|
Java example source code file (memSnapshot.hpp)
The memSnapshot.hpp Java example source code/* * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_SERVICES_MEM_SNAPSHOT_HPP #define SHARE_VM_SERVICES_MEM_SNAPSHOT_HPP #include "memory/allocation.hpp" #include "runtime/mutex.hpp" #include "runtime/mutexLocker.hpp" #include "services/memBaseline.hpp" #include "services/memPtrArray.hpp" // Snapshot pointer array iterator // The pointer array contains malloc-ed pointers class MemPointerIterator : public MemPointerArrayIteratorImpl { public: MemPointerIterator(MemPointerArray* arr): MemPointerArrayIteratorImpl(arr) { assert(arr != NULL, "null array"); } #ifdef ASSERT virtual bool is_dup_pointer(const MemPointer* ptr1, const MemPointer* ptr2) const { MemPointerRecord* p1 = (MemPointerRecord*)ptr1; MemPointerRecord* p2 = (MemPointerRecord*)ptr2; if (p1->addr() != p2->addr()) return false; if ((p1->flags() & MemPointerRecord::tag_masks) != (p2->flags() & MemPointerRecord::tag_masks)) { return false; } // we do see multiple commit/uncommit on the same memory, it is ok return (p1->flags() & MemPointerRecord::tag_masks) == MemPointerRecord::tag_alloc || (p1->flags() & MemPointerRecord::tag_masks) == MemPointerRecord::tag_release; } virtual bool insert(MemPointer* ptr) { if (_pos > 0) { MemPointer* p1 = (MemPointer*)ptr; MemPointer* p2 = (MemPointer*)_array->at(_pos - 1); assert(!is_dup_pointer(p1, p2), err_msg("duplicated pointer, flag = [%x]", (unsigned int)((MemPointerRecord*)p1)->flags())); } if (_pos < _array->length() -1) { MemPointer* p1 = (MemPointer*)ptr; MemPointer* p2 = (MemPointer*)_array->at(_pos + 1); assert(!is_dup_pointer(p1, p2), err_msg("duplicated pointer, flag = [%x]", (unsigned int)((MemPointerRecord*)p1)->flags())); } return _array->insert_at(ptr, _pos); } virtual bool insert_after(MemPointer* ptr) { if (_pos > 0) { MemPointer* p1 = (MemPointer*)ptr; MemPointer* p2 = (MemPointer*)_array->at(_pos - 1); assert(!is_dup_pointer(p1, p2), err_msg("duplicated pointer, flag = [%x]", (unsigned int)((MemPointerRecord*)p1)->flags())); } if (_pos < _array->length() - 1) { MemPointer* p1 = (MemPointer*)ptr; MemPointer* p2 = (MemPointer*)_array->at(_pos + 1); assert(!is_dup_pointer(p1, p2), err_msg("duplicated pointer, flag = [%x]", (unsigned int)((MemPointerRecord*)p1)->flags())); } if (_array->insert_at(ptr, _pos + 1)) { _pos ++; return true; } return false; } #endif virtual MemPointer* locate(address addr) { MemPointer* cur = current(); while (cur != NULL && cur->addr() < addr) { cur = next(); } return cur; } }; class VMMemPointerIterator : public MemPointerIterator { public: VMMemPointerIterator(MemPointerArray* arr): MemPointerIterator(arr) { } // locate an existing reserved memory region that contains specified address, // or the reserved region just above this address, where the incoming // reserved region should be inserted. virtual MemPointer* locate(address addr) { reset(); VMMemRegion* reg = (VMMemRegion*)current(); while (reg != NULL) { if (reg->is_reserved_region()) { if (reg->contains_address(addr) || addr < reg->base()) { return reg; } } reg = (VMMemRegion*)next(); } return NULL; } // following methods update virtual memory in the context // of 'current' position, which is properly positioned by // callers via locate method. bool add_reserved_region(MemPointerRecord* rec); bool add_committed_region(MemPointerRecord* rec); bool remove_uncommitted_region(MemPointerRecord* rec); bool remove_released_region(MemPointerRecord* rec); // split a reserved region to create a new memory region with specified base and size bool split_reserved_region(VMMemRegion* rgn, address new_rgn_addr, size_t new_rgn_size); private: bool insert_record(MemPointerRecord* rec); bool insert_record_after(MemPointerRecord* rec); bool insert_reserved_region(MemPointerRecord* rec); // reset current position inline void reset() { _pos = 0; } #ifdef ASSERT // check integrity of records on current reserved memory region. bool check_reserved_region() { VMMemRegion* reserved_region = (VMMemRegion*)current(); assert(reserved_region != NULL && reserved_region->is_reserved_region(), "Sanity check"); // all committed regions that follow current reserved region, should all // belong to the reserved region. VMMemRegion* next_region = (VMMemRegion*)next(); for (; next_region != NULL && next_region->is_committed_region(); next_region = (VMMemRegion*)next() ) { if(!reserved_region->contains_region(next_region)) { return false; } } return true; } virtual bool is_dup_pointer(const MemPointer* ptr1, const MemPointer* ptr2) const { VMMemRegion* p1 = (VMMemRegion*)ptr1; VMMemRegion* p2 = (VMMemRegion*)ptr2; if (p1->addr() != p2->addr()) return false; if ((p1->flags() & MemPointerRecord::tag_masks) != (p2->flags() & MemPointerRecord::tag_masks)) { return false; } // we do see multiple commit/uncommit on the same memory, it is ok return (p1->flags() & MemPointerRecord::tag_masks) == MemPointerRecord::tag_alloc || (p1->flags() & MemPointerRecord::tag_masks) == MemPointerRecord::tag_release; } #endif }; class MallocRecordIterator : public MemPointerArrayIterator { private: MemPointerArrayIteratorImpl _itr; public: MallocRecordIterator(MemPointerArray* arr) : _itr(arr) { } virtual MemPointer* current() const { #ifdef ASSERT MemPointer* cur_rec = _itr.current(); if (cur_rec != NULL) { MemPointer* prev_rec = _itr.peek_prev(); MemPointer* next_rec = _itr.peek_next(); assert(prev_rec == NULL || prev_rec->addr() < cur_rec->addr(), "Sorting order"); assert(next_rec == NULL || next_rec->addr() > cur_rec->addr(), "Sorting order"); } #endif return _itr.current(); } virtual MemPointer* next() { MemPointerRecord* next_rec = (MemPointerRecord*)_itr.next(); // arena memory record is a special case, which we have to compare // sequence number against its associated arena record. if (next_rec != NULL && next_rec->is_arena_memory_record()) { MemPointerRecord* prev_rec = (MemPointerRecord*)_itr.peek_prev(); // if there is an associated arena record, it has to be previous // record because of sorting order (by address) - NMT generates a pseudo address // for arena's size record by offsetting arena's address, that guarantees // the order of arena record and it's size record. if (prev_rec != NULL && prev_rec->is_arena_record() && next_rec->is_memory_record_of_arena(prev_rec)) { if (prev_rec->seq() > next_rec->seq()) { // Skip this arena memory record // Two scenarios: // - if the arena record is an allocation record, this early // size record must be leftover by previous arena, // and the last size record should have size = 0. // - if the arena record is a deallocation record, this // size record should be its cleanup record, which should // also have size = 0. In other world, arena alway reset // its size before gone (see Arena's destructor) assert(next_rec->size() == 0, "size not reset"); return _itr.next(); } else { assert(prev_rec->is_allocation_record(), "Arena size record ahead of allocation record"); } } } return next_rec; } MemPointer* peek_next() const { ShouldNotReachHere(); return NULL; } MemPointer* peek_prev() const { ShouldNotReachHere(); return NULL; } void remove() { ShouldNotReachHere(); } bool insert(MemPointer* ptr) { ShouldNotReachHere(); return false; } bool insert_after(MemPointer* ptr) { ShouldNotReachHere(); return false; } }; // collapse duplicated records. Eliminating duplicated records here, is much // cheaper than during promotion phase. However, it does have limitation - it // can only eliminate duplicated records within the generation, there are // still chances seeing duplicated records during promotion. // We want to use the record with higher sequence number, because it has // more accurate callsite pc. class VMRecordIterator : public MemPointerArrayIterator { private: MemPointerArrayIteratorImpl _itr; public: VMRecordIterator(MemPointerArray* arr) : _itr(arr) { MemPointerRecord* cur = (MemPointerRecord*)_itr.current(); MemPointerRecord* next = (MemPointerRecord*)_itr.peek_next(); while (next != NULL) { assert(cur != NULL, "Sanity check"); assert(((SeqMemPointerRecord*)next)->seq() > ((SeqMemPointerRecord*)cur)->seq(), "pre-sort order"); if (is_duplicated_record(cur, next)) { _itr.next(); next = (MemPointerRecord*)_itr.peek_next(); } else { break; } } } virtual MemPointer* current() const { return _itr.current(); } // get next record, but skip the duplicated records virtual MemPointer* next() { MemPointerRecord* cur = (MemPointerRecord*)_itr.next(); MemPointerRecord* next = (MemPointerRecord*)_itr.peek_next(); while (next != NULL) { assert(cur != NULL, "Sanity check"); assert(((SeqMemPointerRecord*)next)->seq() > ((SeqMemPointerRecord*)cur)->seq(), "pre-sort order"); if (is_duplicated_record(cur, next)) { _itr.next(); cur = next; next = (MemPointerRecord*)_itr.peek_next(); } else { break; } } return cur; } MemPointer* peek_next() const { ShouldNotReachHere(); return NULL; } MemPointer* peek_prev() const { ShouldNotReachHere(); return NULL; } void remove() { ShouldNotReachHere(); } bool insert(MemPointer* ptr) { ShouldNotReachHere(); return false; } bool insert_after(MemPointer* ptr) { ShouldNotReachHere(); return false; } private: bool is_duplicated_record(MemPointerRecord* p1, MemPointerRecord* p2) const { bool ret = (p1->addr() == p2->addr() && p1->size() == p2->size() && p1->flags() == p2->flags()); assert(!(ret && FLAGS_TO_MEMORY_TYPE(p1->flags()) == mtThreadStack), "dup on stack record"); return ret; } }; class StagingArea VALUE_OBJ_CLASS_SPEC { private: MemPointerArray* _malloc_data; MemPointerArray* _vm_data; public: StagingArea() : _malloc_data(NULL), _vm_data(NULL) { init(); } ~StagingArea() { if (_malloc_data != NULL) delete _malloc_data; if (_vm_data != NULL) delete _vm_data; } MallocRecordIterator malloc_record_walker() { return MallocRecordIterator(malloc_data()); } VMRecordIterator virtual_memory_record_walker(); bool init(); void clear() { assert(_malloc_data != NULL && _vm_data != NULL, "Just check"); _malloc_data->shrink(); _malloc_data->clear(); _vm_data->clear(); } inline MemPointerArray* malloc_data() { return _malloc_data; } inline MemPointerArray* vm_data() { return _vm_data; } }; class MemBaseline; class MemSnapshot : public CHeapObj<mtNMT> { private: // the following two arrays contain records of all known lived memory blocks // live malloc-ed memory pointers MemPointerArray* _alloc_ptrs; // live virtual memory pointers MemPointerArray* _vm_ptrs; StagingArea _staging_area; // the lock to protect this snapshot Monitor* _lock; // the number of instance classes int _number_of_classes; NOT_PRODUCT(size_t _untracked_count;) friend class MemBaseline; public: MemSnapshot(); virtual ~MemSnapshot(); // if we are running out of native memory bool out_of_memory() { return (_alloc_ptrs == NULL || _staging_area.malloc_data() == NULL || _staging_area.vm_data() == NULL || _vm_ptrs == NULL || _lock == NULL || _alloc_ptrs->out_of_memory() || _vm_ptrs->out_of_memory()); } // merge a per-thread memory recorder into staging area bool merge(MemRecorder* rec); // promote staged data to snapshot bool promote(int number_of_classes); int number_of_classes() const { return _number_of_classes; } void wait(long timeout) { assert(_lock != NULL, "Just check"); MonitorLockerEx locker(_lock); locker.wait(true, timeout); } NOT_PRODUCT(void print_snapshot_stats(outputStream* st);) NOT_PRODUCT(void check_staging_data();) NOT_PRODUCT(void check_malloc_pointers();) NOT_PRODUCT(bool has_allocation_record(address addr);) // dump all virtual memory pointers in snapshot DEBUG_ONLY( void dump_all_vm_pointers();) private: // copy sequenced pointer from src to dest void copy_seq_pointer(MemPointerRecord* dest, const MemPointerRecord* src); // assign a sequenced pointer to non-sequenced pointer void assign_pointer(MemPointerRecord*dest, const MemPointerRecord* src); bool promote_malloc_records(MemPointerArrayIterator* itr); bool promote_virtual_memory_records(MemPointerArrayIterator* itr); }; #endif // SHARE_VM_SERVICES_MEM_SNAPSHOT_HPP Other Java examples (source code examples)Here is a short list of links related to this Java memSnapshot.hpp source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.