alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (ArcIterator.java)

This example Java source code file (ArcIterator.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

affinetransform, arciterator, nosuchelementexception, pathiterator, seg_close, seg_cubicto, seg_lineto, seg_moveto, util, wind_non_zero

The ArcIterator.java Java example source code

/*
 * Copyright (c) 1997, 2003, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package java.awt.geom;

import java.util.*;

/**
 * A utility class to iterate over the path segments of an arc
 * through the PathIterator interface.
 *
 * @author      Jim Graham
 */
class ArcIterator implements PathIterator {
    double x, y, w, h, angStRad, increment, cv;
    AffineTransform affine;
    int index;
    int arcSegs;
    int lineSegs;

    ArcIterator(Arc2D a, AffineTransform at) {
        this.w = a.getWidth() / 2;
        this.h = a.getHeight() / 2;
        this.x = a.getX() + w;
        this.y = a.getY() + h;
        this.angStRad = -Math.toRadians(a.getAngleStart());
        this.affine = at;
        double ext = -a.getAngleExtent();
        if (ext >= 360.0 || ext <= -360) {
            arcSegs = 4;
            this.increment = Math.PI / 2;
            // btan(Math.PI / 2);
            this.cv = 0.5522847498307933;
            if (ext < 0) {
                increment = -increment;
                cv = -cv;
            }
        } else {
            arcSegs = (int) Math.ceil(Math.abs(ext) / 90.0);
            this.increment = Math.toRadians(ext / arcSegs);
            this.cv = btan(increment);
            if (cv == 0) {
                arcSegs = 0;
            }
        }
        switch (a.getArcType()) {
        case Arc2D.OPEN:
            lineSegs = 0;
            break;
        case Arc2D.CHORD:
            lineSegs = 1;
            break;
        case Arc2D.PIE:
            lineSegs = 2;
            break;
        }
        if (w < 0 || h < 0) {
            arcSegs = lineSegs = -1;
        }
    }

    /**
     * Return the winding rule for determining the insideness of the
     * path.
     * @see #WIND_EVEN_ODD
     * @see #WIND_NON_ZERO
     */
    public int getWindingRule() {
        return WIND_NON_ZERO;
    }

    /**
     * Tests if there are more points to read.
     * @return true if there are more points to read
     */
    public boolean isDone() {
        return index > arcSegs + lineSegs;
    }

    /**
     * Moves the iterator to the next segment of the path forwards
     * along the primary direction of traversal as long as there are
     * more points in that direction.
     */
    public void next() {
        index++;
    }

    /*
     * btan computes the length (k) of the control segments at
     * the beginning and end of a cubic bezier that approximates
     * a segment of an arc with extent less than or equal to
     * 90 degrees.  This length (k) will be used to generate the
     * 2 bezier control points for such a segment.
     *
     *   Assumptions:
     *     a) arc is centered on 0,0 with radius of 1.0
     *     b) arc extent is less than 90 degrees
     *     c) control points should preserve tangent
     *     d) control segments should have equal length
     *
     *   Initial data:
     *     start angle: ang1
     *     end angle:   ang2 = ang1 + extent
     *     start point: P1 = (x1, y1) = (cos(ang1), sin(ang1))
     *     end point:   P4 = (x4, y4) = (cos(ang2), sin(ang2))
     *
     *   Control points:
     *     P2 = (x2, y2)
     *     | x2 = x1 - k * sin(ang1) = cos(ang1) - k * sin(ang1)
     *     | y2 = y1 + k * cos(ang1) = sin(ang1) + k * cos(ang1)
     *
     *     P3 = (x3, y3)
     *     | x3 = x4 + k * sin(ang2) = cos(ang2) + k * sin(ang2)
     *     | y3 = y4 - k * cos(ang2) = sin(ang2) - k * cos(ang2)
     *
     * The formula for this length (k) can be found using the
     * following derivations:
     *
     *   Midpoints:
     *     a) bezier (t = 1/2)
     *        bPm = P1 * (1-t)^3 +
     *              3 * P2 * t * (1-t)^2 +
     *              3 * P3 * t^2 * (1-t) +
     *              P4 * t^3 =
     *            = (P1 + 3P2 + 3P3 + P4)/8
     *
     *     b) arc
     *        aPm = (cos((ang1 + ang2)/2), sin((ang1 + ang2)/2))
     *
     *   Let angb = (ang2 - ang1)/2; angb is half of the angle
     *   between ang1 and ang2.
     *
     *   Solve the equation bPm == aPm
     *
     *     a) For xm coord:
     *        x1 + 3*x2 + 3*x3 + x4 = 8*cos((ang1 + ang2)/2)
     *
     *        cos(ang1) + 3*cos(ang1) - 3*k*sin(ang1) +
     *        3*cos(ang2) + 3*k*sin(ang2) + cos(ang2) =
     *        = 8*cos((ang1 + ang2)/2)
     *
     *        4*cos(ang1) + 4*cos(ang2) + 3*k*(sin(ang2) - sin(ang1)) =
     *        = 8*cos((ang1 + ang2)/2)
     *
     *        8*cos((ang1 + ang2)/2)*cos((ang2 - ang1)/2) +
     *        6*k*sin((ang2 - ang1)/2)*cos((ang1 + ang2)/2) =
     *        = 8*cos((ang1 + ang2)/2)
     *
     *        4*cos(angb) + 3*k*sin(angb) = 4
     *
     *        k = 4 / 3 * (1 - cos(angb)) / sin(angb)
     *
     *     b) For ym coord we derive the same formula.
     *
     * Since this formula can generate "NaN" values for small
     * angles, we will derive a safer form that does not involve
     * dividing by very small values:
     *     (1 - cos(angb)) / sin(angb) =
     *     = (1 - cos(angb))*(1 + cos(angb)) / sin(angb)*(1 + cos(angb)) =
     *     = (1 - cos(angb)^2) / sin(angb)*(1 + cos(angb)) =
     *     = sin(angb)^2 / sin(angb)*(1 + cos(angb)) =
     *     = sin(angb) / (1 + cos(angb))
     *
     */
    private static double btan(double increment) {
        increment /= 2.0;
        return 4.0 / 3.0 * Math.sin(increment) / (1.0 + Math.cos(increment));
    }

    /**
     * Returns the coordinates and type of the current path segment in
     * the iteration.
     * The return value is the path segment type:
     * SEG_MOVETO, SEG_LINETO, SEG_QUADTO, SEG_CUBICTO, or SEG_CLOSE.
     * A float array of length 6 must be passed in and may be used to
     * store the coordinates of the point(s).
     * Each point is stored as a pair of float x,y coordinates.
     * SEG_MOVETO and SEG_LINETO types will return one point,
     * SEG_QUADTO will return two points,
     * SEG_CUBICTO will return 3 points
     * and SEG_CLOSE will not return any points.
     * @see #SEG_MOVETO
     * @see #SEG_LINETO
     * @see #SEG_QUADTO
     * @see #SEG_CUBICTO
     * @see #SEG_CLOSE
     */
    public int currentSegment(float[] coords) {
        if (isDone()) {
            throw new NoSuchElementException("arc iterator out of bounds");
        }
        double angle = angStRad;
        if (index == 0) {
            coords[0] = (float) (x + Math.cos(angle) * w);
            coords[1] = (float) (y + Math.sin(angle) * h);
            if (affine != null) {
                affine.transform(coords, 0, coords, 0, 1);
            }
            return SEG_MOVETO;
        }
        if (index > arcSegs) {
            if (index == arcSegs + lineSegs) {
                return SEG_CLOSE;
            }
            coords[0] = (float) x;
            coords[1] = (float) y;
            if (affine != null) {
                affine.transform(coords, 0, coords, 0, 1);
            }
            return SEG_LINETO;
        }
        angle += increment * (index - 1);
        double relx = Math.cos(angle);
        double rely = Math.sin(angle);
        coords[0] = (float) (x + (relx - cv * rely) * w);
        coords[1] = (float) (y + (rely + cv * relx) * h);
        angle += increment;
        relx = Math.cos(angle);
        rely = Math.sin(angle);
        coords[2] = (float) (x + (relx + cv * rely) * w);
        coords[3] = (float) (y + (rely - cv * relx) * h);
        coords[4] = (float) (x + relx * w);
        coords[5] = (float) (y + rely * h);
        if (affine != null) {
            affine.transform(coords, 0, coords, 0, 3);
        }
        return SEG_CUBICTO;
    }

    /**
     * Returns the coordinates and type of the current path segment in
     * the iteration.
     * The return value is the path segment type:
     * SEG_MOVETO, SEG_LINETO, SEG_QUADTO, SEG_CUBICTO, or SEG_CLOSE.
     * A double array of length 6 must be passed in and may be used to
     * store the coordinates of the point(s).
     * Each point is stored as a pair of double x,y coordinates.
     * SEG_MOVETO and SEG_LINETO types will return one point,
     * SEG_QUADTO will return two points,
     * SEG_CUBICTO will return 3 points
     * and SEG_CLOSE will not return any points.
     * @see #SEG_MOVETO
     * @see #SEG_LINETO
     * @see #SEG_QUADTO
     * @see #SEG_CUBICTO
     * @see #SEG_CLOSE
     */
    public int currentSegment(double[] coords) {
        if (isDone()) {
            throw new NoSuchElementException("arc iterator out of bounds");
        }
        double angle = angStRad;
        if (index == 0) {
            coords[0] = x + Math.cos(angle) * w;
            coords[1] = y + Math.sin(angle) * h;
            if (affine != null) {
                affine.transform(coords, 0, coords, 0, 1);
            }
            return SEG_MOVETO;
        }
        if (index > arcSegs) {
            if (index == arcSegs + lineSegs) {
                return SEG_CLOSE;
            }
            coords[0] = x;
            coords[1] = y;
            if (affine != null) {
                affine.transform(coords, 0, coords, 0, 1);
            }
            return SEG_LINETO;
        }
        angle += increment * (index - 1);
        double relx = Math.cos(angle);
        double rely = Math.sin(angle);
        coords[0] = x + (relx - cv * rely) * w;
        coords[1] = y + (rely + cv * relx) * h;
        angle += increment;
        relx = Math.cos(angle);
        rely = Math.sin(angle);
        coords[2] = x + (relx + cv * rely) * w;
        coords[3] = y + (rely - cv * relx) * h;
        coords[4] = x + relx * w;
        coords[5] = y + rely * h;
        if (affine != null) {
            affine.transform(coords, 0, coords, 0, 3);
        }
        return SEG_CUBICTO;
    }
}

Other Java examples (source code examples)

Here is a short list of links related to this Java ArcIterator.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.