alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (compile.hpp)

This example Java source code file (compile.hpp) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

aliastype, arena, compile, constant, growablearray, jvmstate, list, node, null, product_return, true, typefunc, typeptr, unique_node_list

The compile.hpp Java example source code

/*
 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 *
 */

#ifndef SHARE_VM_OPTO_COMPILE_HPP
#define SHARE_VM_OPTO_COMPILE_HPP

#include "asm/codeBuffer.hpp"
#include "ci/compilerInterface.hpp"
#include "code/debugInfoRec.hpp"
#include "code/exceptionHandlerTable.hpp"
#include "compiler/compilerOracle.hpp"
#include "compiler/compileBroker.hpp"
#include "libadt/dict.hpp"
#include "libadt/port.hpp"
#include "libadt/vectset.hpp"
#include "memory/resourceArea.hpp"
#include "opto/idealGraphPrinter.hpp"
#include "opto/phasetype.hpp"
#include "opto/phase.hpp"
#include "opto/regmask.hpp"
#include "runtime/deoptimization.hpp"
#include "runtime/vmThread.hpp"
#include "trace/tracing.hpp"
#include "utilities/ticks.hpp"

class Block;
class Bundle;
class C2Compiler;
class CallGenerator;
class ConnectionGraph;
class InlineTree;
class Int_Array;
class Matcher;
class MachConstantNode;
class MachConstantBaseNode;
class MachNode;
class MachOper;
class MachSafePointNode;
class Node;
class Node_Array;
class Node_Notes;
class OptoReg;
class PhaseCFG;
class PhaseGVN;
class PhaseIterGVN;
class PhaseRegAlloc;
class PhaseCCP;
class PhaseCCP_DCE;
class RootNode;
class relocInfo;
class Scope;
class StartNode;
class SafePointNode;
class JVMState;
class Type;
class TypeData;
class TypePtr;
class TypeOopPtr;
class TypeFunc;
class Unique_Node_List;
class nmethod;
class WarmCallInfo;
class Node_Stack;
struct Final_Reshape_Counts;

//------------------------------Compile----------------------------------------
// This class defines a top-level Compiler invocation.

class Compile : public Phase {
  friend class VMStructs;

 public:
  // Fixed alias indexes.  (See also MergeMemNode.)
  enum {
    AliasIdxTop = 1,  // pseudo-index, aliases to nothing (used as sentinel value)
    AliasIdxBot = 2,  // pseudo-index, aliases to everything
    AliasIdxRaw = 3   // hard-wired index for TypeRawPtr::BOTTOM
  };

  // Variant of TraceTime(NULL, &_t_accumulator, TimeCompiler);
  // Integrated with logging.  If logging is turned on, and dolog is true,
  // then brackets are put into the log, with time stamps and node counts.
  // (The time collection itself is always conditionalized on TimeCompiler.)
  class TracePhase : public TraceTime {
   private:
    Compile*    C;
    CompileLog* _log;
    const char* _phase_name;
    bool _dolog;
   public:
    TracePhase(const char* name, elapsedTimer* accumulator, bool dolog);
    ~TracePhase();
  };

  // Information per category of alias (memory slice)
  class AliasType {
   private:
    friend class Compile;

    int             _index;         // unique index, used with MergeMemNode
    const TypePtr*  _adr_type;      // normalized address type
    ciField*        _field;         // relevant instance field, or null if none
    const Type*     _element;       // relevant array element type, or null if none
    bool            _is_rewritable; // false if the memory is write-once only
    int             _general_index; // if this is type is an instance, the general
                                    // type that this is an instance of

    void Init(int i, const TypePtr* at);

   public:
    int             index()         const { return _index; }
    const TypePtr*  adr_type()      const { return _adr_type; }
    ciField*        field()         const { return _field; }
    const Type*     element()       const { return _element; }
    bool            is_rewritable() const { return _is_rewritable; }
    bool            is_volatile()   const { return (_field ? _field->is_volatile() : false); }
    int             general_index() const { return (_general_index != 0) ? _general_index : _index; }

    void set_rewritable(bool z) { _is_rewritable = z; }
    void set_field(ciField* f) {
      assert(!_field,"");
      _field = f;
      if (f->is_final() || f->is_stable()) {
        // In the case of @Stable, multiple writes are possible but may be assumed to be no-ops.
        _is_rewritable = false;
      }
    }
    void set_element(const Type* e) {
      assert(_element == NULL, "");
      _element = e;
    }

    void print_on(outputStream* st) PRODUCT_RETURN;
  };

  enum {
    logAliasCacheSize = 6,
    AliasCacheSize = (1<ss();
  }

  void print_inlining_skip(CallGenerator* cg) {
    if (_print_inlining) {
      _print_inlining_list->adr_at(_print_inlining_idx)->set_cg(cg);
      _print_inlining_idx++;
      _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
    }
  }

  void print_inlining_insert(CallGenerator* cg) {
    if (_print_inlining) {
      for (int i = 0; i < _print_inlining_list->length(); i++) {
        if (_print_inlining_list->adr_at(i)->cg() == cg) {
          _print_inlining_list->insert_before(i+1, PrintInliningBuffer());
          _print_inlining_idx = i+1;
          _print_inlining_list->adr_at(i)->set_cg(NULL);
          return;
        }
      }
      ShouldNotReachHere();
    }
  }

  void print_inlining(ciMethod* method, int inline_level, int bci, const char* msg = NULL) {
    stringStream ss;
    CompileTask::print_inlining(&ss, method, inline_level, bci, msg);
    print_inlining_stream()->print(ss.as_string());
  }

 private:
  // Matching, CFG layout, allocation, code generation
  PhaseCFG*             _cfg;                   // Results of CFG finding
  bool                  _select_24_bit_instr;   // We selected an instruction with a 24-bit result
  bool                  _in_24_bit_fp_mode;     // We are emitting instructions with 24-bit results
  int                   _java_calls;            // Number of java calls in the method
  int                   _inner_loops;           // Number of inner loops in the method
  Matcher*              _matcher;               // Engine to map ideal to machine instructions
  PhaseRegAlloc*        _regalloc;              // Results of register allocation.
  int                   _frame_slots;           // Size of total frame in stack slots
  CodeOffsets           _code_offsets;          // Offsets into the code for various interesting entries
  RegMask               _FIRST_STACK_mask;      // All stack slots usable for spills (depends on frame layout)
  Arena*                _indexSet_arena;        // control IndexSet allocation within PhaseChaitin
  void*                 _indexSet_free_block_list; // free list of IndexSet bit blocks

  uint                  _node_bundling_limit;
  Bundle*               _node_bundling_base;    // Information for instruction bundling

  // Instruction bits passed off to the VM
  int                   _method_size;           // Size of nmethod code segment in bytes
  CodeBuffer            _code_buffer;           // Where the code is assembled
  int                   _first_block_size;      // Size of unvalidated entry point code / OSR poison code
  ExceptionHandlerTable _handler_table;         // Table of native-code exception handlers
  ImplicitExceptionTable _inc_table;            // Table of implicit null checks in native code
  OopMapSet*            _oop_map_set;           // Table of oop maps (one for each safepoint location)
  static int            _CompiledZap_count;     // counter compared against CompileZap[First/Last]
  BufferBlob*           _scratch_buffer_blob;   // For temporary code buffers.
  relocInfo*            _scratch_locs_memory;   // For temporary code buffers.
  int                   _scratch_const_size;    // For temporary code buffers.
  bool                  _in_scratch_emit_size;  // true when in scratch_emit_size.

 public:
  // Accessors

  // The Compile instance currently active in this (compiler) thread.
  static Compile* current() {
    return (Compile*) ciEnv::current()->compiler_data();
  }

  // ID for this compilation.  Useful for setting breakpoints in the debugger.
  int               compile_id() const          { return _compile_id; }

  // Does this compilation allow instructions to subsume loads?  User
  // instructions that subsume a load may result in an unschedulable
  // instruction sequence.
  bool              subsume_loads() const       { return _subsume_loads; }
  /** Do escape analysis. */
  bool              do_escape_analysis() const  { return _do_escape_analysis; }
  /** Do boxing elimination. */
  bool              eliminate_boxing() const    { return _eliminate_boxing; }
  /** Do aggressive boxing elimination. */
  bool              aggressive_unboxing() const { return _eliminate_boxing && AggressiveUnboxing; }
  bool              save_argument_registers() const { return _save_argument_registers; }


  // Other fixed compilation parameters.
  ciMethod*         method() const              { return _method; }
  int               entry_bci() const           { return _entry_bci; }
  bool              is_osr_compilation() const  { return _entry_bci != InvocationEntryBci; }
  bool              is_method_compilation() const { return (_method != NULL && !_method->flags().is_native()); }
  const TypeFunc*   tf() const                  { assert(_tf!=NULL, ""); return _tf; }
  void         init_tf(const TypeFunc* tf)      { assert(_tf==NULL, ""); _tf = tf; }
  InlineTree*       ilt() const                 { return _ilt; }
  address           stub_function() const       { return _stub_function; }
  const char*       stub_name() const           { return _stub_name; }
  address           stub_entry_point() const    { return _stub_entry_point; }

  // Control of this compilation.
  int               fixed_slots() const         { assert(_fixed_slots >= 0, "");         return _fixed_slots; }
  void          set_fixed_slots(int n)          { _fixed_slots = n; }
  int               major_progress() const      { return _major_progress; }
  void          set_inlining_progress(bool z)   { _inlining_progress = z; }
  int               inlining_progress() const   { return _inlining_progress; }
  void          set_inlining_incrementally(bool z) { _inlining_incrementally = z; }
  int               inlining_incrementally() const { return _inlining_incrementally; }
  void          set_major_progress()            { _major_progress++; }
  void        clear_major_progress()            { _major_progress = 0; }
  int               num_loop_opts() const       { return _num_loop_opts; }
  void          set_num_loop_opts(int n)        { _num_loop_opts = n; }
  int               max_inline_size() const     { return _max_inline_size; }
  void          set_freq_inline_size(int n)     { _freq_inline_size = n; }
  int               freq_inline_size() const    { return _freq_inline_size; }
  void          set_max_inline_size(int n)      { _max_inline_size = n; }
  bool              has_loops() const           { return _has_loops; }
  void          set_has_loops(bool z)           { _has_loops = z; }
  bool              has_split_ifs() const       { return _has_split_ifs; }
  void          set_has_split_ifs(bool z)       { _has_split_ifs = z; }
  bool              has_unsafe_access() const   { return _has_unsafe_access; }
  void          set_has_unsafe_access(bool z)   { _has_unsafe_access = z; }
  bool              has_stringbuilder() const   { return _has_stringbuilder; }
  void          set_has_stringbuilder(bool z)   { _has_stringbuilder = z; }
  bool              has_boxed_value() const     { return _has_boxed_value; }
  void          set_has_boxed_value(bool z)     { _has_boxed_value = z; }
  int               max_vector_size() const     { return _max_vector_size; }
  void          set_max_vector_size(int s)      { _max_vector_size = s; }
  void          set_trap_count(uint r, uint c)  { assert(r < trapHistLength, "oob");        _trap_hist[r] = c; }
  uint              trap_count(uint r) const    { assert(r < trapHistLength, "oob"); return _trap_hist[r]; }
  bool              trap_can_recompile() const  { return _trap_can_recompile; }
  void          set_trap_can_recompile(bool z)  { _trap_can_recompile = z; }
  uint              decompile_count() const     { return _decompile_count; }
  void          set_decompile_count(uint c)     { _decompile_count = c; }
  bool              allow_range_check_smearing() const;
  bool              do_inlining() const         { return _do_inlining; }
  void          set_do_inlining(bool z)         { _do_inlining = z; }
  bool              do_scheduling() const       { return _do_scheduling; }
  void          set_do_scheduling(bool z)       { _do_scheduling = z; }
  bool              do_freq_based_layout() const{ return _do_freq_based_layout; }
  void          set_do_freq_based_layout(bool z){ _do_freq_based_layout = z; }
  bool              do_count_invocations() const{ return _do_count_invocations; }
  void          set_do_count_invocations(bool z){ _do_count_invocations = z; }
  bool              do_method_data_update() const { return _do_method_data_update; }
  void          set_do_method_data_update(bool z) { _do_method_data_update = z; }
  int               AliasLevel() const          { return _AliasLevel; }
  bool              print_assembly() const       { return _print_assembly; }
  void          set_print_assembly(bool z)       { _print_assembly = z; }
  bool              print_inlining() const       { return _print_inlining; }
  void          set_print_inlining(bool z)       { _print_inlining = z; }
  bool              print_intrinsics() const     { return _print_intrinsics; }
  void          set_print_intrinsics(bool z)     { _print_intrinsics = z; }
  // check the CompilerOracle for special behaviours for this compile
  bool          method_has_option(const char * option) {
    return method() != NULL && method()->has_option(option);
  }
#ifndef PRODUCT
  bool          trace_opto_output() const       { return _trace_opto_output; }
  bool              parsed_irreducible_loop() const { return _parsed_irreducible_loop; }
  void          set_parsed_irreducible_loop(bool z) { _parsed_irreducible_loop = z; }
#endif

  // JSR 292
  bool              has_method_handle_invokes() const { return _has_method_handle_invokes;     }
  void          set_has_method_handle_invokes(bool z) {        _has_method_handle_invokes = z; }

  Ticks _latest_stage_start_counter;

  void begin_method() {
#ifndef PRODUCT
    if (_printer) _printer->begin_method(this);
#endif
    C->_latest_stage_start_counter.stamp();
  }

  void print_method(CompilerPhaseType cpt, int level = 1) {
    EventCompilerPhase event;
    if (event.should_commit()) {
      event.set_starttime(C->_latest_stage_start_counter);
      event.set_phase((u1) cpt);
      event.set_compileID(C->_compile_id);
      event.set_phaseLevel(level);
      event.commit();
    }


#ifndef PRODUCT
    if (_printer) _printer->print_method(this, CompilerPhaseTypeHelper::to_string(cpt), level);
#endif
    C->_latest_stage_start_counter.stamp();
  }

  void end_method(int level = 1) {
    EventCompilerPhase event;
    if (event.should_commit()) {
      event.set_starttime(C->_latest_stage_start_counter);
      event.set_phase((u1) PHASE_END);
      event.set_compileID(C->_compile_id);
      event.set_phaseLevel(level);
      event.commit();
    }
#ifndef PRODUCT
    if (_printer) _printer->end_method();
#endif
  }

  int           macro_count()             const { return _macro_nodes->length(); }
  int           predicate_count()         const { return _predicate_opaqs->length();}
  int           expensive_count()         const { return _expensive_nodes->length(); }
  Node*         macro_node(int idx)       const { return _macro_nodes->at(idx); }
  Node*         predicate_opaque1_node(int idx) const { return _predicate_opaqs->at(idx);}
  Node*         expensive_node(int idx)   const { return _expensive_nodes->at(idx); }
  ConnectionGraph* congraph()                   { return _congraph;}
  void set_congraph(ConnectionGraph* congraph)  { _congraph = congraph;}
  void add_macro_node(Node * n) {
    //assert(n->is_macro(), "must be a macro node");
    assert(!_macro_nodes->contains(n), " duplicate entry in expand list");
    _macro_nodes->append(n);
  }
  void remove_macro_node(Node * n) {
    // this function may be called twice for a node so check
    // that the node is in the array before attempting to remove it
    if (_macro_nodes->contains(n))
      _macro_nodes->remove(n);
    // remove from _predicate_opaqs list also if it is there
    if (predicate_count() > 0 && _predicate_opaqs->contains(n)){
      _predicate_opaqs->remove(n);
    }
  }
  void add_expensive_node(Node * n);
  void remove_expensive_node(Node * n) {
    if (_expensive_nodes->contains(n)) {
      _expensive_nodes->remove(n);
    }
  }
  void add_predicate_opaq(Node * n) {
    assert(!_predicate_opaqs->contains(n), " duplicate entry in predicate opaque1");
    assert(_macro_nodes->contains(n), "should have already been in macro list");
    _predicate_opaqs->append(n);
  }
  // remove the opaque nodes that protect the predicates so that the unused checks and
  // uncommon traps will be eliminated from the graph.
  void cleanup_loop_predicates(PhaseIterGVN &igvn);
  bool is_predicate_opaq(Node * n) {
    return _predicate_opaqs->contains(n);
  }

  // Are there candidate expensive nodes for optimization?
  bool should_optimize_expensive_nodes(PhaseIterGVN &igvn);
  // Check whether n1 and n2 are similar
  static int cmp_expensive_nodes(Node* n1, Node* n2);
  // Sort expensive nodes to locate similar expensive nodes
  void sort_expensive_nodes();

  // Compilation environment.
  Arena*            comp_arena()                { return &_comp_arena; }
  ciEnv*            env() const                 { return _env; }
  CompileLog*       log() const                 { return _log; }
  bool              failing() const             { return _env->failing() || _failure_reason != NULL; }
  const char*       failure_reason() { return _failure_reason; }
  bool              failure_reason_is(const char* r) { return (r==_failure_reason) || (r!=NULL && _failure_reason!=NULL && strcmp(r, _failure_reason)==0); }

  void record_failure(const char* reason);
  void record_method_not_compilable(const char* reason, bool all_tiers = false) {
    // All bailouts cover "all_tiers" when TieredCompilation is off.
    if (!TieredCompilation) all_tiers = true;
    env()->record_method_not_compilable(reason, all_tiers);
    // Record failure reason.
    record_failure(reason);
  }
  void record_method_not_compilable_all_tiers(const char* reason) {
    record_method_not_compilable(reason, true);
  }
  bool check_node_count(uint margin, const char* reason) {
    if (live_nodes() + margin > (uint)MaxNodeLimit) {
      record_method_not_compilable(reason);
      return true;
    } else {
      return false;
    }
  }

  // Node management
  uint         unique() const              { return _unique; }
  uint         next_unique()               { return _unique++; }
  void         set_unique(uint i)          { _unique = i; }
  static int   debug_idx()                 { return debug_only(_debug_idx)+0; }
  static void  set_debug_idx(int i)        { debug_only(_debug_idx = i); }
  Arena*       node_arena()                { return &_node_arena; }
  Arena*       old_arena()                 { return &_old_arena; }
  RootNode*    root() const                { return _root; }
  void         set_root(RootNode* r)       { _root = r; }
  StartNode*   start() const;              // (Derived from root.)
  void         init_start(StartNode* s);
  Node*        immutable_memory();

  Node*        recent_alloc_ctl() const    { return _recent_alloc_ctl; }
  Node*        recent_alloc_obj() const    { return _recent_alloc_obj; }
  void         set_recent_alloc(Node* ctl, Node* obj) {
                                                  _recent_alloc_ctl = ctl;
                                                  _recent_alloc_obj = obj;
                                           }
  void         record_dead_node(uint idx)  { if (_dead_node_list.test_set(idx)) return;
                                             _dead_node_count++;
                                           }
  bool         is_dead_node(uint idx)      { return _dead_node_list.test(idx) != 0; }
  uint         dead_node_count()           { return _dead_node_count; }
  void         reset_dead_node_list()      { _dead_node_list.Reset();
                                             _dead_node_count = 0;
                                           }
  uint          live_nodes() const         {
    int  val = _unique - _dead_node_count;
    assert (val >= 0, err_msg_res("number of tracked dead nodes %d more than created nodes %d", _unique, _dead_node_count));
            return (uint) val;
                                           }
#ifdef ASSERT
  uint         count_live_nodes_by_graph_walk();
  void         print_missing_nodes();
#endif

  // Constant table
  ConstantTable&   constant_table() { return _constant_table; }

  MachConstantBaseNode*     mach_constant_base_node();
  bool                  has_mach_constant_base_node() const { return _mach_constant_base_node != NULL; }

  // Handy undefined Node
  Node*             top() const                 { return _top; }

  // these are used by guys who need to know about creation and transformation of top:
  Node*             cached_top_node()           { return _top; }
  void          set_cached_top_node(Node* tn);

  GrowableArray<Node_Notes*>* node_note_array() const { return _node_note_array; }
  void set_node_note_array(GrowableArray<Node_Notes*>* arr) { _node_note_array = arr; }
  Node_Notes* default_node_notes() const        { return _default_node_notes; }
  void    set_default_node_notes(Node_Notes* n) { _default_node_notes = n; }

  Node_Notes*       node_notes_at(int idx) {
    return locate_node_notes(_node_note_array, idx, false);
  }
  inline bool   set_node_notes_at(int idx, Node_Notes* value);

  // Copy notes from source to dest, if they exist.
  // Overwrite dest only if source provides something.
  // Return true if information was moved.
  bool copy_node_notes_to(Node* dest, Node* source);

  // Workhorse function to sort out the blocked Node_Notes array:
  inline Node_Notes* locate_node_notes(GrowableArray<Node_Notes*>* arr,
                                       int idx, bool can_grow = false);

  void grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by);

  // Type management
  Arena*            type_arena()                { return _type_arena; }
  Dict*             type_dict()                 { return _type_dict; }
  void*             type_hwm()                  { return _type_hwm; }
  size_t            type_last_size()            { return _type_last_size; }
  int               num_alias_types()           { return _num_alias_types; }

  void          init_type_arena()                       { _type_arena = &_Compile_types; }
  void          set_type_arena(Arena* a)                { _type_arena = a; }
  void          set_type_dict(Dict* d)                  { _type_dict = d; }
  void          set_type_hwm(void* p)                   { _type_hwm = p; }
  void          set_type_last_size(size_t sz)           { _type_last_size = sz; }

  const TypeFunc* last_tf(ciMethod* m) {
    return (m == _last_tf_m) ? _last_tf : NULL;
  }
  void set_last_tf(ciMethod* m, const TypeFunc* tf) {
    assert(m != NULL || tf == NULL, "");
    _last_tf_m = m;
    _last_tf = tf;
  }

  AliasType*        alias_type(int                idx)  { assert(idx < num_alias_types(), "oob"); return _alias_types[idx]; }
  AliasType*        alias_type(const TypePtr* adr_type, ciField* field = NULL) { return find_alias_type(adr_type, false, field); }
  bool         have_alias_type(const TypePtr* adr_type);
  AliasType*        alias_type(ciField*         field);

  int               get_alias_index(const TypePtr* at)  { return alias_type(at)->index(); }
  const TypePtr*    get_adr_type(uint aidx)             { return alias_type(aidx)->adr_type(); }
  int               get_general_index(uint aidx)        { return alias_type(aidx)->general_index(); }

  // Building nodes
  void              rethrow_exceptions(JVMState* jvms);
  void              return_values(JVMState* jvms);
  JVMState*         build_start_state(StartNode* start, const TypeFunc* tf);

  // Decide how to build a call.
  // The profile factor is a discount to apply to this site's interp. profile.
  CallGenerator*    call_generator(ciMethod* call_method, int vtable_index, bool call_does_dispatch,
                                   JVMState* jvms, bool allow_inline, float profile_factor, ciKlass* speculative_receiver_type = NULL,
                                   bool allow_intrinsics = true, bool delayed_forbidden = false);
  bool should_delay_inlining(ciMethod* call_method, JVMState* jvms) {
    return should_delay_string_inlining(call_method, jvms) ||
           should_delay_boxing_inlining(call_method, jvms);
  }
  bool should_delay_string_inlining(ciMethod* call_method, JVMState* jvms);
  bool should_delay_boxing_inlining(ciMethod* call_method, JVMState* jvms);

  // Helper functions to identify inlining potential at call-site
  ciMethod* optimize_virtual_call(ciMethod* caller, int bci, ciInstanceKlass* klass,
                                  ciMethod* callee, const TypeOopPtr* receiver_type,
                                  bool is_virtual,
                                  bool &call_does_dispatch, int &vtable_index);
  ciMethod* optimize_inlining(ciMethod* caller, int bci, ciInstanceKlass* klass,
                              ciMethod* callee, const TypeOopPtr* receiver_type);

  // Report if there were too many traps at a current method and bci.
  // Report if a trap was recorded, and/or PerMethodTrapLimit was exceeded.
  // If there is no MDO at all, report no trap unless told to assume it.
  bool too_many_traps(ciMethod* method, int bci, Deoptimization::DeoptReason reason);
  // This version, unspecific to a particular bci, asks if
  // PerMethodTrapLimit was exceeded for all inlined methods seen so far.
  bool too_many_traps(Deoptimization::DeoptReason reason,
                      // Privately used parameter for logging:
                      ciMethodData* logmd = NULL);
  // Report if there were too many recompiles at a method and bci.
  bool too_many_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason);

  // Parsing, optimization
  PhaseGVN*         initial_gvn()               { return _initial_gvn; }
  Unique_Node_List* for_igvn()                  { return _for_igvn; }
  inline void       record_for_igvn(Node* n);   // Body is after class Unique_Node_List.
  void          set_initial_gvn(PhaseGVN *gvn)           { _initial_gvn = gvn; }
  void          set_for_igvn(Unique_Node_List *for_igvn) { _for_igvn = for_igvn; }

  // Replace n by nn using initial_gvn, calling hash_delete and
  // record_for_igvn as needed.
  void gvn_replace_by(Node* n, Node* nn);


  void              identify_useful_nodes(Unique_Node_List &useful);
  void              update_dead_node_list(Unique_Node_List &useful);
  void              remove_useless_nodes (Unique_Node_List &useful);

  WarmCallInfo*     warm_calls() const          { return _warm_calls; }
  void          set_warm_calls(WarmCallInfo* l) { _warm_calls = l; }
  WarmCallInfo* pop_warm_call();

  // Record this CallGenerator for inlining at the end of parsing.
  void              add_late_inline(CallGenerator* cg)        {
    _late_inlines.insert_before(_late_inlines_pos, cg);
    _late_inlines_pos++;
  }

  void              prepend_late_inline(CallGenerator* cg)    {
    _late_inlines.insert_before(0, cg);
  }

  void              add_string_late_inline(CallGenerator* cg) {
    _string_late_inlines.push(cg);
  }

  void              add_boxing_late_inline(CallGenerator* cg) {
    _boxing_late_inlines.push(cg);
  }

  void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful);

  void dump_inlining();

  bool over_inlining_cutoff() const {
    if (!inlining_incrementally()) {
      return unique() > (uint)NodeCountInliningCutoff;
    } else {
      return live_nodes() > (uint)LiveNodeCountInliningCutoff;
    }
  }

  void inc_number_of_mh_late_inlines() { _number_of_mh_late_inlines++; }
  void dec_number_of_mh_late_inlines() { assert(_number_of_mh_late_inlines > 0, "_number_of_mh_late_inlines < 0 !"); _number_of_mh_late_inlines--; }
  bool has_mh_late_inlines() const     { return _number_of_mh_late_inlines > 0; }

  void inline_incrementally_one(PhaseIterGVN& igvn);
  void inline_incrementally(PhaseIterGVN& igvn);
  void inline_string_calls(bool parse_time);
  void inline_boxing_calls(PhaseIterGVN& igvn);

  // Matching, CFG layout, allocation, code generation
  PhaseCFG*         cfg()                       { return _cfg; }
  bool              select_24_bit_instr() const { return _select_24_bit_instr; }
  bool              in_24_bit_fp_mode() const   { return _in_24_bit_fp_mode; }
  bool              has_java_calls() const      { return _java_calls > 0; }
  int               java_calls() const          { return _java_calls; }
  int               inner_loops() const         { return _inner_loops; }
  Matcher*          matcher()                   { return _matcher; }
  PhaseRegAlloc*    regalloc()                  { return _regalloc; }
  int               frame_slots() const         { return _frame_slots; }
  int               frame_size_in_words() const; // frame_slots in units of the polymorphic 'words'
  RegMask&          FIRST_STACK_mask()          { return _FIRST_STACK_mask; }
  Arena*            indexSet_arena()            { return _indexSet_arena; }
  void*             indexSet_free_block_list()  { return _indexSet_free_block_list; }
  uint              node_bundling_limit()       { return _node_bundling_limit; }
  Bundle*           node_bundling_base()        { return _node_bundling_base; }
  void          set_node_bundling_limit(uint n) { _node_bundling_limit = n; }
  void          set_node_bundling_base(Bundle* b) { _node_bundling_base = b; }
  bool          starts_bundle(const Node *n) const;
  bool          need_stack_bang(int frame_size_in_bytes) const;
  bool          need_register_stack_bang() const;

  void          set_matcher(Matcher* m)                 { _matcher = m; }
//void          set_regalloc(PhaseRegAlloc* ra)           { _regalloc = ra; }
  void          set_indexSet_arena(Arena* a)            { _indexSet_arena = a; }
  void          set_indexSet_free_block_list(void* p)   { _indexSet_free_block_list = p; }

  // Remember if this compilation changes hardware mode to 24-bit precision
  void set_24_bit_selection_and_mode(bool selection, bool mode) {
    _select_24_bit_instr = selection;
    _in_24_bit_fp_mode   = mode;
  }

  void  set_java_calls(int z) { _java_calls  = z; }
  void set_inner_loops(int z) { _inner_loops = z; }

  // Instruction bits passed off to the VM
  int               code_size()                 { return _method_size; }
  CodeBuffer*       code_buffer()               { return &_code_buffer; }
  int               first_block_size()          { return _first_block_size; }
  void              set_frame_complete(int off) { _code_offsets.set_value(CodeOffsets::Frame_Complete, off); }
  ExceptionHandlerTable*  handler_table()       { return &_handler_table; }
  ImplicitExceptionTable* inc_table()           { return &_inc_table; }
  OopMapSet*        oop_map_set()               { return _oop_map_set; }
  DebugInformationRecorder* debug_info()        { return env()->debug_info(); }
  Dependencies*     dependencies()              { return env()->dependencies(); }
  static int        CompiledZap_count()         { return _CompiledZap_count; }
  BufferBlob*       scratch_buffer_blob()       { return _scratch_buffer_blob; }
  void         init_scratch_buffer_blob(int const_size);
  void        clear_scratch_buffer_blob();
  void          set_scratch_buffer_blob(BufferBlob* b) { _scratch_buffer_blob = b; }
  relocInfo*        scratch_locs_memory()       { return _scratch_locs_memory; }
  void          set_scratch_locs_memory(relocInfo* b)  { _scratch_locs_memory = b; }

  // emit to scratch blob, report resulting size
  uint              scratch_emit_size(const Node* n);
  void       set_in_scratch_emit_size(bool x)   {        _in_scratch_emit_size = x; }
  bool           in_scratch_emit_size() const   { return _in_scratch_emit_size;     }

  enum ScratchBufferBlob {
    MAX_inst_size       = 1024,
    MAX_locs_size       = 128, // number of relocInfo elements
    MAX_const_size      = 128,
    MAX_stubs_size      = 128
  };

  // Major entry point.  Given a Scope, compile the associated method.
  // For normal compilations, entry_bci is InvocationEntryBci.  For on stack
  // replacement, entry_bci indicates the bytecode for which to compile a
  // continuation.
  Compile(ciEnv* ci_env, C2Compiler* compiler, ciMethod* target,
          int entry_bci, bool subsume_loads, bool do_escape_analysis,
          bool eliminate_boxing);

  // Second major entry point.  From the TypeFunc signature, generate code
  // to pass arguments from the Java calling convention to the C calling
  // convention.
  Compile(ciEnv* ci_env, const TypeFunc *(*gen)(),
          address stub_function, const char *stub_name,
          int is_fancy_jump, bool pass_tls,
          bool save_arg_registers, bool return_pc);

  // From the TypeFunc signature, generate code to pass arguments
  // from Compiled calling convention to Interpreter's calling convention
  void Generate_Compiled_To_Interpreter_Graph(const TypeFunc *tf, address interpreter_entry);

  // From the TypeFunc signature, generate code to pass arguments
  // from Interpreter's calling convention to Compiler's calling convention
  void Generate_Interpreter_To_Compiled_Graph(const TypeFunc *tf);

  // Are we compiling a method?
  bool has_method() { return method() != NULL; }

  // Maybe print some information about this compile.
  void print_compile_messages();

  // Final graph reshaping, a post-pass after the regular optimizer is done.
  bool final_graph_reshaping();

  // returns true if adr is completely contained in the given alias category
  bool must_alias(const TypePtr* adr, int alias_idx);

  // returns true if adr overlaps with the given alias category
  bool can_alias(const TypePtr* adr, int alias_idx);

  // Driver for converting compiler's IR into machine code bits
  void Output();

  // Accessors for node bundling info.
  Bundle* node_bundling(const Node *n);
  bool valid_bundle_info(const Node *n);

  // Schedule and Bundle the instructions
  void ScheduleAndBundle();

  // Build OopMaps for each GC point
  void BuildOopMaps();

  // Append debug info for the node "local" at safepoint node "sfpt" to the
  // "array",   May also consult and add to "objs", which describes the
  // scalar-replaced objects.
  void FillLocArray( int idx, MachSafePointNode* sfpt,
                     Node *local, GrowableArray<ScopeValue*> *array,
                     GrowableArray<ScopeValue*> *objs );

  // If "objs" contains an ObjectValue whose id is "id", returns it, else NULL.
  static ObjectValue* sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id);
  // Requres that "objs" does not contains an ObjectValue whose id matches
  // that of "sv.  Appends "sv".
  static void set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
                                     ObjectValue* sv );

  // Process an OopMap Element while emitting nodes
  void Process_OopMap_Node(MachNode *mach, int code_offset);

  // Initialize code buffer
  CodeBuffer* init_buffer(uint* blk_starts);

  // Write out basic block data to code buffer
  void fill_buffer(CodeBuffer* cb, uint* blk_starts);

  // Determine which variable sized branches can be shortened
  void shorten_branches(uint* blk_starts, int& code_size, int& reloc_size, int& stub_size);

  // Compute the size of first NumberOfLoopInstrToAlign instructions
  // at the head of a loop.
  void compute_loop_first_inst_sizes();

  // Compute the information for the exception tables
  void FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels);

  // Stack slots that may be unused by the calling convention but must
  // otherwise be preserved.  On Intel this includes the return address.
  // On PowerPC it includes the 4 words holding the old TOC & LR glue.
  uint in_preserve_stack_slots();

  // "Top of Stack" slots that may be unused by the calling convention but must
  // otherwise be preserved.
  // On Intel these are not necessary and the value can be zero.
  // On Sparc this describes the words reserved for storing a register window
  // when an interrupt occurs.
  static uint out_preserve_stack_slots();

  // Number of outgoing stack slots killed above the out_preserve_stack_slots
  // for calls to C.  Supports the var-args backing area for register parms.
  uint varargs_C_out_slots_killed() const;

  // Number of Stack Slots consumed by a synchronization entry
  int sync_stack_slots() const;

  // Compute the name of old_SP.  See <arch>.ad for frame layout.
  OptoReg::Name compute_old_SP();

#ifdef ENABLE_ZAP_DEAD_LOCALS
  static bool is_node_getting_a_safepoint(Node*);
  void Insert_zap_nodes();
  Node* call_zap_node(MachSafePointNode* n, int block_no);
#endif

 private:
  // Phase control:
  void Init(int aliaslevel);                     // Prepare for a single compilation
  int  Inline_Warm();                            // Find more inlining work.
  void Finish_Warm();                            // Give up on further inlines.
  void Optimize();                               // Given a graph, optimize it
  void Code_Gen();                               // Generate code from a graph

  // Management of the AliasType table.
  void grow_alias_types();
  AliasCacheEntry* probe_alias_cache(const TypePtr* adr_type);
  const TypePtr *flatten_alias_type(const TypePtr* adr_type) const;
  AliasType* find_alias_type(const TypePtr* adr_type, bool no_create, ciField* field);

  void verify_top(Node*) const PRODUCT_RETURN;

  // Intrinsic setup.
  void           register_library_intrinsics();                            // initializer
  CallGenerator* make_vm_intrinsic(ciMethod* m, bool is_virtual);          // constructor
  int            intrinsic_insertion_index(ciMethod* m, bool is_virtual);  // helper
  CallGenerator* find_intrinsic(ciMethod* m, bool is_virtual);             // query fn
  void           register_intrinsic(CallGenerator* cg);                    // update fn

#ifndef PRODUCT
  static juint  _intrinsic_hist_count[vmIntrinsics::ID_LIMIT];
  static jubyte _intrinsic_hist_flags[vmIntrinsics::ID_LIMIT];
#endif
  // Function calls made by the public function final_graph_reshaping.
  // No need to be made public as they are not called elsewhere.
  void final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc);
  void final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc );
  void eliminate_redundant_card_marks(Node* n);

 public:

  // Note:  Histogram array size is about 1 Kb.
  enum {                        // flag bits:
    _intrinsic_worked = 1,      // succeeded at least once
    _intrinsic_failed = 2,      // tried it but it failed
    _intrinsic_disabled = 4,    // was requested but disabled (e.g., -XX:-InlineUnsafeOps)
    _intrinsic_virtual = 8,     // was seen in the virtual form (rare)
    _intrinsic_both = 16        // was seen in the non-virtual form (usual)
  };
  // Update histogram.  Return boolean if this is a first-time occurrence.
  static bool gather_intrinsic_statistics(vmIntrinsics::ID id,
                                          bool is_virtual, int flags) PRODUCT_RETURN0;
  static void print_intrinsic_statistics() PRODUCT_RETURN;

  // Graph verification code
  // Walk the node list, verifying that there is a one-to-one
  // correspondence between Use-Def edges and Def-Use edges
  // The option no_dead_code enables stronger checks that the
  // graph is strongly connected from root in both directions.
  void verify_graph_edges(bool no_dead_code = false) PRODUCT_RETURN;

  // Verify GC barrier patterns
  void verify_barriers() PRODUCT_RETURN;

  // End-of-run dumps.
  static void print_statistics() PRODUCT_RETURN;

  // Dump formatted assembly
  void dump_asm(int *pcs = NULL, uint pc_limit = 0) PRODUCT_RETURN;
  void dump_pc(int *pcs, int pc_limit, Node *n);

  // Verify ADLC assumptions during startup
  static void adlc_verification() PRODUCT_RETURN;

  // Definitions of pd methods
  static void pd_compiler2_init();

  // Auxiliary method for randomized fuzzing/stressing
  static bool randomized_select(int count);

  // enter a PreserveJVMState block
  void inc_preserve_jvm_state() {
    _preserve_jvm_state++;
  }

  // exit a PreserveJVMState block
  void dec_preserve_jvm_state() {
    _preserve_jvm_state--;
    assert(_preserve_jvm_state >= 0, "_preserve_jvm_state shouldn't be negative");
  }

  bool has_preserve_jvm_state() const {
    return _preserve_jvm_state > 0;
  }
};

#endif // SHARE_VM_OPTO_COMPILE_HPP

Other Java examples (source code examples)

Here is a short list of links related to this Java compile.hpp source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.