alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (FlatteningPathIterator.java)

This example Java source code file (FlatteningPathIterator.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

flatteningpathiterator, grow_size, illegalargumentexception, maximum, multiple, nosuchelementexception, seg_close, seg_cubicto, seg_lineto, seg_moveto, seg_quadto, square, the, true, util

The FlatteningPathIterator.java Java example source code

/*
 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package java.awt.geom;

import java.util.*;

/**
 * The <code>FlatteningPathIterator class returns a flattened view of
 * another {@link PathIterator} object.  Other {@link java.awt.Shape Shape}
 * classes can use this class to provide flattening behavior for their paths
 * without having to perform the interpolation calculations themselves.
 *
 * @author Jim Graham
 */
public class FlatteningPathIterator implements PathIterator {
    static final int GROW_SIZE = 24;    // Multiple of cubic & quad curve size

    PathIterator src;                   // The source iterator

    double squareflat;                  // Square of the flatness parameter
                                        // for testing against squared lengths

    int limit;                          // Maximum number of recursion levels

    double hold[] = new double[14];     // The cache of interpolated coords
                                        // Note that this must be long enough
                                        // to store a full cubic segment and
                                        // a relative cubic segment to avoid
                                        // aliasing when copying the coords
                                        // of a curve to the end of the array.
                                        // This is also serendipitously equal
                                        // to the size of a full quad segment
                                        // and 2 relative quad segments.

    double curx, cury;                  // The ending x,y of the last segment

    double movx, movy;                  // The x,y of the last move segment

    int holdType;                       // The type of the curve being held
                                        // for interpolation

    int holdEnd;                        // The index of the last curve segment
                                        // being held for interpolation

    int holdIndex;                      // The index of the curve segment
                                        // that was last interpolated.  This
                                        // is the curve segment ready to be
                                        // returned in the next call to
                                        // currentSegment().

    int levels[];                       // The recursion level at which
                                        // each curve being held in storage
                                        // was generated.

    int levelIndex;                     // The index of the entry in the
                                        // levels array of the curve segment
                                        // at the holdIndex

    boolean done;                       // True when iteration is done

    /**
     * Constructs a new <code>FlatteningPathIterator object that
     * flattens a path as it iterates over it.  The iterator does not
     * subdivide any curve read from the source iterator to more than
     * 10 levels of subdivision which yields a maximum of 1024 line
     * segments per curve.
     * @param src the original unflattened path being iterated over
     * @param flatness the maximum allowable distance between the
     * control points and the flattened curve
     */
    public FlatteningPathIterator(PathIterator src, double flatness) {
        this(src, flatness, 10);
    }

    /**
     * Constructs a new <code>FlatteningPathIterator object
     * that flattens a path as it iterates over it.
     * The <code>limit parameter allows you to control the
     * maximum number of recursive subdivisions that the iterator
     * can make before it assumes that the curve is flat enough
     * without measuring against the <code>flatness parameter.
     * The flattened iteration therefore never generates more than
     * a maximum of <code>(2^limit) line segments per curve.
     * @param src the original unflattened path being iterated over
     * @param flatness the maximum allowable distance between the
     * control points and the flattened curve
     * @param limit the maximum number of recursive subdivisions
     * allowed for any curved segment
     * @exception IllegalArgumentException if
     *          <code>flatness or limit
     *          is less than zero
     */
    public FlatteningPathIterator(PathIterator src, double flatness,
                                  int limit) {
        if (flatness < 0.0) {
            throw new IllegalArgumentException("flatness must be >= 0");
        }
        if (limit < 0) {
            throw new IllegalArgumentException("limit must be >= 0");
        }
        this.src = src;
        this.squareflat = flatness * flatness;
        this.limit = limit;
        this.levels = new int[limit + 1];
        // prime the first path segment
        next(false);
    }

    /**
     * Returns the flatness of this iterator.
     * @return the flatness of this <code>FlatteningPathIterator.
     */
    public double getFlatness() {
        return Math.sqrt(squareflat);
    }

    /**
     * Returns the recursion limit of this iterator.
     * @return the recursion limit of this
     * <code>FlatteningPathIterator.
     */
    public int getRecursionLimit() {
        return limit;
    }

    /**
     * Returns the winding rule for determining the interior of the
     * path.
     * @return the winding rule of the original unflattened path being
     * iterated over.
     * @see PathIterator#WIND_EVEN_ODD
     * @see PathIterator#WIND_NON_ZERO
     */
    public int getWindingRule() {
        return src.getWindingRule();
    }

    /**
     * Tests if the iteration is complete.
     * @return <code>true if all the segments have
     * been read; <code>false otherwise.
     */
    public boolean isDone() {
        return done;
    }

    /*
     * Ensures that the hold array can hold up to (want) more values.
     * It is currently holding (hold.length - holdIndex) values.
     */
    void ensureHoldCapacity(int want) {
        if (holdIndex - want < 0) {
            int have = hold.length - holdIndex;
            int newsize = hold.length + GROW_SIZE;
            double newhold[] = new double[newsize];
            System.arraycopy(hold, holdIndex,
                             newhold, holdIndex + GROW_SIZE,
                             have);
            hold = newhold;
            holdIndex += GROW_SIZE;
            holdEnd += GROW_SIZE;
        }
    }

    /**
     * Moves the iterator to the next segment of the path forwards
     * along the primary direction of traversal as long as there are
     * more points in that direction.
     */
    public void next() {
        next(true);
    }

    private void next(boolean doNext) {
        int level;

        if (holdIndex >= holdEnd) {
            if (doNext) {
                src.next();
            }
            if (src.isDone()) {
                done = true;
                return;
            }
            holdType = src.currentSegment(hold);
            levelIndex = 0;
            levels[0] = 0;
        }

        switch (holdType) {
        case SEG_MOVETO:
        case SEG_LINETO:
            curx = hold[0];
            cury = hold[1];
            if (holdType == SEG_MOVETO) {
                movx = curx;
                movy = cury;
            }
            holdIndex = 0;
            holdEnd = 0;
            break;
        case SEG_CLOSE:
            curx = movx;
            cury = movy;
            holdIndex = 0;
            holdEnd = 0;
            break;
        case SEG_QUADTO:
            if (holdIndex >= holdEnd) {
                // Move the coordinates to the end of the array.
                holdIndex = hold.length - 6;
                holdEnd = hold.length - 2;
                hold[holdIndex + 0] = curx;
                hold[holdIndex + 1] = cury;
                hold[holdIndex + 2] = hold[0];
                hold[holdIndex + 3] = hold[1];
                hold[holdIndex + 4] = curx = hold[2];
                hold[holdIndex + 5] = cury = hold[3];
            }

            level = levels[levelIndex];
            while (level < limit) {
                if (QuadCurve2D.getFlatnessSq(hold, holdIndex) < squareflat) {
                    break;
                }

                ensureHoldCapacity(4);
                QuadCurve2D.subdivide(hold, holdIndex,
                                      hold, holdIndex - 4,
                                      hold, holdIndex);
                holdIndex -= 4;

                // Now that we have subdivided, we have constructed
                // two curves of one depth lower than the original
                // curve.  One of those curves is in the place of
                // the former curve and one of them is in the next
                // set of held coordinate slots.  We now set both
                // curves level values to the next higher level.
                level++;
                levels[levelIndex] = level;
                levelIndex++;
                levels[levelIndex] = level;
            }

            // This curve segment is flat enough, or it is too deep
            // in recursion levels to try to flatten any more.  The
            // two coordinates at holdIndex+4 and holdIndex+5 now
            // contain the endpoint of the curve which can be the
            // endpoint of an approximating line segment.
            holdIndex += 4;
            levelIndex--;
            break;
        case SEG_CUBICTO:
            if (holdIndex >= holdEnd) {
                // Move the coordinates to the end of the array.
                holdIndex = hold.length - 8;
                holdEnd = hold.length - 2;
                hold[holdIndex + 0] = curx;
                hold[holdIndex + 1] = cury;
                hold[holdIndex + 2] = hold[0];
                hold[holdIndex + 3] = hold[1];
                hold[holdIndex + 4] = hold[2];
                hold[holdIndex + 5] = hold[3];
                hold[holdIndex + 6] = curx = hold[4];
                hold[holdIndex + 7] = cury = hold[5];
            }

            level = levels[levelIndex];
            while (level < limit) {
                if (CubicCurve2D.getFlatnessSq(hold, holdIndex) < squareflat) {
                    break;
                }

                ensureHoldCapacity(6);
                CubicCurve2D.subdivide(hold, holdIndex,
                                       hold, holdIndex - 6,
                                       hold, holdIndex);
                holdIndex -= 6;

                // Now that we have subdivided, we have constructed
                // two curves of one depth lower than the original
                // curve.  One of those curves is in the place of
                // the former curve and one of them is in the next
                // set of held coordinate slots.  We now set both
                // curves level values to the next higher level.
                level++;
                levels[levelIndex] = level;
                levelIndex++;
                levels[levelIndex] = level;
            }

            // This curve segment is flat enough, or it is too deep
            // in recursion levels to try to flatten any more.  The
            // two coordinates at holdIndex+6 and holdIndex+7 now
            // contain the endpoint of the curve which can be the
            // endpoint of an approximating line segment.
            holdIndex += 6;
            levelIndex--;
            break;
        }
    }

    /**
     * Returns the coordinates and type of the current path segment in
     * the iteration.
     * The return value is the path segment type:
     * SEG_MOVETO, SEG_LINETO, or SEG_CLOSE.
     * A float array of length 6 must be passed in and can be used to
     * store the coordinates of the point(s).
     * Each point is stored as a pair of float x,y coordinates.
     * SEG_MOVETO and SEG_LINETO types return one point,
     * and SEG_CLOSE does not return any points.
     * @param coords an array that holds the data returned from
     * this method
     * @return the path segment type of the current path segment.
     * @exception NoSuchElementException if there
     *          are no more elements in the flattening path to be
     *          returned.
     * @see PathIterator#SEG_MOVETO
     * @see PathIterator#SEG_LINETO
     * @see PathIterator#SEG_CLOSE
     */
    public int currentSegment(float[] coords) {
        if (isDone()) {
            throw new NoSuchElementException("flattening iterator out of bounds");
        }
        int type = holdType;
        if (type != SEG_CLOSE) {
            coords[0] = (float) hold[holdIndex + 0];
            coords[1] = (float) hold[holdIndex + 1];
            if (type != SEG_MOVETO) {
                type = SEG_LINETO;
            }
        }
        return type;
    }

    /**
     * Returns the coordinates and type of the current path segment in
     * the iteration.
     * The return value is the path segment type:
     * SEG_MOVETO, SEG_LINETO, or SEG_CLOSE.
     * A double array of length 6 must be passed in and can be used to
     * store the coordinates of the point(s).
     * Each point is stored as a pair of double x,y coordinates.
     * SEG_MOVETO and SEG_LINETO types return one point,
     * and SEG_CLOSE does not return any points.
     * @param coords an array that holds the data returned from
     * this method
     * @return the path segment type of the current path segment.
     * @exception NoSuchElementException if there
     *          are no more elements in the flattening path to be
     *          returned.
     * @see PathIterator#SEG_MOVETO
     * @see PathIterator#SEG_LINETO
     * @see PathIterator#SEG_CLOSE
     */
    public int currentSegment(double[] coords) {
        if (isDone()) {
            throw new NoSuchElementException("flattening iterator out of bounds");
        }
        int type = holdType;
        if (type != SEG_CLOSE) {
            coords[0] = hold[holdIndex + 0];
            coords[1] = hold[holdIndex + 1];
            if (type != SEG_MOVETO) {
                type = SEG_LINETO;
            }
        }
        return type;
    }
}

Other Java examples (source code examples)

Here is a short list of links related to this Java FlatteningPathIterator.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.