alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (LinearGradientPaintContext.java)

This example Java source code file (LinearGradientPaintContext.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

affinetransform, awt, colormodel, colorspacetype, cyclemethod, geometry, image, lineargradientpaintcontext, multiplegradientpaintcontext, point2d, rectangle2d, renderinghints

The LinearGradientPaintContext.java Java example source code

/*
 * Copyright (c) 2006, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package java.awt;

import java.awt.MultipleGradientPaint.CycleMethod;
import java.awt.MultipleGradientPaint.ColorSpaceType;
import java.awt.geom.AffineTransform;
import java.awt.geom.Point2D;
import java.awt.geom.Rectangle2D;
import java.awt.image.ColorModel;

/**
 * Provides the actual implementation for the LinearGradientPaint.
 * This is where the pixel processing is done.
 *
 * @see java.awt.LinearGradientPaint
 * @see java.awt.PaintContext
 * @see java.awt.Paint
 * @author Nicholas Talian, Vincent Hardy, Jim Graham, Jerry Evans
 */
final class LinearGradientPaintContext extends MultipleGradientPaintContext {

    /**
     * The following invariants are used to process the gradient value from
     * a device space coordinate, (X, Y):
     *     g(X, Y) = dgdX*X + dgdY*Y + gc
     */
    private float dgdX, dgdY, gc;

    /**
     * Constructor for LinearGradientPaintContext.
     *
     * @param paint the {@code LinearGradientPaint} from which this context
     *              is created
     * @param cm {@code ColorModel} that receives
     *           the <code>Paint data. This is used only as a hint.
     * @param deviceBounds the device space bounding box of the
     *                     graphics primitive being rendered
     * @param userBounds the user space bounding box of the
     *                   graphics primitive being rendered
     * @param t the {@code AffineTransform} from user
     *          space into device space (gradientTransform should be
     *          concatenated with this)
     * @param hints the hints that the context object uses to choose
     *              between rendering alternatives
     * @param start gradient start point, in user space
     * @param end gradient end point, in user space
     * @param fractions the fractions specifying the gradient distribution
     * @param colors the gradient colors
     * @param cycleMethod either NO_CYCLE, REFLECT, or REPEAT
     * @param colorSpace which colorspace to use for interpolation,
     *                   either SRGB or LINEAR_RGB
     */
    LinearGradientPaintContext(LinearGradientPaint paint,
                               ColorModel cm,
                               Rectangle deviceBounds,
                               Rectangle2D userBounds,
                               AffineTransform t,
                               RenderingHints hints,
                               Point2D start,
                               Point2D end,
                               float[] fractions,
                               Color[] colors,
                               CycleMethod cycleMethod,
                               ColorSpaceType colorSpace)
    {
        super(paint, cm, deviceBounds, userBounds, t, hints, fractions,
              colors, cycleMethod, colorSpace);

        // A given point in the raster should take on the same color as its
        // projection onto the gradient vector.
        // Thus, we want the projection of the current position vector
        // onto the gradient vector, then normalized with respect to the
        // length of the gradient vector, giving a value which can be mapped
        // into the range 0-1.
        //    projection =
        //        currentVector dot gradientVector / length(gradientVector)
        //    normalized = projection / length(gradientVector)

        float startx = (float)start.getX();
        float starty = (float)start.getY();
        float endx = (float)end.getX();
        float endy = (float)end.getY();

        float dx = endx - startx;  // change in x from start to end
        float dy = endy - starty;  // change in y from start to end
        float dSq = dx*dx + dy*dy; // total distance squared

        // avoid repeated calculations by doing these divides once
        float constX = dx/dSq;
        float constY = dy/dSq;

        // incremental change along gradient for +x
        dgdX = a00*constX + a10*constY;
        // incremental change along gradient for +y
        dgdY = a01*constX + a11*constY;

        // constant, incorporates the translation components from the matrix
        gc = (a02-startx)*constX + (a12-starty)*constY;
    }

    /**
     * Return a Raster containing the colors generated for the graphics
     * operation.  This is where the area is filled with colors distributed
     * linearly.
     *
     * @param x,y,w,h the area in device space for which colors are
     * generated.
     */
    protected void fillRaster(int[] pixels, int off, int adjust,
                              int x, int y, int w, int h)
    {
        // current value for row gradients
        float g = 0;

        // used to end iteration on rows
        int rowLimit = off + w;

        // constant which can be pulled out of the inner loop
        float initConst = (dgdX*x) + gc;

        for (int i = 0; i < h; i++) { // for every row

            // initialize current value to be start
            g = initConst + dgdY*(y+i);

            while (off < rowLimit) { // for every pixel in this row
                // get the color
                pixels[off++] = indexIntoGradientsArrays(g);

                // incremental change in g
                g += dgdX;
            }

            // change in off from row to row
            off += adjust;

            //rowlimit is width + offset
            rowLimit = off + w;
        }
    }
}

Other Java examples (source code examples)

Here is a short list of links related to this Java LinearGradientPaintContext.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.