|
Java example source code file (workgroup.cpp)
The workgroup.cpp Java example source code/* * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "memory/allocation.hpp" #include "memory/allocation.inline.hpp" #include "runtime/os.hpp" #include "utilities/workgroup.hpp" // Definitions of WorkGang methods. AbstractWorkGang::AbstractWorkGang(const char* name, bool are_GC_task_threads, bool are_ConcurrentGC_threads) : _name(name), _are_GC_task_threads(are_GC_task_threads), _are_ConcurrentGC_threads(are_ConcurrentGC_threads) { assert(!(are_GC_task_threads && are_ConcurrentGC_threads), "They cannot both be STW GC and Concurrent threads" ); // Other initialization. _monitor = new Monitor(/* priority */ Mutex::leaf, /* name */ "WorkGroup monitor", /* allow_vm_block */ are_GC_task_threads); assert(monitor() != NULL, "Failed to allocate monitor"); _terminate = false; _task = NULL; _sequence_number = 0; _started_workers = 0; _finished_workers = 0; } WorkGang::WorkGang(const char* name, uint workers, bool are_GC_task_threads, bool are_ConcurrentGC_threads) : AbstractWorkGang(name, are_GC_task_threads, are_ConcurrentGC_threads) { _total_workers = workers; } GangWorker* WorkGang::allocate_worker(uint which) { GangWorker* new_worker = new GangWorker(this, which); return new_worker; } // The current implementation will exit if the allocation // of any worker fails. Still, return a boolean so that // a future implementation can possibly do a partial // initialization of the workers and report such to the // caller. bool WorkGang::initialize_workers() { if (TraceWorkGang) { tty->print_cr("Constructing work gang %s with %d threads", name(), total_workers()); } _gang_workers = NEW_C_HEAP_ARRAY(GangWorker*, total_workers(), mtInternal); if (gang_workers() == NULL) { vm_exit_out_of_memory(0, OOM_MALLOC_ERROR, "Cannot create GangWorker array."); return false; } os::ThreadType worker_type; if (are_ConcurrentGC_threads()) { worker_type = os::cgc_thread; } else { worker_type = os::pgc_thread; } for (uint worker = 0; worker < total_workers(); worker += 1) { GangWorker* new_worker = allocate_worker(worker); assert(new_worker != NULL, "Failed to allocate GangWorker"); _gang_workers[worker] = new_worker; if (new_worker == NULL || !os::create_thread(new_worker, worker_type)) { vm_exit_out_of_memory(0, OOM_MALLOC_ERROR, "Cannot create worker GC thread. Out of system resources."); return false; } if (!DisableStartThread) { os::start_thread(new_worker); } } return true; } AbstractWorkGang::~AbstractWorkGang() { if (TraceWorkGang) { tty->print_cr("Destructing work gang %s", name()); } stop(); // stop all the workers for (uint worker = 0; worker < total_workers(); worker += 1) { delete gang_worker(worker); } delete gang_workers(); delete monitor(); } GangWorker* AbstractWorkGang::gang_worker(uint i) const { // Array index bounds checking. GangWorker* result = NULL; assert(gang_workers() != NULL, "No workers for indexing"); assert(((i >= 0) && (i < total_workers())), "Worker index out of bounds"); result = _gang_workers[i]; assert(result != NULL, "Indexing to null worker"); return result; } void WorkGang::run_task(AbstractGangTask* task) { run_task(task, total_workers()); } void WorkGang::run_task(AbstractGangTask* task, uint no_of_parallel_workers) { task->set_for_termination(no_of_parallel_workers); // This thread is executed by the VM thread which does not block // on ordinary MutexLocker's. MutexLockerEx ml(monitor(), Mutex::_no_safepoint_check_flag); if (TraceWorkGang) { tty->print_cr("Running work gang %s task %s", name(), task->name()); } // Tell all the workers to run a task. assert(task != NULL, "Running a null task"); // Initialize. _task = task; _sequence_number += 1; _started_workers = 0; _finished_workers = 0; // Tell the workers to get to work. monitor()->notify_all(); // Wait for them to be finished while (finished_workers() < no_of_parallel_workers) { if (TraceWorkGang) { tty->print_cr("Waiting in work gang %s: %d/%d finished sequence %d", name(), finished_workers(), no_of_parallel_workers, _sequence_number); } monitor()->wait(/* no_safepoint_check */ true); } _task = NULL; if (TraceWorkGang) { tty->print_cr("\nFinished work gang %s: %d/%d sequence %d", name(), finished_workers(), no_of_parallel_workers, _sequence_number); Thread* me = Thread::current(); tty->print_cr(" T: 0x%x VM_thread: %d", me, me->is_VM_thread()); } } void FlexibleWorkGang::run_task(AbstractGangTask* task) { // If active_workers() is passed, _finished_workers // must only be incremented for workers that find non_null // work (as opposed to all those that just check that the // task is not null). WorkGang::run_task(task, (uint) active_workers()); } void AbstractWorkGang::stop() { // Tell all workers to terminate, then wait for them to become inactive. MutexLockerEx ml(monitor(), Mutex::_no_safepoint_check_flag); if (TraceWorkGang) { tty->print_cr("Stopping work gang %s task %s", name(), task()->name()); } _task = NULL; _terminate = true; monitor()->notify_all(); while (finished_workers() < active_workers()) { if (TraceWorkGang) { tty->print_cr("Waiting in work gang %s: %d/%d finished", name(), finished_workers(), active_workers()); } monitor()->wait(/* no_safepoint_check */ true); } } void AbstractWorkGang::internal_worker_poll(WorkData* data) const { assert(monitor()->owned_by_self(), "worker_poll is an internal method"); assert(data != NULL, "worker data is null"); data->set_terminate(terminate()); data->set_task(task()); data->set_sequence_number(sequence_number()); } void AbstractWorkGang::internal_note_start() { assert(monitor()->owned_by_self(), "note_finish is an internal method"); _started_workers += 1; } void AbstractWorkGang::internal_note_finish() { assert(monitor()->owned_by_self(), "note_finish is an internal method"); _finished_workers += 1; } void AbstractWorkGang::print_worker_threads_on(outputStream* st) const { uint num_thr = total_workers(); for (uint i = 0; i < num_thr; i++) { gang_worker(i)->print_on(st); st->cr(); } } void AbstractWorkGang::threads_do(ThreadClosure* tc) const { assert(tc != NULL, "Null ThreadClosure"); uint num_thr = total_workers(); for (uint i = 0; i < num_thr; i++) { tc->do_thread(gang_worker(i)); } } // GangWorker methods. GangWorker::GangWorker(AbstractWorkGang* gang, uint id) { _gang = gang; set_id(id); set_name("Gang worker#%d (%s)", id, gang->name()); } void GangWorker::run() { initialize(); loop(); } void GangWorker::initialize() { this->initialize_thread_local_storage(); this->record_stack_base_and_size(); assert(_gang != NULL, "No gang to run in"); os::set_priority(this, NearMaxPriority); if (TraceWorkGang) { tty->print_cr("Running gang worker for gang %s id %d", gang()->name(), id()); } // The VM thread should not execute here because MutexLocker's are used // as (opposed to MutexLockerEx's). assert(!Thread::current()->is_VM_thread(), "VM thread should not be part" " of a work gang"); } void GangWorker::loop() { int previous_sequence_number = 0; Monitor* gang_monitor = gang()->monitor(); for ( ; /* !terminate() */; ) { WorkData data; int part; // Initialized below. { // Grab the gang mutex. MutexLocker ml(gang_monitor); // Wait for something to do. // Polling outside the while { wait } avoids missed notifies // in the outer loop. gang()->internal_worker_poll(&data); if (TraceWorkGang) { tty->print("Polled outside for work in gang %s worker %d", gang()->name(), id()); tty->print(" terminate: %s", data.terminate() ? "true" : "false"); tty->print(" sequence: %d (prev: %d)", data.sequence_number(), previous_sequence_number); if (data.task() != NULL) { tty->print(" task: %s", data.task()->name()); } else { tty->print(" task: NULL"); } tty->cr(); } for ( ; /* break or return */; ) { // Terminate if requested. if (data.terminate()) { gang()->internal_note_finish(); gang_monitor->notify_all(); return; } // Check for new work. if ((data.task() != NULL) && (data.sequence_number() != previous_sequence_number)) { if (gang()->needs_more_workers()) { gang()->internal_note_start(); gang_monitor->notify_all(); part = gang()->started_workers() - 1; break; } } // Nothing to do. gang_monitor->wait(/* no_safepoint_check */ true); gang()->internal_worker_poll(&data); if (TraceWorkGang) { tty->print("Polled inside for work in gang %s worker %d", gang()->name(), id()); tty->print(" terminate: %s", data.terminate() ? "true" : "false"); tty->print(" sequence: %d (prev: %d)", data.sequence_number(), previous_sequence_number); if (data.task() != NULL) { tty->print(" task: %s", data.task()->name()); } else { tty->print(" task: NULL"); } tty->cr(); } } // Drop gang mutex. } if (TraceWorkGang) { tty->print("Work for work gang %s id %d task %s part %d", gang()->name(), id(), data.task()->name(), part); } assert(data.task() != NULL, "Got null task"); data.task()->work(part); { if (TraceWorkGang) { tty->print("Finish for work gang %s id %d task %s part %d", gang()->name(), id(), data.task()->name(), part); } // Grab the gang mutex. MutexLocker ml(gang_monitor); gang()->internal_note_finish(); // Tell the gang you are done. gang_monitor->notify_all(); // Drop the gang mutex. } previous_sequence_number = data.sequence_number(); } } bool GangWorker::is_GC_task_thread() const { return gang()->are_GC_task_threads(); } bool GangWorker::is_ConcurrentGC_thread() const { return gang()->are_ConcurrentGC_threads(); } void GangWorker::print_on(outputStream* st) const { st->print("\"%s\" ", name()); Thread::print_on(st); st->cr(); } // Printing methods const char* AbstractWorkGang::name() const { return _name; } #ifndef PRODUCT const char* AbstractGangTask::name() const { return _name; } #endif /* PRODUCT */ // FlexibleWorkGang // *** WorkGangBarrierSync WorkGangBarrierSync::WorkGangBarrierSync() : _monitor(Mutex::safepoint, "work gang barrier sync", true), _n_workers(0), _n_completed(0), _should_reset(false) { } WorkGangBarrierSync::WorkGangBarrierSync(uint n_workers, const char* name) : _monitor(Mutex::safepoint, name, true), _n_workers(n_workers), _n_completed(0), _should_reset(false) { } void WorkGangBarrierSync::set_n_workers(uint n_workers) { _n_workers = n_workers; _n_completed = 0; _should_reset = false; } void WorkGangBarrierSync::enter() { MutexLockerEx x(monitor(), Mutex::_no_safepoint_check_flag); if (should_reset()) { // The should_reset() was set and we are the first worker to enter // the sync barrier. We will zero the n_completed() count which // effectively resets the barrier. zero_completed(); set_should_reset(false); } inc_completed(); if (n_completed() == n_workers()) { // At this point we would like to reset the barrier to be ready in // case it is used again. However, we cannot set n_completed() to // 0, even after the notify_all(), given that some other workers // might still be waiting for n_completed() to become == // n_workers(). So, if we set n_completed() to 0, those workers // will get stuck (as they will wake up, see that n_completed() != // n_workers() and go back to sleep). Instead, we raise the // should_reset() flag and the barrier will be reset the first // time a worker enters it again. set_should_reset(true); monitor()->notify_all(); } else { while (n_completed() != n_workers()) { monitor()->wait(/* no_safepoint_check */ true); } } } // SubTasksDone functions. SubTasksDone::SubTasksDone(uint n) : _n_tasks(n), _n_threads(1), _tasks(NULL) { _tasks = NEW_C_HEAP_ARRAY(uint, n, mtInternal); guarantee(_tasks != NULL, "alloc failure"); clear(); } bool SubTasksDone::valid() { return _tasks != NULL; } void SubTasksDone::set_n_threads(uint t) { assert(_claimed == 0 || _threads_completed == _n_threads, "should not be called while tasks are being processed!"); _n_threads = (t == 0 ? 1 : t); } void SubTasksDone::clear() { for (uint i = 0; i < _n_tasks; i++) { _tasks[i] = 0; } _threads_completed = 0; #ifdef ASSERT _claimed = 0; #endif } bool SubTasksDone::is_task_claimed(uint t) { assert(0 <= t && t < _n_tasks, "bad task id."); uint old = _tasks[t]; if (old == 0) { old = Atomic::cmpxchg(1, &_tasks[t], 0); } assert(_tasks[t] == 1, "What else?"); bool res = old != 0; #ifdef ASSERT if (!res) { assert(_claimed < _n_tasks, "Too many tasks claimed; missing clear?"); Atomic::inc((volatile jint*) &_claimed); } #endif return res; } void SubTasksDone::all_tasks_completed() { jint observed = _threads_completed; jint old; do { old = observed; observed = Atomic::cmpxchg(old+1, &_threads_completed, old); } while (observed != old); // If this was the last thread checking in, clear the tasks. if (observed+1 == (jint)_n_threads) clear(); } SubTasksDone::~SubTasksDone() { if (_tasks != NULL) FREE_C_HEAP_ARRAY(jint, _tasks, mtInternal); } // *** SequentialSubTasksDone void SequentialSubTasksDone::clear() { _n_tasks = _n_claimed = 0; _n_threads = _n_completed = 0; } bool SequentialSubTasksDone::valid() { return _n_threads > 0; } bool SequentialSubTasksDone::is_task_claimed(uint& t) { uint* n_claimed_ptr = &_n_claimed; t = *n_claimed_ptr; while (t < _n_tasks) { jint res = Atomic::cmpxchg(t+1, n_claimed_ptr, t); if (res == (jint)t) { return false; } t = *n_claimed_ptr; } return true; } bool SequentialSubTasksDone::all_tasks_completed() { uint* n_completed_ptr = &_n_completed; uint complete = *n_completed_ptr; while (true) { uint res = Atomic::cmpxchg(complete+1, n_completed_ptr, complete); if (res == complete) { break; } complete = res; } if (complete+1 == _n_threads) { clear(); return true; } return false; } bool FreeIdSet::_stat_init = false; FreeIdSet* FreeIdSet::_sets[NSets]; bool FreeIdSet::_safepoint; FreeIdSet::FreeIdSet(int sz, Monitor* mon) : _sz(sz), _mon(mon), _hd(0), _waiters(0), _index(-1), _claimed(0) { _ids = NEW_C_HEAP_ARRAY(int, sz, mtInternal); for (int i = 0; i < sz; i++) _ids[i] = i+1; _ids[sz-1] = end_of_list; // end of list. if (_stat_init) { for (int j = 0; j < NSets; j++) _sets[j] = NULL; _stat_init = true; } // Add to sets. (This should happen while the system is still single-threaded.) for (int j = 0; j < NSets; j++) { if (_sets[j] == NULL) { _sets[j] = this; _index = j; break; } } guarantee(_index != -1, "Too many FreeIdSets in use!"); } FreeIdSet::~FreeIdSet() { _sets[_index] = NULL; FREE_C_HEAP_ARRAY(int, _ids, mtInternal); } void FreeIdSet::set_safepoint(bool b) { _safepoint = b; if (b) { for (int j = 0; j < NSets; j++) { if (_sets[j] != NULL && _sets[j]->_waiters > 0) { Monitor* mon = _sets[j]->_mon; mon->lock_without_safepoint_check(); mon->notify_all(); mon->unlock(); } } } } #define FID_STATS 0 int FreeIdSet::claim_par_id() { #if FID_STATS thread_t tslf = thr_self(); tty->print("claim_par_id[%d]: sz = %d, claimed = %d\n", tslf, _sz, _claimed); #endif MutexLockerEx x(_mon, Mutex::_no_safepoint_check_flag); while (!_safepoint && _hd == end_of_list) { _waiters++; #if FID_STATS if (_waiters > 5) { tty->print("claim_par_id waiting[%d]: %d waiters, %d claimed.\n", tslf, _waiters, _claimed); } #endif _mon->wait(Mutex::_no_safepoint_check_flag); _waiters--; } if (_hd == end_of_list) { #if FID_STATS tty->print("claim_par_id[%d]: returning EOL.\n", tslf); #endif return -1; } else { int res = _hd; _hd = _ids[res]; _ids[res] = claimed; // For debugging. _claimed++; #if FID_STATS tty->print("claim_par_id[%d]: returning %d, claimed = %d.\n", tslf, res, _claimed); #endif return res; } } bool FreeIdSet::claim_perm_id(int i) { assert(0 <= i && i < _sz, "Out of range."); MutexLockerEx x(_mon, Mutex::_no_safepoint_check_flag); int prev = end_of_list; int cur = _hd; while (cur != end_of_list) { if (cur == i) { if (prev == end_of_list) { _hd = _ids[cur]; } else { _ids[prev] = _ids[cur]; } _ids[cur] = claimed; _claimed++; return true; } else { prev = cur; cur = _ids[cur]; } } return false; } void FreeIdSet::release_par_id(int id) { MutexLockerEx x(_mon, Mutex::_no_safepoint_check_flag); assert(_ids[id] == claimed, "Precondition."); _ids[id] = _hd; _hd = id; _claimed--; #if FID_STATS tty->print("[%d] release_par_id(%d), waiters =%d, claimed = %d.\n", thr_self(), id, _waiters, _claimed); #endif if (_waiters > 0) // Notify all would be safer, but this is OK, right? _mon->notify_all(); } Other Java examples (source code examples)Here is a short list of links related to this Java workgroup.cpp source code file: |
... this post is sponsored by my books ... | |
#1 New Release! |
FP Best Seller |
Copyright 1998-2024 Alvin Alexander, alvinalexander.com
All Rights Reserved.
A percentage of advertising revenue from
pages under the /java/jwarehouse
URI on this website is
paid back to open source projects.