alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (callnode.hpp)

This example Java source code file (callnode.hpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

allocatenode, callnode, ideal, jvmstate, node, null, opcode, phasetransform, product, safepointnode, size, typefunc, typeptr, typetuple

The callnode.hpp Java example source code

/*
 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#ifndef SHARE_VM_OPTO_CALLNODE_HPP
#define SHARE_VM_OPTO_CALLNODE_HPP

#include "opto/connode.hpp"
#include "opto/mulnode.hpp"
#include "opto/multnode.hpp"
#include "opto/opcodes.hpp"
#include "opto/phaseX.hpp"
#include "opto/type.hpp"

// Portions of code courtesy of Clifford Click

// Optimization - Graph Style

class Chaitin;
class NamedCounter;
class MultiNode;
class  SafePointNode;
class   CallNode;
class     CallJavaNode;
class       CallStaticJavaNode;
class       CallDynamicJavaNode;
class     CallRuntimeNode;
class       CallLeafNode;
class         CallLeafNoFPNode;
class     AllocateNode;
class       AllocateArrayNode;
class     BoxLockNode;
class     LockNode;
class     UnlockNode;
class JVMState;
class OopMap;
class State;
class StartNode;
class MachCallNode;
class FastLockNode;

//------------------------------StartNode--------------------------------------
// The method start node
class StartNode : public MultiNode {
  virtual uint cmp( const Node &n ) const;
  virtual uint size_of() const; // Size is bigger
public:
  const TypeTuple *_domain;
  StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
    init_class_id(Class_Start);
    init_req(0,this);
    init_req(1,root);
  }
  virtual int Opcode() const;
  virtual bool pinned() const { return true; };
  virtual const Type *bottom_type() const;
  virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
  virtual const Type *Value( PhaseTransform *phase ) const;
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
  virtual const RegMask &in_RegMask(uint) const;
  virtual Node *match( const ProjNode *proj, const Matcher *m );
  virtual uint ideal_reg() const { return 0; }
#ifndef PRODUCT
  virtual void  dump_spec(outputStream *st) const;
#endif
};

//------------------------------StartOSRNode-----------------------------------
// The method start node for on stack replacement code
class StartOSRNode : public StartNode {
public:
  StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
  virtual int   Opcode() const;
  static  const TypeTuple *osr_domain();
};


//------------------------------ParmNode---------------------------------------
// Incoming parameters
class ParmNode : public ProjNode {
  static const char * const names[TypeFunc::Parms+1];
public:
  ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
    init_class_id(Class_Parm);
  }
  virtual int Opcode() const;
  virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
  virtual uint ideal_reg() const;
#ifndef PRODUCT
  virtual void dump_spec(outputStream *st) const;
#endif
};


//------------------------------ReturnNode-------------------------------------
// Return from subroutine node
class ReturnNode : public Node {
public:
  ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
  virtual int Opcode() const;
  virtual bool  is_CFG() const { return true; }
  virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
  virtual bool depends_only_on_test() const { return false; }
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  virtual const Type *Value( PhaseTransform *phase ) const;
  virtual uint ideal_reg() const { return NotAMachineReg; }
  virtual uint match_edge(uint idx) const;
#ifndef PRODUCT
  virtual void dump_req(outputStream *st = tty) const;
#endif
};


//------------------------------RethrowNode------------------------------------
// Rethrow of exception at call site.  Ends a procedure before rethrowing;
// ends the current basic block like a ReturnNode.  Restores registers and
// unwinds stack.  Rethrow happens in the caller's method.
class RethrowNode : public Node {
 public:
  RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
  virtual int Opcode() const;
  virtual bool  is_CFG() const { return true; }
  virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
  virtual bool depends_only_on_test() const { return false; }
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  virtual const Type *Value( PhaseTransform *phase ) const;
  virtual uint match_edge(uint idx) const;
  virtual uint ideal_reg() const { return NotAMachineReg; }
#ifndef PRODUCT
  virtual void dump_req(outputStream *st = tty) const;
#endif
};


//------------------------------TailCallNode-----------------------------------
// Pop stack frame and jump indirect
class TailCallNode : public ReturnNode {
public:
  TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
    : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
    init_req(TypeFunc::Parms, target);
    init_req(TypeFunc::Parms+1, moop);
  }

  virtual int Opcode() const;
  virtual uint match_edge(uint idx) const;
};

//------------------------------TailJumpNode-----------------------------------
// Pop stack frame and jump indirect
class TailJumpNode : public ReturnNode {
public:
  TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
    : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
    init_req(TypeFunc::Parms, target);
    init_req(TypeFunc::Parms+1, ex_oop);
  }

  virtual int Opcode() const;
  virtual uint match_edge(uint idx) const;
};

//-------------------------------JVMState-------------------------------------
// A linked list of JVMState nodes captures the whole interpreter state,
// plus GC roots, for all active calls at some call site in this compilation
// unit.  (If there is no inlining, then the list has exactly one link.)
// This provides a way to map the optimized program back into the interpreter,
// or to let the GC mark the stack.
class JVMState : public ResourceObj {
  friend class VMStructs;
public:
  typedef enum {
    Reexecute_Undefined = -1, // not defined -- will be translated into false later
    Reexecute_False     =  0, // false       -- do not reexecute
    Reexecute_True      =  1  // true        -- reexecute the bytecode
  } ReexecuteState; //Reexecute State

private:
  JVMState*         _caller;    // List pointer for forming scope chains
  uint              _depth;     // One more than caller depth, or one.
  uint              _locoff;    // Offset to locals in input edge mapping
  uint              _stkoff;    // Offset to stack in input edge mapping
  uint              _monoff;    // Offset to monitors in input edge mapping
  uint              _scloff;    // Offset to fields of scalar objs in input edge mapping
  uint              _endoff;    // Offset to end of input edge mapping
  uint              _sp;        // Jave Expression Stack Pointer for this state
  int               _bci;       // Byte Code Index of this JVM point
  ReexecuteState    _reexecute; // Whether this bytecode need to be re-executed
  ciMethod*         _method;    // Method Pointer
  SafePointNode*    _map;       // Map node associated with this scope
public:
  friend class Compile;
  friend class PreserveReexecuteState;

  // Because JVMState objects live over the entire lifetime of the
  // Compile object, they are allocated into the comp_arena, which
  // does not get resource marked or reset during the compile process
  void *operator new( size_t x, Compile* C ) throw() { return C->comp_arena()->Amalloc(x); }
  void operator delete( void * ) { } // fast deallocation

  // Create a new JVMState, ready for abstract interpretation.
  JVMState(ciMethod* method, JVMState* caller);
  JVMState(int stack_size);  // root state; has a null method

  // Access functions for the JVM
  // ... --|--- loc ---|--- stk ---|--- arg ---|--- mon ---|--- scl ---|
  //       \ locoff    \ stkoff    \ argoff    \ monoff    \ scloff    \ endoff
  uint              locoff() const { return _locoff; }
  uint              stkoff() const { return _stkoff; }
  uint              argoff() const { return _stkoff + _sp; }
  uint              monoff() const { return _monoff; }
  uint              scloff() const { return _scloff; }
  uint              endoff() const { return _endoff; }
  uint              oopoff() const { return debug_end(); }

  int            loc_size() const { return stkoff() - locoff(); }
  int            stk_size() const { return monoff() - stkoff(); }
  int            mon_size() const { return scloff() - monoff(); }
  int            scl_size() const { return endoff() - scloff(); }

  bool        is_loc(uint i) const { return locoff() <= i && i < stkoff(); }
  bool        is_stk(uint i) const { return stkoff() <= i && i < monoff(); }
  bool        is_mon(uint i) const { return monoff() <= i && i < scloff(); }
  bool        is_scl(uint i) const { return scloff() <= i && i < endoff(); }

  uint                      sp() const { return _sp; }
  int                      bci() const { return _bci; }
  bool        should_reexecute() const { return _reexecute==Reexecute_True; }
  bool  is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; }
  bool              has_method() const { return _method != NULL; }
  ciMethod*             method() const { assert(has_method(), ""); return _method; }
  JVMState*             caller() const { return _caller; }
  SafePointNode*           map() const { return _map; }
  uint                   depth() const { return _depth; }
  uint             debug_start() const; // returns locoff of root caller
  uint               debug_end() const; // returns endoff of self
  uint              debug_size() const {
    return loc_size() + sp() + mon_size() + scl_size();
  }
  uint        debug_depth()  const; // returns sum of debug_size values at all depths

  // Returns the JVM state at the desired depth (1 == root).
  JVMState* of_depth(int d) const;

  // Tells if two JVM states have the same call chain (depth, methods, & bcis).
  bool same_calls_as(const JVMState* that) const;

  // Monitors (monitors are stored as (boxNode, objNode) pairs
  enum { logMonitorEdges = 1 };
  int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
  int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
  int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
  int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
  bool is_monitor_box(uint off)    const {
    assert(is_mon(off), "should be called only for monitor edge");
    return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
  }
  bool is_monitor_use(uint off)    const { return (is_mon(off)
                                                   && is_monitor_box(off))
                                             || (caller() && caller()->is_monitor_use(off)); }

  // Initialization functions for the JVM
  void              set_locoff(uint off) { _locoff = off; }
  void              set_stkoff(uint off) { _stkoff = off; }
  void              set_monoff(uint off) { _monoff = off; }
  void              set_scloff(uint off) { _scloff = off; }
  void              set_endoff(uint off) { _endoff = off; }
  void              set_offsets(uint off) {
    _locoff = _stkoff = _monoff = _scloff = _endoff = off;
  }
  void              set_map(SafePointNode *map) { _map = map; }
  void              set_sp(uint sp) { _sp = sp; }
                    // _reexecute is initialized to "undefined" for a new bci
  void              set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; }
  void              set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;}

  // Miscellaneous utility functions
  JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
  JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
  void      set_map_deep(SafePointNode *map);// reset map for all callers

#ifndef PRODUCT
  void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
  void      dump_spec(outputStream *st) const;
  void      dump_on(outputStream* st) const;
  void      dump() const {
    dump_on(tty);
  }
#endif
};

//------------------------------SafePointNode----------------------------------
// A SafePointNode is a subclass of a MultiNode for convenience (and
// potential code sharing) only - conceptually it is independent of
// the Node semantics.
class SafePointNode : public MultiNode {
  virtual uint           cmp( const Node &n ) const;
  virtual uint           size_of() const;       // Size is bigger

public:
  SafePointNode(uint edges, JVMState* jvms,
                // A plain safepoint advertises no memory effects (NULL):
                const TypePtr* adr_type = NULL)
    : MultiNode( edges ),
      _jvms(jvms),
      _oop_map(NULL),
      _adr_type(adr_type)
  {
    init_class_id(Class_SafePoint);
  }

  OopMap*         _oop_map;   // Array of OopMap info (8-bit char) for GC
  JVMState* const _jvms;      // Pointer to list of JVM State objects
  const TypePtr*  _adr_type;  // What type of memory does this node produce?

  // Many calls take *all* of memory as input,
  // but some produce a limited subset of that memory as output.
  // The adr_type reports the call's behavior as a store, not a load.

  virtual JVMState* jvms() const { return _jvms; }
  void set_jvms(JVMState* s) {
    *(JVMState**)&_jvms = s;  // override const attribute in the accessor
  }
  OopMap *oop_map() const { return _oop_map; }
  void set_oop_map(OopMap *om) { _oop_map = om; }

 private:
  void verify_input(JVMState* jvms, uint idx) const {
    assert(verify_jvms(jvms), "jvms must match");
    Node* n = in(idx);
    assert((!n->bottom_type()->isa_long() && !n->bottom_type()->isa_double()) ||
           in(idx + 1)->is_top(), "2nd half of long/double");
  }

 public:
  // Functionality from old debug nodes which has changed
  Node *local(JVMState* jvms, uint idx) const {
    verify_input(jvms, jvms->locoff() + idx);
    return in(jvms->locoff() + idx);
  }
  Node *stack(JVMState* jvms, uint idx) const {
    verify_input(jvms, jvms->stkoff() + idx);
    return in(jvms->stkoff() + idx);
  }
  Node *argument(JVMState* jvms, uint idx) const {
    verify_input(jvms, jvms->argoff() + idx);
    return in(jvms->argoff() + idx);
  }
  Node *monitor_box(JVMState* jvms, uint idx) const {
    assert(verify_jvms(jvms), "jvms must match");
    return in(jvms->monitor_box_offset(idx));
  }
  Node *monitor_obj(JVMState* jvms, uint idx) const {
    assert(verify_jvms(jvms), "jvms must match");
    return in(jvms->monitor_obj_offset(idx));
  }

  void  set_local(JVMState* jvms, uint idx, Node *c);

  void  set_stack(JVMState* jvms, uint idx, Node *c) {
    assert(verify_jvms(jvms), "jvms must match");
    set_req(jvms->stkoff() + idx, c);
  }
  void  set_argument(JVMState* jvms, uint idx, Node *c) {
    assert(verify_jvms(jvms), "jvms must match");
    set_req(jvms->argoff() + idx, c);
  }
  void ensure_stack(JVMState* jvms, uint stk_size) {
    assert(verify_jvms(jvms), "jvms must match");
    int grow_by = (int)stk_size - (int)jvms->stk_size();
    if (grow_by > 0)  grow_stack(jvms, grow_by);
  }
  void grow_stack(JVMState* jvms, uint grow_by);
  // Handle monitor stack
  void push_monitor( const FastLockNode *lock );
  void pop_monitor ();
  Node *peek_monitor_box() const;
  Node *peek_monitor_obj() const;

  // Access functions for the JVM
  Node *control  () const { return in(TypeFunc::Control  ); }
  Node *i_o      () const { return in(TypeFunc::I_O      ); }
  Node *memory   () const { return in(TypeFunc::Memory   ); }
  Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
  Node *frameptr () const { return in(TypeFunc::FramePtr ); }

  void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
  void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
  void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }

  MergeMemNode* merged_memory() const {
    return in(TypeFunc::Memory)->as_MergeMem();
  }

  // The parser marks useless maps as dead when it's done with them:
  bool is_killed() { return in(TypeFunc::Control) == NULL; }

  // Exception states bubbling out of subgraphs such as inlined calls
  // are recorded here.  (There might be more than one, hence the "next".)
  // This feature is used only for safepoints which serve as "maps"
  // for JVM states during parsing, intrinsic expansion, etc.
  SafePointNode*         next_exception() const;
  void               set_next_exception(SafePointNode* n);
  bool                   has_exceptions() const { return next_exception() != NULL; }

  // Standard Node stuff
  virtual int            Opcode() const;
  virtual bool           pinned() const { return true; }
  virtual const Type    *Value( PhaseTransform *phase ) const;
  virtual const Type    *bottom_type() const { return Type::CONTROL; }
  virtual const TypePtr *adr_type() const { return _adr_type; }
  virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
  virtual Node          *Identity( PhaseTransform *phase );
  virtual uint           ideal_reg() const { return 0; }
  virtual const RegMask &in_RegMask(uint) const;
  virtual const RegMask &out_RegMask() const;
  virtual uint           match_edge(uint idx) const;

  static  bool           needs_polling_address_input();

#ifndef PRODUCT
  virtual void           dump_spec(outputStream *st) const;
#endif
};

//------------------------------SafePointScalarObjectNode----------------------
// A SafePointScalarObjectNode represents the state of a scalarized object
// at a safepoint.

class SafePointScalarObjectNode: public TypeNode {
  uint _first_index; // First input edge relative index of a SafePoint node where
                     // states of the scalarized object fields are collected.
                     // It is relative to the last (youngest) jvms->_scloff.
  uint _n_fields;    // Number of non-static fields of the scalarized object.
  DEBUG_ONLY(AllocateNode* _alloc;)

  virtual uint hash() const ; // { return NO_HASH; }
  virtual uint cmp( const Node &n ) const;

  uint first_index() const { return _first_index; }

public:
  SafePointScalarObjectNode(const TypeOopPtr* tp,
#ifdef ASSERT
                            AllocateNode* alloc,
#endif
                            uint first_index, uint n_fields);
  virtual int Opcode() const;
  virtual uint           ideal_reg() const;
  virtual const RegMask &in_RegMask(uint) const;
  virtual const RegMask &out_RegMask() const;
  virtual uint           match_edge(uint idx) const;

  uint first_index(JVMState* jvms) const {
    assert(jvms != NULL, "missed JVMS");
    return jvms->scloff() + _first_index;
  }
  uint n_fields()    const { return _n_fields; }

#ifdef ASSERT
  AllocateNode* alloc() const { return _alloc; }
#endif

  virtual uint size_of() const { return sizeof(*this); }

  // Assumes that "this" is an argument to a safepoint node "s", and that
  // "new_call" is being created to correspond to "s".  But the difference
  // between the start index of the jvmstates of "new_call" and "s" is
  // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
  // corresponds appropriately to "this" in "new_call".  Assumes that
  // "sosn_map" is a map, specific to the translation of "s" to "new_call",
  // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
  SafePointScalarObjectNode* clone(Dict* sosn_map) const;

#ifndef PRODUCT
  virtual void              dump_spec(outputStream *st) const;
#endif
};


// Simple container for the outgoing projections of a call.  Useful
// for serious surgery on calls.
class CallProjections : public StackObj {
public:
  Node* fallthrough_proj;
  Node* fallthrough_catchproj;
  Node* fallthrough_memproj;
  Node* fallthrough_ioproj;
  Node* catchall_catchproj;
  Node* catchall_memproj;
  Node* catchall_ioproj;
  Node* resproj;
  Node* exobj;
};

class CallGenerator;

//------------------------------CallNode---------------------------------------
// Call nodes now subsume the function of debug nodes at callsites, so they
// contain the functionality of a full scope chain of debug nodes.
class CallNode : public SafePointNode {
  friend class VMStructs;
public:
  const TypeFunc *_tf;        // Function type
  address      _entry_point;  // Address of method being called
  float        _cnt;          // Estimate of number of times called
  CallGenerator* _generator;  // corresponding CallGenerator for some late inline calls

  CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
    : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
      _tf(tf),
      _entry_point(addr),
      _cnt(COUNT_UNKNOWN),
      _generator(NULL)
  {
    init_class_id(Class_Call);
  }

  const TypeFunc* tf()         const { return _tf; }
  const address  entry_point() const { return _entry_point; }
  const float    cnt()         const { return _cnt; }
  CallGenerator* generator()   const { return _generator; }

  void set_tf(const TypeFunc* tf)       { _tf = tf; }
  void set_entry_point(address p)       { _entry_point = p; }
  void set_cnt(float c)                 { _cnt = c; }
  void set_generator(CallGenerator* cg) { _generator = cg; }

  virtual const Type *bottom_type() const;
  virtual const Type *Value( PhaseTransform *phase ) const;
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  virtual Node *Identity( PhaseTransform *phase ) { return this; }
  virtual uint        cmp( const Node &n ) const;
  virtual uint        size_of() const = 0;
  virtual void        calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
  virtual Node       *match( const ProjNode *proj, const Matcher *m );
  virtual uint        ideal_reg() const { return NotAMachineReg; }
  // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
  // for some macro nodes whose expansion does not have a safepoint on the fast path.
  virtual bool        guaranteed_safepoint()  { return true; }
  // For macro nodes, the JVMState gets modified during expansion, so when cloning
  // the node the JVMState must be cloned.
  virtual void        clone_jvms(Compile* C) { }   // default is not to clone

  // Returns true if the call may modify n
  virtual bool        may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase);
  // Does this node have a use of n other than in debug information?
  bool                has_non_debug_use(Node *n);
  // Returns the unique CheckCastPP of a call
  // or result projection is there are several CheckCastPP
  // or returns NULL if there is no one.
  Node *result_cast();
  // Does this node returns pointer?
  bool returns_pointer() const {
    const TypeTuple *r = tf()->range();
    return (r->cnt() > TypeFunc::Parms &&
            r->field_at(TypeFunc::Parms)->isa_ptr());
  }

  // Collect all the interesting edges from a call for use in
  // replacing the call by something else.  Used by macro expansion
  // and the late inlining support.
  void extract_projections(CallProjections* projs, bool separate_io_proj);

  virtual uint match_edge(uint idx) const;

#ifndef PRODUCT
  virtual void        dump_req(outputStream *st = tty) const;
  virtual void        dump_spec(outputStream *st) const;
#endif
};


//------------------------------CallJavaNode-----------------------------------
// Make a static or dynamic subroutine call node using Java calling
// convention.  (The "Java" calling convention is the compiler's calling
// convention, as opposed to the interpreter's or that of native C.)
class CallJavaNode : public CallNode {
  friend class VMStructs;
protected:
  virtual uint cmp( const Node &n ) const;
  virtual uint size_of() const; // Size is bigger

  bool    _optimized_virtual;
  bool    _method_handle_invoke;
  ciMethod* _method;            // Method being direct called
public:
  const int       _bci;         // Byte Code Index of call byte code
  CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
    : CallNode(tf, addr, TypePtr::BOTTOM),
      _method(method), _bci(bci),
      _optimized_virtual(false),
      _method_handle_invoke(false)
  {
    init_class_id(Class_CallJava);
  }

  virtual int   Opcode() const;
  ciMethod* method() const                { return _method; }
  void  set_method(ciMethod *m)           { _method = m; }
  void  set_optimized_virtual(bool f)     { _optimized_virtual = f; }
  bool  is_optimized_virtual() const      { return _optimized_virtual; }
  void  set_method_handle_invoke(bool f)  { _method_handle_invoke = f; }
  bool  is_method_handle_invoke() const   { return _method_handle_invoke; }

#ifndef PRODUCT
  virtual void  dump_spec(outputStream *st) const;
#endif
};

//------------------------------CallStaticJavaNode-----------------------------
// Make a direct subroutine call using Java calling convention (for static
// calls and optimized virtual calls, plus calls to wrappers for run-time
// routines); generates static stub.
class CallStaticJavaNode : public CallJavaNode {
  virtual uint cmp( const Node &n ) const;
  virtual uint size_of() const; // Size is bigger
public:
  CallStaticJavaNode(Compile* C, const TypeFunc* tf, address addr, ciMethod* method, int bci)
    : CallJavaNode(tf, addr, method, bci), _name(NULL) {
    init_class_id(Class_CallStaticJava);
    if (C->eliminate_boxing() && (method != NULL) && method->is_boxing_method()) {
      init_flags(Flag_is_macro);
      C->add_macro_node(this);
    }
    _is_scalar_replaceable = false;
    _is_non_escaping = false;
  }
  CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
                     const TypePtr* adr_type)
    : CallJavaNode(tf, addr, NULL, bci), _name(name) {
    init_class_id(Class_CallStaticJava);
    // This node calls a runtime stub, which often has narrow memory effects.
    _adr_type = adr_type;
    _is_scalar_replaceable = false;
    _is_non_escaping = false;
  }
  const char *_name;      // Runtime wrapper name

  // Result of Escape Analysis
  bool _is_scalar_replaceable;
  bool _is_non_escaping;

  // If this is an uncommon trap, return the request code, else zero.
  int uncommon_trap_request() const;
  static int extract_uncommon_trap_request(const Node* call);

  bool is_boxing_method() const {
    return is_macro() && (method() != NULL) && method()->is_boxing_method();
  }
  // Later inlining modifies the JVMState, so we need to clone it
  // when the call node is cloned (because it is macro node).
  virtual void  clone_jvms(Compile* C) {
    if ((jvms() != NULL) && is_boxing_method()) {
      set_jvms(jvms()->clone_deep(C));
      jvms()->set_map_deep(this);
    }
  }

  virtual int         Opcode() const;
#ifndef PRODUCT
  virtual void        dump_spec(outputStream *st) const;
#endif
};

//------------------------------CallDynamicJavaNode----------------------------
// Make a dispatched call using Java calling convention.
class CallDynamicJavaNode : public CallJavaNode {
  virtual uint cmp( const Node &n ) const;
  virtual uint size_of() const; // Size is bigger
public:
  CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
    init_class_id(Class_CallDynamicJava);
  }

  int _vtable_index;
  virtual int   Opcode() const;
#ifndef PRODUCT
  virtual void  dump_spec(outputStream *st) const;
#endif
};

//------------------------------CallRuntimeNode--------------------------------
// Make a direct subroutine call node into compiled C++ code.
class CallRuntimeNode : public CallNode {
  virtual uint cmp( const Node &n ) const;
  virtual uint size_of() const; // Size is bigger
public:
  CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
                  const TypePtr* adr_type)
    : CallNode(tf, addr, adr_type),
      _name(name)
  {
    init_class_id(Class_CallRuntime);
  }

  const char *_name;            // Printable name, if _method is NULL
  virtual int   Opcode() const;
  virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;

#ifndef PRODUCT
  virtual void  dump_spec(outputStream *st) const;
#endif
};

//------------------------------CallLeafNode-----------------------------------
// Make a direct subroutine call node into compiled C++ code, without
// safepoints
class CallLeafNode : public CallRuntimeNode {
public:
  CallLeafNode(const TypeFunc* tf, address addr, const char* name,
               const TypePtr* adr_type)
    : CallRuntimeNode(tf, addr, name, adr_type)
  {
    init_class_id(Class_CallLeaf);
  }
  virtual int   Opcode() const;
  virtual bool        guaranteed_safepoint()  { return false; }
#ifndef PRODUCT
  virtual void  dump_spec(outputStream *st) const;
#endif
};

//------------------------------CallLeafNoFPNode-------------------------------
// CallLeafNode, not using floating point or using it in the same manner as
// the generated code
class CallLeafNoFPNode : public CallLeafNode {
public:
  CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
                   const TypePtr* adr_type)
    : CallLeafNode(tf, addr, name, adr_type)
  {
  }
  virtual int   Opcode() const;
};


//------------------------------Allocate---------------------------------------
// High-level memory allocation
//
//  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
//  get expanded into a code sequence containing a call.  Unlike other CallNodes,
//  they have 2 memory projections and 2 i_o projections (which are distinguished by
//  the _is_io_use flag in the projection.)  This is needed when expanding the node in
//  order to differentiate the uses of the projection on the normal control path from
//  those on the exception return path.
//
class AllocateNode : public CallNode {
public:
  enum {
    // Output:
    RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
    // Inputs:
    AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
    KlassNode,                        // type (maybe dynamic) of the obj.
    InitialTest,                      // slow-path test (may be constant)
    ALength,                          // array length (or TOP if none)
    ParmLimit
  };

  static const TypeFunc* alloc_type(const Type* t) {
    const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
    fields[AllocSize]   = TypeInt::POS;
    fields[KlassNode]   = TypeInstPtr::NOTNULL;
    fields[InitialTest] = TypeInt::BOOL;
    fields[ALength]     = t;  // length (can be a bad length)

    const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);

    // create result type (range)
    fields = TypeTuple::fields(1);
    fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop

    const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);

    return TypeFunc::make(domain, range);
  }

  // Result of Escape Analysis
  bool _is_scalar_replaceable;
  bool _is_non_escaping;

  virtual uint size_of() const; // Size is bigger
  AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
               Node *size, Node *klass_node, Node *initial_test);
  // Expansion modifies the JVMState, so we need to clone it
  virtual void  clone_jvms(Compile* C) {
    if (jvms() != NULL) {
      set_jvms(jvms()->clone_deep(C));
      jvms()->set_map_deep(this);
    }
  }
  virtual int Opcode() const;
  virtual uint ideal_reg() const { return Op_RegP; }
  virtual bool        guaranteed_safepoint()  { return false; }

  // allocations do not modify their arguments
  virtual bool        may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) { return false;}

  // Pattern-match a possible usage of AllocateNode.
  // Return null if no allocation is recognized.
  // The operand is the pointer produced by the (possible) allocation.
  // It must be a projection of the Allocate or its subsequent CastPP.
  // (Note:  This function is defined in file graphKit.cpp, near
  // GraphKit::new_instance/new_array, whose output it recognizes.)
  // The 'ptr' may not have an offset unless the 'offset' argument is given.
  static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);

  // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
  // an offset, which is reported back to the caller.
  // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
  static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
                                        intptr_t& offset);

  // Dig the klass operand out of a (possible) allocation site.
  static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
    AllocateNode* allo = Ideal_allocation(ptr, phase);
    return (allo == NULL) ? NULL : allo->in(KlassNode);
  }

  // Conservatively small estimate of offset of first non-header byte.
  int minimum_header_size() {
    return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
                                instanceOopDesc::base_offset_in_bytes();
  }

  // Return the corresponding initialization barrier (or null if none).
  // Walks out edges to find it...
  // (Note: Both InitializeNode::allocation and AllocateNode::initialization
  // are defined in graphKit.cpp, which sets up the bidirectional relation.)
  InitializeNode* initialization();

  // Convenience for initialization->maybe_set_complete(phase)
  bool maybe_set_complete(PhaseGVN* phase);
};

//------------------------------AllocateArray---------------------------------
//
// High-level array allocation
//
class AllocateArrayNode : public AllocateNode {
public:
  AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
                    Node* size, Node* klass_node, Node* initial_test,
                    Node* count_val
                    )
    : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
                   initial_test)
  {
    init_class_id(Class_AllocateArray);
    set_req(AllocateNode::ALength,        count_val);
  }
  virtual int Opcode() const;
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);

  // Dig the length operand out of a array allocation site.
  Node* Ideal_length() {
    return in(AllocateNode::ALength);
  }

  // Dig the length operand out of a array allocation site and narrow the
  // type with a CastII, if necesssary
  Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseTransform *phase, bool can_create = true);

  // Pattern-match a possible usage of AllocateArrayNode.
  // Return null if no allocation is recognized.
  static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
    AllocateNode* allo = Ideal_allocation(ptr, phase);
    return (allo == NULL || !allo->is_AllocateArray())
           ? NULL : allo->as_AllocateArray();
  }
};

//------------------------------AbstractLockNode-----------------------------------
class AbstractLockNode: public CallNode {
private:
  enum {
    Regular = 0,  // Normal lock
    NonEscObj,    // Lock is used for non escaping object
    Coarsened,    // Lock was coarsened
    Nested        // Nested lock
  } _kind;
#ifndef PRODUCT
  NamedCounter* _counter;
#endif

protected:
  // helper functions for lock elimination
  //

  bool find_matching_unlock(const Node* ctrl, LockNode* lock,
                            GrowableArray<AbstractLockNode*> &lock_ops);
  bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
                                       GrowableArray<AbstractLockNode*> &lock_ops);
  bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
                               GrowableArray<AbstractLockNode*> &lock_ops);
  LockNode *find_matching_lock(UnlockNode* unlock);

  // Update the counter to indicate that this lock was eliminated.
  void set_eliminated_lock_counter() PRODUCT_RETURN;

public:
  AbstractLockNode(const TypeFunc *tf)
    : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
      _kind(Regular)
  {
#ifndef PRODUCT
    _counter = NULL;
#endif
  }
  virtual int Opcode() const = 0;
  Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
  Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
  Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
  void     set_box_node(Node* box) { set_req(TypeFunc::Parms + 1, box); }

  const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}

  virtual uint size_of() const { return sizeof(*this); }

  bool is_eliminated()  const { return (_kind != Regular); }
  bool is_non_esc_obj() const { return (_kind == NonEscObj); }
  bool is_coarsened()   const { return (_kind == Coarsened); }
  bool is_nested()      const { return (_kind == Nested); }

  void set_non_esc_obj() { _kind = NonEscObj; set_eliminated_lock_counter(); }
  void set_coarsened()   { _kind = Coarsened; set_eliminated_lock_counter(); }
  void set_nested()      { _kind = Nested; set_eliminated_lock_counter(); }

  // locking does not modify its arguments
  virtual bool may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase){ return false;}

#ifndef PRODUCT
  void create_lock_counter(JVMState* s);
  NamedCounter* counter() const { return _counter; }
#endif
};

//------------------------------Lock---------------------------------------
// High-level lock operation
//
// This is a subclass of CallNode because it is a macro node which gets expanded
// into a code sequence containing a call.  This node takes 3 "parameters":
//    0  -  object to lock
//    1 -   a BoxLockNode
//    2 -   a FastLockNode
//
class LockNode : public AbstractLockNode {
public:

  static const TypeFunc *lock_type() {
    // create input type (domain)
    const Type **fields = TypeTuple::fields(3);
    fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
    fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
    fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
    const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);

    // create result type (range)
    fields = TypeTuple::fields(0);

    const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);

    return TypeFunc::make(domain,range);
  }

  virtual int Opcode() const;
  virtual uint size_of() const; // Size is bigger
  LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
    init_class_id(Class_Lock);
    init_flags(Flag_is_macro);
    C->add_macro_node(this);
  }
  virtual bool        guaranteed_safepoint()  { return false; }

  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  // Expansion modifies the JVMState, so we need to clone it
  virtual void  clone_jvms(Compile* C) {
    if (jvms() != NULL) {
      set_jvms(jvms()->clone_deep(C));
      jvms()->set_map_deep(this);
    }
  }

  bool is_nested_lock_region(); // Is this Lock nested?
};

//------------------------------Unlock---------------------------------------
// High-level unlock operation
class UnlockNode : public AbstractLockNode {
public:
  virtual int Opcode() const;
  virtual uint size_of() const; // Size is bigger
  UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
    init_class_id(Class_Unlock);
    init_flags(Flag_is_macro);
    C->add_macro_node(this);
  }
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  // unlock is never a safepoint
  virtual bool        guaranteed_safepoint()  { return false; }
};

#endif // SHARE_VM_OPTO_CALLNODE_HPP

Other Java examples (source code examples)

Here is a short list of links related to this Java callnode.hpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.