|
The compile.hpp Java example source code
/*
* Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_OPTO_COMPILE_HPP
#define SHARE_VM_OPTO_COMPILE_HPP
#include "asm/codeBuffer.hpp"
#include "ci/compilerInterface.hpp"
#include "code/debugInfoRec.hpp"
#include "code/exceptionHandlerTable.hpp"
#include "compiler/compilerOracle.hpp"
#include "compiler/compileBroker.hpp"
#include "libadt/dict.hpp"
#include "libadt/port.hpp"
#include "libadt/vectset.hpp"
#include "memory/resourceArea.hpp"
#include "opto/idealGraphPrinter.hpp"
#include "opto/phasetype.hpp"
#include "opto/phase.hpp"
#include "opto/regmask.hpp"
#include "runtime/deoptimization.hpp"
#include "runtime/vmThread.hpp"
#include "trace/tracing.hpp"
#include "utilities/ticks.hpp"
class Block;
class Bundle;
class C2Compiler;
class CallGenerator;
class ConnectionGraph;
class InlineTree;
class Int_Array;
class Matcher;
class MachConstantNode;
class MachConstantBaseNode;
class MachNode;
class MachOper;
class MachSafePointNode;
class Node;
class Node_Array;
class Node_Notes;
class OptoReg;
class PhaseCFG;
class PhaseGVN;
class PhaseIterGVN;
class PhaseRegAlloc;
class PhaseCCP;
class PhaseCCP_DCE;
class RootNode;
class relocInfo;
class Scope;
class StartNode;
class SafePointNode;
class JVMState;
class Type;
class TypeData;
class TypePtr;
class TypeOopPtr;
class TypeFunc;
class Unique_Node_List;
class nmethod;
class WarmCallInfo;
class Node_Stack;
struct Final_Reshape_Counts;
//------------------------------Compile----------------------------------------
// This class defines a top-level Compiler invocation.
class Compile : public Phase {
friend class VMStructs;
public:
// Fixed alias indexes. (See also MergeMemNode.)
enum {
AliasIdxTop = 1, // pseudo-index, aliases to nothing (used as sentinel value)
AliasIdxBot = 2, // pseudo-index, aliases to everything
AliasIdxRaw = 3 // hard-wired index for TypeRawPtr::BOTTOM
};
// Variant of TraceTime(NULL, &_t_accumulator, TimeCompiler);
// Integrated with logging. If logging is turned on, and dolog is true,
// then brackets are put into the log, with time stamps and node counts.
// (The time collection itself is always conditionalized on TimeCompiler.)
class TracePhase : public TraceTime {
private:
Compile* C;
CompileLog* _log;
const char* _phase_name;
bool _dolog;
public:
TracePhase(const char* name, elapsedTimer* accumulator, bool dolog);
~TracePhase();
};
// Information per category of alias (memory slice)
class AliasType {
private:
friend class Compile;
int _index; // unique index, used with MergeMemNode
const TypePtr* _adr_type; // normalized address type
ciField* _field; // relevant instance field, or null if none
const Type* _element; // relevant array element type, or null if none
bool _is_rewritable; // false if the memory is write-once only
int _general_index; // if this is type is an instance, the general
// type that this is an instance of
void Init(int i, const TypePtr* at);
public:
int index() const { return _index; }
const TypePtr* adr_type() const { return _adr_type; }
ciField* field() const { return _field; }
const Type* element() const { return _element; }
bool is_rewritable() const { return _is_rewritable; }
bool is_volatile() const { return (_field ? _field->is_volatile() : false); }
int general_index() const { return (_general_index != 0) ? _general_index : _index; }
void set_rewritable(bool z) { _is_rewritable = z; }
void set_field(ciField* f) {
assert(!_field,"");
_field = f;
if (f->is_final() || f->is_stable()) {
// In the case of @Stable, multiple writes are possible but may be assumed to be no-ops.
_is_rewritable = false;
}
}
void set_element(const Type* e) {
assert(_element == NULL, "");
_element = e;
}
void print_on(outputStream* st) PRODUCT_RETURN;
};
enum {
logAliasCacheSize = 6,
AliasCacheSize = (1<ss();
}
void print_inlining_skip(CallGenerator* cg) {
if (_print_inlining) {
_print_inlining_list->adr_at(_print_inlining_idx)->set_cg(cg);
_print_inlining_idx++;
_print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
}
}
void print_inlining_insert(CallGenerator* cg) {
if (_print_inlining) {
for (int i = 0; i < _print_inlining_list->length(); i++) {
if (_print_inlining_list->adr_at(i)->cg() == cg) {
_print_inlining_list->insert_before(i+1, PrintInliningBuffer());
_print_inlining_idx = i+1;
_print_inlining_list->adr_at(i)->set_cg(NULL);
return;
}
}
ShouldNotReachHere();
}
}
void print_inlining(ciMethod* method, int inline_level, int bci, const char* msg = NULL) {
stringStream ss;
CompileTask::print_inlining(&ss, method, inline_level, bci, msg);
print_inlining_stream()->print(ss.as_string());
}
private:
// Matching, CFG layout, allocation, code generation
PhaseCFG* _cfg; // Results of CFG finding
bool _select_24_bit_instr; // We selected an instruction with a 24-bit result
bool _in_24_bit_fp_mode; // We are emitting instructions with 24-bit results
int _java_calls; // Number of java calls in the method
int _inner_loops; // Number of inner loops in the method
Matcher* _matcher; // Engine to map ideal to machine instructions
PhaseRegAlloc* _regalloc; // Results of register allocation.
int _frame_slots; // Size of total frame in stack slots
CodeOffsets _code_offsets; // Offsets into the code for various interesting entries
RegMask _FIRST_STACK_mask; // All stack slots usable for spills (depends on frame layout)
Arena* _indexSet_arena; // control IndexSet allocation within PhaseChaitin
void* _indexSet_free_block_list; // free list of IndexSet bit blocks
uint _node_bundling_limit;
Bundle* _node_bundling_base; // Information for instruction bundling
// Instruction bits passed off to the VM
int _method_size; // Size of nmethod code segment in bytes
CodeBuffer _code_buffer; // Where the code is assembled
int _first_block_size; // Size of unvalidated entry point code / OSR poison code
ExceptionHandlerTable _handler_table; // Table of native-code exception handlers
ImplicitExceptionTable _inc_table; // Table of implicit null checks in native code
OopMapSet* _oop_map_set; // Table of oop maps (one for each safepoint location)
static int _CompiledZap_count; // counter compared against CompileZap[First/Last]
BufferBlob* _scratch_buffer_blob; // For temporary code buffers.
relocInfo* _scratch_locs_memory; // For temporary code buffers.
int _scratch_const_size; // For temporary code buffers.
bool _in_scratch_emit_size; // true when in scratch_emit_size.
public:
// Accessors
// The Compile instance currently active in this (compiler) thread.
static Compile* current() {
return (Compile*) ciEnv::current()->compiler_data();
}
// ID for this compilation. Useful for setting breakpoints in the debugger.
int compile_id() const { return _compile_id; }
// Does this compilation allow instructions to subsume loads? User
// instructions that subsume a load may result in an unschedulable
// instruction sequence.
bool subsume_loads() const { return _subsume_loads; }
/** Do escape analysis. */
bool do_escape_analysis() const { return _do_escape_analysis; }
/** Do boxing elimination. */
bool eliminate_boxing() const { return _eliminate_boxing; }
/** Do aggressive boxing elimination. */
bool aggressive_unboxing() const { return _eliminate_boxing && AggressiveUnboxing; }
bool save_argument_registers() const { return _save_argument_registers; }
// Other fixed compilation parameters.
ciMethod* method() const { return _method; }
int entry_bci() const { return _entry_bci; }
bool is_osr_compilation() const { return _entry_bci != InvocationEntryBci; }
bool is_method_compilation() const { return (_method != NULL && !_method->flags().is_native()); }
const TypeFunc* tf() const { assert(_tf!=NULL, ""); return _tf; }
void init_tf(const TypeFunc* tf) { assert(_tf==NULL, ""); _tf = tf; }
InlineTree* ilt() const { return _ilt; }
address stub_function() const { return _stub_function; }
const char* stub_name() const { return _stub_name; }
address stub_entry_point() const { return _stub_entry_point; }
// Control of this compilation.
int fixed_slots() const { assert(_fixed_slots >= 0, ""); return _fixed_slots; }
void set_fixed_slots(int n) { _fixed_slots = n; }
int major_progress() const { return _major_progress; }
void set_inlining_progress(bool z) { _inlining_progress = z; }
int inlining_progress() const { return _inlining_progress; }
void set_inlining_incrementally(bool z) { _inlining_incrementally = z; }
int inlining_incrementally() const { return _inlining_incrementally; }
void set_major_progress() { _major_progress++; }
void clear_major_progress() { _major_progress = 0; }
int num_loop_opts() const { return _num_loop_opts; }
void set_num_loop_opts(int n) { _num_loop_opts = n; }
int max_inline_size() const { return _max_inline_size; }
void set_freq_inline_size(int n) { _freq_inline_size = n; }
int freq_inline_size() const { return _freq_inline_size; }
void set_max_inline_size(int n) { _max_inline_size = n; }
bool has_loops() const { return _has_loops; }
void set_has_loops(bool z) { _has_loops = z; }
bool has_split_ifs() const { return _has_split_ifs; }
void set_has_split_ifs(bool z) { _has_split_ifs = z; }
bool has_unsafe_access() const { return _has_unsafe_access; }
void set_has_unsafe_access(bool z) { _has_unsafe_access = z; }
bool has_stringbuilder() const { return _has_stringbuilder; }
void set_has_stringbuilder(bool z) { _has_stringbuilder = z; }
bool has_boxed_value() const { return _has_boxed_value; }
void set_has_boxed_value(bool z) { _has_boxed_value = z; }
int max_vector_size() const { return _max_vector_size; }
void set_max_vector_size(int s) { _max_vector_size = s; }
void set_trap_count(uint r, uint c) { assert(r < trapHistLength, "oob"); _trap_hist[r] = c; }
uint trap_count(uint r) const { assert(r < trapHistLength, "oob"); return _trap_hist[r]; }
bool trap_can_recompile() const { return _trap_can_recompile; }
void set_trap_can_recompile(bool z) { _trap_can_recompile = z; }
uint decompile_count() const { return _decompile_count; }
void set_decompile_count(uint c) { _decompile_count = c; }
bool allow_range_check_smearing() const;
bool do_inlining() const { return _do_inlining; }
void set_do_inlining(bool z) { _do_inlining = z; }
bool do_scheduling() const { return _do_scheduling; }
void set_do_scheduling(bool z) { _do_scheduling = z; }
bool do_freq_based_layout() const{ return _do_freq_based_layout; }
void set_do_freq_based_layout(bool z){ _do_freq_based_layout = z; }
bool do_count_invocations() const{ return _do_count_invocations; }
void set_do_count_invocations(bool z){ _do_count_invocations = z; }
bool do_method_data_update() const { return _do_method_data_update; }
void set_do_method_data_update(bool z) { _do_method_data_update = z; }
int AliasLevel() const { return _AliasLevel; }
bool print_assembly() const { return _print_assembly; }
void set_print_assembly(bool z) { _print_assembly = z; }
bool print_inlining() const { return _print_inlining; }
void set_print_inlining(bool z) { _print_inlining = z; }
bool print_intrinsics() const { return _print_intrinsics; }
void set_print_intrinsics(bool z) { _print_intrinsics = z; }
// check the CompilerOracle for special behaviours for this compile
bool method_has_option(const char * option) {
return method() != NULL && method()->has_option(option);
}
#ifndef PRODUCT
bool trace_opto_output() const { return _trace_opto_output; }
bool parsed_irreducible_loop() const { return _parsed_irreducible_loop; }
void set_parsed_irreducible_loop(bool z) { _parsed_irreducible_loop = z; }
#endif
// JSR 292
bool has_method_handle_invokes() const { return _has_method_handle_invokes; }
void set_has_method_handle_invokes(bool z) { _has_method_handle_invokes = z; }
Ticks _latest_stage_start_counter;
void begin_method() {
#ifndef PRODUCT
if (_printer) _printer->begin_method(this);
#endif
C->_latest_stage_start_counter.stamp();
}
void print_method(CompilerPhaseType cpt, int level = 1) {
EventCompilerPhase event;
if (event.should_commit()) {
event.set_starttime(C->_latest_stage_start_counter);
event.set_phase((u1) cpt);
event.set_compileID(C->_compile_id);
event.set_phaseLevel(level);
event.commit();
}
#ifndef PRODUCT
if (_printer) _printer->print_method(this, CompilerPhaseTypeHelper::to_string(cpt), level);
#endif
C->_latest_stage_start_counter.stamp();
}
void end_method(int level = 1) {
EventCompilerPhase event;
if (event.should_commit()) {
event.set_starttime(C->_latest_stage_start_counter);
event.set_phase((u1) PHASE_END);
event.set_compileID(C->_compile_id);
event.set_phaseLevel(level);
event.commit();
}
#ifndef PRODUCT
if (_printer) _printer->end_method();
#endif
}
int macro_count() const { return _macro_nodes->length(); }
int predicate_count() const { return _predicate_opaqs->length();}
int expensive_count() const { return _expensive_nodes->length(); }
Node* macro_node(int idx) const { return _macro_nodes->at(idx); }
Node* predicate_opaque1_node(int idx) const { return _predicate_opaqs->at(idx);}
Node* expensive_node(int idx) const { return _expensive_nodes->at(idx); }
ConnectionGraph* congraph() { return _congraph;}
void set_congraph(ConnectionGraph* congraph) { _congraph = congraph;}
void add_macro_node(Node * n) {
//assert(n->is_macro(), "must be a macro node");
assert(!_macro_nodes->contains(n), " duplicate entry in expand list");
_macro_nodes->append(n);
}
void remove_macro_node(Node * n) {
// this function may be called twice for a node so check
// that the node is in the array before attempting to remove it
if (_macro_nodes->contains(n))
_macro_nodes->remove(n);
// remove from _predicate_opaqs list also if it is there
if (predicate_count() > 0 && _predicate_opaqs->contains(n)){
_predicate_opaqs->remove(n);
}
}
void add_expensive_node(Node * n);
void remove_expensive_node(Node * n) {
if (_expensive_nodes->contains(n)) {
_expensive_nodes->remove(n);
}
}
void add_predicate_opaq(Node * n) {
assert(!_predicate_opaqs->contains(n), " duplicate entry in predicate opaque1");
assert(_macro_nodes->contains(n), "should have already been in macro list");
_predicate_opaqs->append(n);
}
// remove the opaque nodes that protect the predicates so that the unused checks and
// uncommon traps will be eliminated from the graph.
void cleanup_loop_predicates(PhaseIterGVN &igvn);
bool is_predicate_opaq(Node * n) {
return _predicate_opaqs->contains(n);
}
// Are there candidate expensive nodes for optimization?
bool should_optimize_expensive_nodes(PhaseIterGVN &igvn);
// Check whether n1 and n2 are similar
static int cmp_expensive_nodes(Node* n1, Node* n2);
// Sort expensive nodes to locate similar expensive nodes
void sort_expensive_nodes();
// Compilation environment.
Arena* comp_arena() { return &_comp_arena; }
ciEnv* env() const { return _env; }
CompileLog* log() const { return _log; }
bool failing() const { return _env->failing() || _failure_reason != NULL; }
const char* failure_reason() { return _failure_reason; }
bool failure_reason_is(const char* r) { return (r==_failure_reason) || (r!=NULL && _failure_reason!=NULL && strcmp(r, _failure_reason)==0); }
void record_failure(const char* reason);
void record_method_not_compilable(const char* reason, bool all_tiers = false) {
// All bailouts cover "all_tiers" when TieredCompilation is off.
if (!TieredCompilation) all_tiers = true;
env()->record_method_not_compilable(reason, all_tiers);
// Record failure reason.
record_failure(reason);
}
void record_method_not_compilable_all_tiers(const char* reason) {
record_method_not_compilable(reason, true);
}
bool check_node_count(uint margin, const char* reason) {
if (live_nodes() + margin > (uint)MaxNodeLimit) {
record_method_not_compilable(reason);
return true;
} else {
return false;
}
}
// Node management
uint unique() const { return _unique; }
uint next_unique() { return _unique++; }
void set_unique(uint i) { _unique = i; }
static int debug_idx() { return debug_only(_debug_idx)+0; }
static void set_debug_idx(int i) { debug_only(_debug_idx = i); }
Arena* node_arena() { return &_node_arena; }
Arena* old_arena() { return &_old_arena; }
RootNode* root() const { return _root; }
void set_root(RootNode* r) { _root = r; }
StartNode* start() const; // (Derived from root.)
void init_start(StartNode* s);
Node* immutable_memory();
Node* recent_alloc_ctl() const { return _recent_alloc_ctl; }
Node* recent_alloc_obj() const { return _recent_alloc_obj; }
void set_recent_alloc(Node* ctl, Node* obj) {
_recent_alloc_ctl = ctl;
_recent_alloc_obj = obj;
}
void record_dead_node(uint idx) { if (_dead_node_list.test_set(idx)) return;
_dead_node_count++;
}
bool is_dead_node(uint idx) { return _dead_node_list.test(idx) != 0; }
uint dead_node_count() { return _dead_node_count; }
void reset_dead_node_list() { _dead_node_list.Reset();
_dead_node_count = 0;
}
uint live_nodes() const {
int val = _unique - _dead_node_count;
assert (val >= 0, err_msg_res("number of tracked dead nodes %d more than created nodes %d", _unique, _dead_node_count));
return (uint) val;
}
#ifdef ASSERT
uint count_live_nodes_by_graph_walk();
void print_missing_nodes();
#endif
// Constant table
ConstantTable& constant_table() { return _constant_table; }
MachConstantBaseNode* mach_constant_base_node();
bool has_mach_constant_base_node() const { return _mach_constant_base_node != NULL; }
// Handy undefined Node
Node* top() const { return _top; }
// these are used by guys who need to know about creation and transformation of top:
Node* cached_top_node() { return _top; }
void set_cached_top_node(Node* tn);
GrowableArray<Node_Notes*>* node_note_array() const { return _node_note_array; }
void set_node_note_array(GrowableArray<Node_Notes*>* arr) { _node_note_array = arr; }
Node_Notes* default_node_notes() const { return _default_node_notes; }
void set_default_node_notes(Node_Notes* n) { _default_node_notes = n; }
Node_Notes* node_notes_at(int idx) {
return locate_node_notes(_node_note_array, idx, false);
}
inline bool set_node_notes_at(int idx, Node_Notes* value);
// Copy notes from source to dest, if they exist.
// Overwrite dest only if source provides something.
// Return true if information was moved.
bool copy_node_notes_to(Node* dest, Node* source);
// Workhorse function to sort out the blocked Node_Notes array:
inline Node_Notes* locate_node_notes(GrowableArray<Node_Notes*>* arr,
int idx, bool can_grow = false);
void grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by);
// Type management
Arena* type_arena() { return _type_arena; }
Dict* type_dict() { return _type_dict; }
void* type_hwm() { return _type_hwm; }
size_t type_last_size() { return _type_last_size; }
int num_alias_types() { return _num_alias_types; }
void init_type_arena() { _type_arena = &_Compile_types; }
void set_type_arena(Arena* a) { _type_arena = a; }
void set_type_dict(Dict* d) { _type_dict = d; }
void set_type_hwm(void* p) { _type_hwm = p; }
void set_type_last_size(size_t sz) { _type_last_size = sz; }
const TypeFunc* last_tf(ciMethod* m) {
return (m == _last_tf_m) ? _last_tf : NULL;
}
void set_last_tf(ciMethod* m, const TypeFunc* tf) {
assert(m != NULL || tf == NULL, "");
_last_tf_m = m;
_last_tf = tf;
}
AliasType* alias_type(int idx) { assert(idx < num_alias_types(), "oob"); return _alias_types[idx]; }
AliasType* alias_type(const TypePtr* adr_type, ciField* field = NULL) { return find_alias_type(adr_type, false, field); }
bool have_alias_type(const TypePtr* adr_type);
AliasType* alias_type(ciField* field);
int get_alias_index(const TypePtr* at) { return alias_type(at)->index(); }
const TypePtr* get_adr_type(uint aidx) { return alias_type(aidx)->adr_type(); }
int get_general_index(uint aidx) { return alias_type(aidx)->general_index(); }
// Building nodes
void rethrow_exceptions(JVMState* jvms);
void return_values(JVMState* jvms);
JVMState* build_start_state(StartNode* start, const TypeFunc* tf);
// Decide how to build a call.
// The profile factor is a discount to apply to this site's interp. profile.
CallGenerator* call_generator(ciMethod* call_method, int vtable_index, bool call_does_dispatch,
JVMState* jvms, bool allow_inline, float profile_factor, ciKlass* speculative_receiver_type = NULL,
bool allow_intrinsics = true, bool delayed_forbidden = false);
bool should_delay_inlining(ciMethod* call_method, JVMState* jvms) {
return should_delay_string_inlining(call_method, jvms) ||
should_delay_boxing_inlining(call_method, jvms);
}
bool should_delay_string_inlining(ciMethod* call_method, JVMState* jvms);
bool should_delay_boxing_inlining(ciMethod* call_method, JVMState* jvms);
// Helper functions to identify inlining potential at call-site
ciMethod* optimize_virtual_call(ciMethod* caller, int bci, ciInstanceKlass* klass,
ciMethod* callee, const TypeOopPtr* receiver_type,
bool is_virtual,
bool &call_does_dispatch, int &vtable_index);
ciMethod* optimize_inlining(ciMethod* caller, int bci, ciInstanceKlass* klass,
ciMethod* callee, const TypeOopPtr* receiver_type);
// Report if there were too many traps at a current method and bci.
// Report if a trap was recorded, and/or PerMethodTrapLimit was exceeded.
// If there is no MDO at all, report no trap unless told to assume it.
bool too_many_traps(ciMethod* method, int bci, Deoptimization::DeoptReason reason);
// This version, unspecific to a particular bci, asks if
// PerMethodTrapLimit was exceeded for all inlined methods seen so far.
bool too_many_traps(Deoptimization::DeoptReason reason,
// Privately used parameter for logging:
ciMethodData* logmd = NULL);
// Report if there were too many recompiles at a method and bci.
bool too_many_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason);
// Parsing, optimization
PhaseGVN* initial_gvn() { return _initial_gvn; }
Unique_Node_List* for_igvn() { return _for_igvn; }
inline void record_for_igvn(Node* n); // Body is after class Unique_Node_List.
void set_initial_gvn(PhaseGVN *gvn) { _initial_gvn = gvn; }
void set_for_igvn(Unique_Node_List *for_igvn) { _for_igvn = for_igvn; }
// Replace n by nn using initial_gvn, calling hash_delete and
// record_for_igvn as needed.
void gvn_replace_by(Node* n, Node* nn);
void identify_useful_nodes(Unique_Node_List &useful);
void update_dead_node_list(Unique_Node_List &useful);
void remove_useless_nodes (Unique_Node_List &useful);
WarmCallInfo* warm_calls() const { return _warm_calls; }
void set_warm_calls(WarmCallInfo* l) { _warm_calls = l; }
WarmCallInfo* pop_warm_call();
// Record this CallGenerator for inlining at the end of parsing.
void add_late_inline(CallGenerator* cg) {
_late_inlines.insert_before(_late_inlines_pos, cg);
_late_inlines_pos++;
}
void prepend_late_inline(CallGenerator* cg) {
_late_inlines.insert_before(0, cg);
}
void add_string_late_inline(CallGenerator* cg) {
_string_late_inlines.push(cg);
}
void add_boxing_late_inline(CallGenerator* cg) {
_boxing_late_inlines.push(cg);
}
void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful);
void dump_inlining();
bool over_inlining_cutoff() const {
if (!inlining_incrementally()) {
return unique() > (uint)NodeCountInliningCutoff;
} else {
return live_nodes() > (uint)LiveNodeCountInliningCutoff;
}
}
void inc_number_of_mh_late_inlines() { _number_of_mh_late_inlines++; }
void dec_number_of_mh_late_inlines() { assert(_number_of_mh_late_inlines > 0, "_number_of_mh_late_inlines < 0 !"); _number_of_mh_late_inlines--; }
bool has_mh_late_inlines() const { return _number_of_mh_late_inlines > 0; }
void inline_incrementally_one(PhaseIterGVN& igvn);
void inline_incrementally(PhaseIterGVN& igvn);
void inline_string_calls(bool parse_time);
void inline_boxing_calls(PhaseIterGVN& igvn);
// Matching, CFG layout, allocation, code generation
PhaseCFG* cfg() { return _cfg; }
bool select_24_bit_instr() const { return _select_24_bit_instr; }
bool in_24_bit_fp_mode() const { return _in_24_bit_fp_mode; }
bool has_java_calls() const { return _java_calls > 0; }
int java_calls() const { return _java_calls; }
int inner_loops() const { return _inner_loops; }
Matcher* matcher() { return _matcher; }
PhaseRegAlloc* regalloc() { return _regalloc; }
int frame_slots() const { return _frame_slots; }
int frame_size_in_words() const; // frame_slots in units of the polymorphic 'words'
RegMask& FIRST_STACK_mask() { return _FIRST_STACK_mask; }
Arena* indexSet_arena() { return _indexSet_arena; }
void* indexSet_free_block_list() { return _indexSet_free_block_list; }
uint node_bundling_limit() { return _node_bundling_limit; }
Bundle* node_bundling_base() { return _node_bundling_base; }
void set_node_bundling_limit(uint n) { _node_bundling_limit = n; }
void set_node_bundling_base(Bundle* b) { _node_bundling_base = b; }
bool starts_bundle(const Node *n) const;
bool need_stack_bang(int frame_size_in_bytes) const;
bool need_register_stack_bang() const;
void set_matcher(Matcher* m) { _matcher = m; }
//void set_regalloc(PhaseRegAlloc* ra) { _regalloc = ra; }
void set_indexSet_arena(Arena* a) { _indexSet_arena = a; }
void set_indexSet_free_block_list(void* p) { _indexSet_free_block_list = p; }
// Remember if this compilation changes hardware mode to 24-bit precision
void set_24_bit_selection_and_mode(bool selection, bool mode) {
_select_24_bit_instr = selection;
_in_24_bit_fp_mode = mode;
}
void set_java_calls(int z) { _java_calls = z; }
void set_inner_loops(int z) { _inner_loops = z; }
// Instruction bits passed off to the VM
int code_size() { return _method_size; }
CodeBuffer* code_buffer() { return &_code_buffer; }
int first_block_size() { return _first_block_size; }
void set_frame_complete(int off) { _code_offsets.set_value(CodeOffsets::Frame_Complete, off); }
ExceptionHandlerTable* handler_table() { return &_handler_table; }
ImplicitExceptionTable* inc_table() { return &_inc_table; }
OopMapSet* oop_map_set() { return _oop_map_set; }
DebugInformationRecorder* debug_info() { return env()->debug_info(); }
Dependencies* dependencies() { return env()->dependencies(); }
static int CompiledZap_count() { return _CompiledZap_count; }
BufferBlob* scratch_buffer_blob() { return _scratch_buffer_blob; }
void init_scratch_buffer_blob(int const_size);
void clear_scratch_buffer_blob();
void set_scratch_buffer_blob(BufferBlob* b) { _scratch_buffer_blob = b; }
relocInfo* scratch_locs_memory() { return _scratch_locs_memory; }
void set_scratch_locs_memory(relocInfo* b) { _scratch_locs_memory = b; }
// emit to scratch blob, report resulting size
uint scratch_emit_size(const Node* n);
void set_in_scratch_emit_size(bool x) { _in_scratch_emit_size = x; }
bool in_scratch_emit_size() const { return _in_scratch_emit_size; }
enum ScratchBufferBlob {
MAX_inst_size = 1024,
MAX_locs_size = 128, // number of relocInfo elements
MAX_const_size = 128,
MAX_stubs_size = 128
};
// Major entry point. Given a Scope, compile the associated method.
// For normal compilations, entry_bci is InvocationEntryBci. For on stack
// replacement, entry_bci indicates the bytecode for which to compile a
// continuation.
Compile(ciEnv* ci_env, C2Compiler* compiler, ciMethod* target,
int entry_bci, bool subsume_loads, bool do_escape_analysis,
bool eliminate_boxing);
// Second major entry point. From the TypeFunc signature, generate code
// to pass arguments from the Java calling convention to the C calling
// convention.
Compile(ciEnv* ci_env, const TypeFunc *(*gen)(),
address stub_function, const char *stub_name,
int is_fancy_jump, bool pass_tls,
bool save_arg_registers, bool return_pc);
// From the TypeFunc signature, generate code to pass arguments
// from Compiled calling convention to Interpreter's calling convention
void Generate_Compiled_To_Interpreter_Graph(const TypeFunc *tf, address interpreter_entry);
// From the TypeFunc signature, generate code to pass arguments
// from Interpreter's calling convention to Compiler's calling convention
void Generate_Interpreter_To_Compiled_Graph(const TypeFunc *tf);
// Are we compiling a method?
bool has_method() { return method() != NULL; }
// Maybe print some information about this compile.
void print_compile_messages();
// Final graph reshaping, a post-pass after the regular optimizer is done.
bool final_graph_reshaping();
// returns true if adr is completely contained in the given alias category
bool must_alias(const TypePtr* adr, int alias_idx);
// returns true if adr overlaps with the given alias category
bool can_alias(const TypePtr* adr, int alias_idx);
// Driver for converting compiler's IR into machine code bits
void Output();
// Accessors for node bundling info.
Bundle* node_bundling(const Node *n);
bool valid_bundle_info(const Node *n);
// Schedule and Bundle the instructions
void ScheduleAndBundle();
// Build OopMaps for each GC point
void BuildOopMaps();
// Append debug info for the node "local" at safepoint node "sfpt" to the
// "array", May also consult and add to "objs", which describes the
// scalar-replaced objects.
void FillLocArray( int idx, MachSafePointNode* sfpt,
Node *local, GrowableArray<ScopeValue*> *array,
GrowableArray<ScopeValue*> *objs );
// If "objs" contains an ObjectValue whose id is "id", returns it, else NULL.
static ObjectValue* sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id);
// Requres that "objs" does not contains an ObjectValue whose id matches
// that of "sv. Appends "sv".
static void set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
ObjectValue* sv );
// Process an OopMap Element while emitting nodes
void Process_OopMap_Node(MachNode *mach, int code_offset);
// Initialize code buffer
CodeBuffer* init_buffer(uint* blk_starts);
// Write out basic block data to code buffer
void fill_buffer(CodeBuffer* cb, uint* blk_starts);
// Determine which variable sized branches can be shortened
void shorten_branches(uint* blk_starts, int& code_size, int& reloc_size, int& stub_size);
// Compute the size of first NumberOfLoopInstrToAlign instructions
// at the head of a loop.
void compute_loop_first_inst_sizes();
// Compute the information for the exception tables
void FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels);
// Stack slots that may be unused by the calling convention but must
// otherwise be preserved. On Intel this includes the return address.
// On PowerPC it includes the 4 words holding the old TOC & LR glue.
uint in_preserve_stack_slots();
// "Top of Stack" slots that may be unused by the calling convention but must
// otherwise be preserved.
// On Intel these are not necessary and the value can be zero.
// On Sparc this describes the words reserved for storing a register window
// when an interrupt occurs.
static uint out_preserve_stack_slots();
// Number of outgoing stack slots killed above the out_preserve_stack_slots
// for calls to C. Supports the var-args backing area for register parms.
uint varargs_C_out_slots_killed() const;
// Number of Stack Slots consumed by a synchronization entry
int sync_stack_slots() const;
// Compute the name of old_SP. See <arch>.ad for frame layout.
OptoReg::Name compute_old_SP();
#ifdef ENABLE_ZAP_DEAD_LOCALS
static bool is_node_getting_a_safepoint(Node*);
void Insert_zap_nodes();
Node* call_zap_node(MachSafePointNode* n, int block_no);
#endif
private:
// Phase control:
void Init(int aliaslevel); // Prepare for a single compilation
int Inline_Warm(); // Find more inlining work.
void Finish_Warm(); // Give up on further inlines.
void Optimize(); // Given a graph, optimize it
void Code_Gen(); // Generate code from a graph
// Management of the AliasType table.
void grow_alias_types();
AliasCacheEntry* probe_alias_cache(const TypePtr* adr_type);
const TypePtr *flatten_alias_type(const TypePtr* adr_type) const;
AliasType* find_alias_type(const TypePtr* adr_type, bool no_create, ciField* field);
void verify_top(Node*) const PRODUCT_RETURN;
// Intrinsic setup.
void register_library_intrinsics(); // initializer
CallGenerator* make_vm_intrinsic(ciMethod* m, bool is_virtual); // constructor
int intrinsic_insertion_index(ciMethod* m, bool is_virtual); // helper
CallGenerator* find_intrinsic(ciMethod* m, bool is_virtual); // query fn
void register_intrinsic(CallGenerator* cg); // update fn
#ifndef PRODUCT
static juint _intrinsic_hist_count[vmIntrinsics::ID_LIMIT];
static jubyte _intrinsic_hist_flags[vmIntrinsics::ID_LIMIT];
#endif
// Function calls made by the public function final_graph_reshaping.
// No need to be made public as they are not called elsewhere.
void final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc);
void final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc );
void eliminate_redundant_card_marks(Node* n);
public:
// Note: Histogram array size is about 1 Kb.
enum { // flag bits:
_intrinsic_worked = 1, // succeeded at least once
_intrinsic_failed = 2, // tried it but it failed
_intrinsic_disabled = 4, // was requested but disabled (e.g., -XX:-InlineUnsafeOps)
_intrinsic_virtual = 8, // was seen in the virtual form (rare)
_intrinsic_both = 16 // was seen in the non-virtual form (usual)
};
// Update histogram. Return boolean if this is a first-time occurrence.
static bool gather_intrinsic_statistics(vmIntrinsics::ID id,
bool is_virtual, int flags) PRODUCT_RETURN0;
static void print_intrinsic_statistics() PRODUCT_RETURN;
// Graph verification code
// Walk the node list, verifying that there is a one-to-one
// correspondence between Use-Def edges and Def-Use edges
// The option no_dead_code enables stronger checks that the
// graph is strongly connected from root in both directions.
void verify_graph_edges(bool no_dead_code = false) PRODUCT_RETURN;
// Verify GC barrier patterns
void verify_barriers() PRODUCT_RETURN;
// End-of-run dumps.
static void print_statistics() PRODUCT_RETURN;
// Dump formatted assembly
void dump_asm(int *pcs = NULL, uint pc_limit = 0) PRODUCT_RETURN;
void dump_pc(int *pcs, int pc_limit, Node *n);
// Verify ADLC assumptions during startup
static void adlc_verification() PRODUCT_RETURN;
// Definitions of pd methods
static void pd_compiler2_init();
// Auxiliary method for randomized fuzzing/stressing
static bool randomized_select(int count);
// enter a PreserveJVMState block
void inc_preserve_jvm_state() {
_preserve_jvm_state++;
}
// exit a PreserveJVMState block
void dec_preserve_jvm_state() {
_preserve_jvm_state--;
assert(_preserve_jvm_state >= 0, "_preserve_jvm_state shouldn't be negative");
}
bool has_preserve_jvm_state() const {
return _preserve_jvm_state > 0;
}
};
#endif // SHARE_VM_OPTO_COMPILE_HPP
Other Java examples (source code examples)
Here is a short list of links related to this Java compile.hpp source code file:
|