,
                  false                /* is_tlab */,
                  n_gens() - 1         /* max_level */);
  }
}

bool GenCollectedHeap::is_in_young(oop p) {
  bool result = ((HeapWord*)p) < _gens[_n_gens - 1]->reserved().start();
  assert(result == _gens[0]->is_in_reserved(p),
         err_msg("incorrect test - result=%d, p=" PTR_FORMAT, result, (void*)p));
  return result;
}

// Returns "TRUE" iff "p" points into the committed areas of the heap.
bool GenCollectedHeap::is_in(const void* p) const {
  #ifndef ASSERT
  guarantee(VerifyBeforeGC      ||
            VerifyDuringGC      ||
            VerifyBeforeExit    ||
            VerifyDuringStartup ||
            PrintAssembly       ||
            tty->count() != 0   ||   // already printing
            VerifyAfterGC       ||
    VMError::fatal_error_in_progress(), "too expensive");

  #endif
  // This might be sped up with a cache of the last generation that
  // answered yes.
  for (int i = 0; i < _n_gens; i++) {
    if (_gens[i]->is_in(p)) return true;
  }
  // Otherwise...
  return false;
}

#ifdef ASSERT
// Don't implement this by using is_in_young().  This method is used
// in some cases to check that is_in_young() is correct.
bool GenCollectedHeap::is_in_partial_collection(const void* p) {
  assert(is_in_reserved(p) || p == NULL,
    "Does not work if address is non-null and outside of the heap");
  return p < _gens[_n_gens - 2]->reserved().end() && p != NULL;
}
#endif

void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
  for (int i = 0; i < _n_gens; i++) {
    _gens[i]->oop_iterate(cl);
  }
}

void GenCollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
  for (int i = 0; i < _n_gens; i++) {
    _gens[i]->oop_iterate(mr, cl);
  }
}

void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
  for (int i = 0; i < _n_gens; i++) {
    _gens[i]->object_iterate(cl);
  }
}

void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
  for (int i = 0; i < _n_gens; i++) {
    _gens[i]->safe_object_iterate(cl);
  }
}

Space* GenCollectedHeap::space_containing(const void* addr) const {
  for (int i = 0; i < _n_gens; i++) {
    Space* res = _gens[i]->space_containing(addr);
    if (res != NULL) return res;
  }
  // Otherwise...
  assert(false, "Could not find containing space");
  return NULL;
}


HeapWord* GenCollectedHeap::block_start(const void* addr) const {
  assert(is_in_reserved(addr), "block_start of address outside of heap");
  for (int i = 0; i < _n_gens; i++) {
    if (_gens[i]->is_in_reserved(addr)) {
      assert(_gens[i]->is_in(addr),
             "addr should be in allocated part of generation");
      return _gens[i]->block_start(addr);
    }
  }
  assert(false, "Some generation should contain the address");
  return NULL;
}

size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
  assert(is_in_reserved(addr), "block_size of address outside of heap");
  for (int i = 0; i < _n_gens; i++) {
    if (_gens[i]->is_in_reserved(addr)) {
      assert(_gens[i]->is_in(addr),
             "addr should be in allocated part of generation");
      return _gens[i]->block_size(addr);
    }
  }
  assert(false, "Some generation should contain the address");
  return 0;
}

bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
  assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
  assert(block_start(addr) == addr, "addr must be a block start");
  for (int i = 0; i < _n_gens; i++) {
    if (_gens[i]->is_in_reserved(addr)) {
      return _gens[i]->block_is_obj(addr);
    }
  }
  assert(false, "Some generation should contain the address");
  return false;
}

bool GenCollectedHeap::supports_tlab_allocation() const {
  for (int i = 0; i < _n_gens; i += 1) {
    if (_gens[i]->supports_tlab_allocation()) {
      return true;
    }
  }
  return false;
}

size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
  size_t result = 0;
  for (int i = 0; i < _n_gens; i += 1) {
    if (_gens[i]->supports_tlab_allocation()) {
      result += _gens[i]->tlab_capacity();
    }
  }
  return result;
}

size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
  size_t result = 0;
  for (int i = 0; i < _n_gens; i += 1) {
    if (_gens[i]->supports_tlab_allocation()) {
      result += _gens[i]->unsafe_max_tlab_alloc();
    }
  }
  return result;
}

HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
  bool gc_overhead_limit_was_exceeded;
  return collector_policy()->mem_allocate_work(size /* size */,
                                               true /* is_tlab */,
                                               &gc_overhead_limit_was_exceeded);
}

// Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
// from the list headed by "*prev_ptr".
static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
  bool first = true;
  size_t min_size = 0;   // "first" makes this conceptually infinite.
  ScratchBlock **smallest_ptr, *smallest;
  ScratchBlock  *cur = *prev_ptr;
  while (cur) {
    assert(*prev_ptr == cur, "just checking");
    if (first || cur->num_words < min_size) {
      smallest_ptr = prev_ptr;
      smallest     = cur;
      min_size     = smallest->num_words;
      first        = false;
    }
    prev_ptr = &cur->next;
    cur     =  cur->next;
  }
  smallest      = *smallest_ptr;
  *smallest_ptr = smallest->next;
  return smallest;
}

// Sort the scratch block list headed by res into decreasing size order,
// and set "res" to the result.
static void sort_scratch_list(ScratchBlock*& list) {
  ScratchBlock* sorted = NULL;
  ScratchBlock* unsorted = list;
  while (unsorted) {
    ScratchBlock *smallest = removeSmallestScratch(&unsorted);
    smallest->next  = sorted;
    sorted          = smallest;
  }
  list = sorted;
}

ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
                                               size_t max_alloc_words) {
  ScratchBlock* res = NULL;
  for (int i = 0; i < _n_gens; i++) {
    _gens[i]->contribute_scratch(res, requestor, max_alloc_words);
  }
  sort_scratch_list(res);
  return res;
}

void GenCollectedHeap::release_scratch() {
  for (int i = 0; i < _n_gens; i++) {
    _gens[i]->reset_scratch();
  }
}

class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
  void do_generation(Generation* gen) {
    gen->prepare_for_verify();
  }
};

void GenCollectedHeap::prepare_for_verify() {
  ensure_parsability(false);        // no need to retire TLABs
  GenPrepareForVerifyClosure blk;
  generation_iterate(&blk, false);
}


void GenCollectedHeap::generation_iterate(GenClosure* cl,
                                          bool old_to_young) {
  if (old_to_young) {
    for (int i = _n_gens-1; i >= 0; i--) {
      cl->do_generation(_gens[i]);
    }
  } else {
    for (int i = 0; i < _n_gens; i++) {
      cl->do_generation(_gens[i]);
    }
  }
}

void GenCollectedHeap::space_iterate(SpaceClosure* cl) {
  for (int i = 0; i < _n_gens; i++) {
    _gens[i]->space_iterate(cl, true);
  }
}

bool GenCollectedHeap::is_maximal_no_gc() const {
  for (int i = 0; i < _n_gens; i++) {
    if (!_gens[i]->is_maximal_no_gc()) {
      return false;
    }
  }
  return true;
}

void GenCollectedHeap::save_marks() {
  for (int i = 0; i < _n_gens; i++) {
    _gens[i]->save_marks();
  }
}

GenCollectedHeap* GenCollectedHeap::heap() {
  assert(_gch != NULL, "Uninitialized access to GenCollectedHeap::heap()");
  assert(_gch->kind() == CollectedHeap::GenCollectedHeap, "not a generational heap");
  return _gch;
}


void GenCollectedHeap::prepare_for_compaction() {
  guarantee(_n_gens = 2, "Wrong number of generations");
  Generation* old_gen = _gens[1];
  // Start by compacting into same gen.
  CompactPoint cp(old_gen, NULL, NULL);
  old_gen->prepare_for_compaction(&cp);
  Generation* young_gen = _gens[0];
  young_gen->prepare_for_compaction(&cp);
}

GCStats* GenCollectedHeap::gc_stats(int level) const {
  return _gens[level]->gc_stats();
}

void GenCollectedHeap::verify(bool silent, VerifyOption option /* ignored */) {
  for (int i = _n_gens-1; i >= 0; i--) {
    Generation* g = _gens[i];
    if (!silent) {
      gclog_or_tty->print(g->name());
      gclog_or_tty->print(" ");
    }
    g->verify();
  }
  if (!silent) {
    gclog_or_tty->print("remset ");
  }
  rem_set()->verify();
}

void GenCollectedHeap::print_on(outputStream* st) const {
  for (int i = 0; i < _n_gens; i++) {
    _gens[i]->print_on(st);
  }
  MetaspaceAux::print_on(st);
}

void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
  if (workers() != NULL) {
    workers()->threads_do(tc);
  }
#if INCLUDE_ALL_GCS
  if (UseConcMarkSweepGC) {
    ConcurrentMarkSweepThread::threads_do(tc);
  }
#endif // INCLUDE_ALL_GCS
}

void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
#if INCLUDE_ALL_GCS
  if (UseParNewGC) {
    workers()->print_worker_threads_on(st);
  }
  if (UseConcMarkSweepGC) {
    ConcurrentMarkSweepThread::print_all_on(st);
  }
#endif // INCLUDE_ALL_GCS
}

void GenCollectedHeap::print_on_error(outputStream* st) const {
  this->CollectedHeap::print_on_error(st);

#if INCLUDE_ALL_GCS
  if (UseConcMarkSweepGC) {
    st->cr();
    CMSCollector::print_on_error(st);
  }
#endif // INCLUDE_ALL_GCS
}

void GenCollectedHeap::print_tracing_info() const {
  if (TraceGen0Time) {
    get_gen(0)->print_summary_info();
  }
  if (TraceGen1Time) {
    get_gen(1)->print_summary_info();
  }
}

void GenCollectedHeap::print_heap_change(size_t prev_used) const {
  if (PrintGCDetails && Verbose) {
    gclog_or_tty->print(" "  SIZE_FORMAT
                        "->" SIZE_FORMAT
                        "("  SIZE_FORMAT ")",
                        prev_used, used(), capacity());
  } else {
    gclog_or_tty->print(" "  SIZE_FORMAT "K"
                        "->" SIZE_FORMAT "K"
                        "("  SIZE_FORMAT "K)",
                        prev_used / K, used() / K, capacity() / K);
  }
}

class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
 private:
  bool _full;
 public:
  void do_generation(Generation* gen) {
    gen->gc_prologue(_full);
  }
  GenGCPrologueClosure(bool full) : _full(full) {};
};

void GenCollectedHeap::gc_prologue(bool full) {
  assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");

  always_do_update_barrier = false;
  // Fill TLAB's and such
  CollectedHeap::accumulate_statistics_all_tlabs();
  ensure_parsability(true);   // retire TLABs

  // Walk generations
  GenGCPrologueClosure blk(full);
  generation_iterate(&blk, false);  // not old-to-young.
};

class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
 private:
  bool _full;
 public:
  void do_generation(Generation* gen) {
    gen->gc_epilogue(_full);
  }
  GenGCEpilogueClosure(bool full) : _full(full) {};
};

void GenCollectedHeap::gc_epilogue(bool full) {
#ifdef COMPILER2
  assert(DerivedPointerTable::is_empty(), "derived pointer present");
  size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
  guarantee(actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
#endif /* COMPILER2 */

  resize_all_tlabs();

  GenGCEpilogueClosure blk(full);
  generation_iterate(&blk, false);  // not old-to-young.

  if (!CleanChunkPoolAsync) {
    Chunk::clean_chunk_pool();
  }

  MetaspaceCounters::update_performance_counters();
  CompressedClassSpaceCounters::update_performance_counters();

  always_do_update_barrier = UseConcMarkSweepGC;
};

#ifndef PRODUCT
class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
 private:
 public:
  void do_generation(Generation* gen) {
    gen->record_spaces_top();
  }
};

void GenCollectedHeap::record_gen_tops_before_GC() {
  if (ZapUnusedHeapArea) {
    GenGCSaveTopsBeforeGCClosure blk;
    generation_iterate(&blk, false);  // not old-to-young.
  }
}
#endif  // not PRODUCT

class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
 public:
  void do_generation(Generation* gen) {
    gen->ensure_parsability();
  }
};

void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
  CollectedHeap::ensure_parsability(retire_tlabs);
  GenEnsureParsabilityClosure ep_cl;
  generation_iterate(&ep_cl, false);
}

oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
                                              oop obj,
                                              size_t obj_size) {
  guarantee(old_gen->level() == 1, "We only get here with an old generation");
  assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
  HeapWord* result = NULL;

  result = old_gen->expand_and_allocate(obj_size, false);

  if (result != NULL) {
    Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
  }
  return oop(result);
}

class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
  jlong _time;   // in ms
  jlong _now;    // in ms

 public:
  GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }

  jlong time() { return _time; }

  void do_generation(Generation* gen) {
    _time = MIN2(_time, gen->time_of_last_gc(_now));
  }
};

jlong GenCollectedHeap::millis_since_last_gc() {
  // We need a monotonically non-deccreasing time in ms but
  // os::javaTimeMillis() does not guarantee monotonicity.
  jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  GenTimeOfLastGCClosure tolgc_cl(now);
  // iterate over generations getting the oldest
  // time that a generation was collected
  generation_iterate(&tolgc_cl, false);

  // javaTimeNanos() is guaranteed to be monotonically non-decreasing
  // provided the underlying platform provides such a time source
  // (and it is bug free). So we still have to guard against getting
  // back a time later than 'now'.
  jlong retVal = now - tolgc_cl.time();
  if (retVal < 0) {
    NOT_PRODUCT(warning("time warp: "INT64_FORMAT, retVal);)
    return 0;
  }
  return retVal;
}

Other Java examples (source code examples)

Here is a short list of links related to this Java genCollectedHeap.cpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.