alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (VolatileImage.java)

This example Java source code file (VolatileImage.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

awt, bufferedimage, graphics, graphics2d, image_incompatible, image_ok, image_restored, imagecapabilities, imageproducer, translucent, transparency, volatileimage

The VolatileImage.java Java example source code

/*
 * Copyright (c) 2000, 2006, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package java.awt.image;

import java.awt.Color;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.GraphicsConfiguration;
import java.awt.GraphicsDevice;
import java.awt.Image;
import java.awt.ImageCapabilities;
import java.awt.Toolkit;
import java.awt.Transparency;

/**
 * VolatileImage is an image which can lose its
 * contents at any time due to circumstances beyond the control of the
 * application (e.g., situations caused by the operating system or by
 * other applications). Because of the potential for hardware acceleration,
 * a VolatileImage object can have significant performance benefits on
 * some platforms.
 * <p>
 * The drawing surface of an image (the memory where the image contents
 * actually reside) can be lost or invalidated, causing the contents of that
 * memory to go away.  The drawing surface thus needs to be restored
 * or recreated and the contents of that surface need to be
 * re-rendered.  VolatileImage provides an interface for
 * allowing the user to detect these problems and fix them
 * when they occur.
 * <p>
 * When a VolatileImage object is created, limited system resources
 * such as video memory (VRAM) may be allocated in order to support
 * the image.
 * When a VolatileImage object is no longer used, it may be
 * garbage-collected and those system resources will be returned,
 * but this process does not happen at guaranteed times.
 * Applications that create many VolatileImage objects (for example,
 * a resizing window may force recreation of its back buffer as the
 * size changes) may run out of optimal system resources for new
 * VolatileImage objects simply because the old objects have not
 * yet been removed from the system.
 * (New VolatileImage objects may still be created, but they
 * may not perform as well as those created in accelerated
 * memory).
 * The flush method may be called at any time to proactively release
 * the resources used by a VolatileImage so that it does not prevent
 * subsequent VolatileImage objects from being accelerated.
 * In this way, applications can have more control over the state
 * of the resources taken up by obsolete VolatileImage objects.
 * <p>
 * This image should not be subclassed directly but should be created
 * by using the {@link java.awt.Component#createVolatileImage(int, int)
 * Component.createVolatileImage} or
 * {@link java.awt.GraphicsConfiguration#createCompatibleVolatileImage(int, int)
 * GraphicsConfiguration.createCompatibleVolatileImage(int, int)} methods.
 * <P>
 * An example of using a VolatileImage object follows:
 * <pre>
 * // image creation
 * VolatileImage vImg = createVolatileImage(w, h);
 *
 *
 * // rendering to the image
 * void renderOffscreen() {
 *      do {
 *          if (vImg.validate(getGraphicsConfiguration()) ==
 *              VolatileImage.IMAGE_INCOMPATIBLE)
 *          {
 *              // old vImg doesn't work with new GraphicsConfig; re-create it
 *              vImg = createVolatileImage(w, h);
 *          }
 *          Graphics2D g = vImg.createGraphics();
 *          //
 *          // miscellaneous rendering commands...
 *          //
 *          g.dispose();
 *      } while (vImg.contentsLost());
 * }
 *
 *
 * // copying from the image (here, gScreen is the Graphics
 * // object for the onscreen window)
 * do {
 *      int returnCode = vImg.validate(getGraphicsConfiguration());
 *      if (returnCode == VolatileImage.IMAGE_RESTORED) {
 *          // Contents need to be restored
 *          renderOffscreen();      // restore contents
 *      } else if (returnCode == VolatileImage.IMAGE_INCOMPATIBLE) {
 *          // old vImg doesn't work with new GraphicsConfig; re-create it
 *          vImg = createVolatileImage(w, h);
 *          renderOffscreen();
 *      }
 *      gScreen.drawImage(vImg, 0, 0, this);
 * } while (vImg.contentsLost());
 * </pre>
 * <P>
 * Note that this class subclasses from the {@link Image} class, which
 * includes methods that take an {@link ImageObserver} parameter for
 * asynchronous notifications as information is received from
 * a potential {@link ImageProducer}.  Since this <code>VolatileImage
 * is not loaded from an asynchronous source, the various methods that take
 * an <code>ImageObserver parameter will behave as if the data has
 * already been obtained from the <code>ImageProducer.
 * Specifically, this means that the return values from such methods
 * will never indicate that the information is not yet available and
 * the <code>ImageObserver used in such methods will never
 * need to be recorded for an asynchronous callback notification.
 * @since 1.4
 */
public abstract class VolatileImage extends Image implements Transparency
{

    // Return codes for validate() method

    /**
     * Validated image is ready to use as-is.
     */
    public static final int IMAGE_OK = 0;

    /**
     * Validated image has been restored and is now ready to use.
     * Note that restoration causes contents of the image to be lost.
     */
    public static final int IMAGE_RESTORED = 1;

    /**
     * Validated image is incompatible with supplied
     * <code>GraphicsConfiguration object and should be
     * re-created as appropriate.  Usage of the image as-is
     * after receiving this return code from <code>validate
     * is undefined.
     */
    public static final int IMAGE_INCOMPATIBLE = 2;

    /**
     * Returns a static snapshot image of this object.  The
     * <code>BufferedImage returned is only current with
     * the <code>VolatileImage at the time of the request
     * and will not be updated with any future changes to the
     * <code>VolatileImage.
     * @return a {@link BufferedImage} representation of this
     *          <code>VolatileImage
     * @see BufferedImage
     */
    public abstract BufferedImage getSnapshot();

    /**
     * Returns the width of the <code>VolatileImage.
     * @return the width of this <code>VolatileImage.
     */
    public abstract int getWidth();

    /**
     * Returns the height of the <code>VolatileImage.
     * @return the height of this <code>VolatileImage.
     */
    public abstract int getHeight();

    // Image overrides

    /**
     * This returns an ImageProducer for this VolatileImage.
     * Note that the VolatileImage object is optimized for
     * rendering operations and blitting to the screen or other
     * VolatileImage objects, as opposed to reading back the
     * pixels of the image.  Therefore, operations such as
     * <code>getSource may not perform as fast as
     * operations that do not rely on reading the pixels.
     * Note also that the pixel values read from the image are current
     * with those in the image only at the time that they are
     * retrieved. This method takes a snapshot
     * of the image at the time the request is made and the
     * ImageProducer object returned works with
     * that static snapshot image, not the original VolatileImage.
     * Calling getSource()
     * is equivalent to calling getSnapshot().getSource().
     * @return an {@link ImageProducer} that can be used to produce the
     * pixels for a <code>BufferedImage representation of
     * this Image.
     * @see ImageProducer
     * @see #getSnapshot()
     */
    public ImageProducer getSource() {
        // REMIND: Make sure this functionality is in line with the
        // spec.  In particular, we are returning the Source for a
        // static image (the snapshot), not a changing image (the
        // VolatileImage).  So if the user expects the Source to be
        // up-to-date with the current contents of the VolatileImage,
        // they will be disappointed...
        // REMIND: This assumes that getSnapshot() returns something
        // valid and not the default null object returned by this class
        // (so it assumes that the actual VolatileImage object is
        // subclassed off something that does the right thing
        // (e.g., SunVolatileImage).
        return getSnapshot().getSource();
    }

    // REMIND: if we want any decent performance for getScaledInstance(),
    // we should override the Image implementation of it...

    /**
     * This method returns a {@link Graphics2D}, but is here
     * for backwards compatibility.  {@link #createGraphics() createGraphics} is more
     * convenient, since it is declared to return a
     * <code>Graphics2D.
     * @return a <code>Graphics2D, which can be used to draw into
     *          this image.
     */
    public Graphics getGraphics() {
        return createGraphics();
    }

    /**
     * Creates a <code>Graphics2D, which can be used to draw into
     * this <code>VolatileImage.
     * @return a <code>Graphics2D, used for drawing into this
     *          image.
     */
    public abstract Graphics2D createGraphics();


    // Volatile management methods

    /**
     * Attempts to restore the drawing surface of the image if the surface
     * had been lost since the last <code>validate call.  Also
     * validates this image against the given GraphicsConfiguration
     * parameter to see whether operations from this image to the
     * GraphicsConfiguration are compatible.  An example of an
     * incompatible combination might be a situation where a VolatileImage
     * object was created on one graphics device and then was used
     * to render to a different graphics device.  Since VolatileImage
     * objects tend to be very device-specific, this operation might
     * not work as intended, so the return code from this validate
     * call would note that incompatibility.  A null or incorrect
     * value for gc may cause incorrect values to be returned from
     * <code>validate and may cause later problems with rendering.
     *
     * @param   gc   a <code>GraphicsConfiguration object for this
     *          image to be validated against.  A null gc implies that the
     *          validate method should skip the compatibility test.
     * @return  <code>IMAGE_OK if the image did not need validation
* <code>IMAGE_RESTORED if the image needed restoration. * Restoration implies that the contents of the image may have * been affected and the image may need to be re-rendered.<BR> * <code>IMAGE_INCOMPATIBLE if the image is incompatible * with the <code>GraphicsConfiguration object passed * into the <code>validate method. Incompatibility * implies that the image may need to be recreated with a * new <code>Component or * <code>GraphicsConfiguration in order to get an image * that can be used successfully with this * <code>GraphicsConfiguration. * An incompatible image is not checked for whether restoration * was necessary, so the state of the image is unchanged * after a return value of <code>IMAGE_INCOMPATIBLE * and this return value implies nothing about whether the * image needs to be restored. * @see java.awt.GraphicsConfiguration * @see java.awt.Component * @see #IMAGE_OK * @see #IMAGE_RESTORED * @see #IMAGE_INCOMPATIBLE */ public abstract int validate(GraphicsConfiguration gc); /** * Returns <code>true if rendering data was lost since last * <code>validate call. This method should be called by the * application at the end of any series of rendering operations to * or from the image to see whether * the image needs to be validated and the rendering redone. * @return <code>true if the drawing surface needs to be restored; * <code>false otherwise. */ public abstract boolean contentsLost(); /** * Returns an ImageCapabilities object which can be * inquired as to the specific capabilities of this * VolatileImage. This would allow programmers to find * out more runtime information on the specific VolatileImage * object that they have created. For example, the user * might create a VolatileImage but the system may have * no video memory left for creating an image of that * size, so although the object is a VolatileImage, it is * not as accelerated as other VolatileImage objects on * this platform might be. The user might want that * information to find other solutions to their problem. * @return an <code>ImageCapabilities object that contains * the capabilities of this <code>VolatileImage. * @since 1.4 */ public abstract ImageCapabilities getCapabilities(); /** * The transparency value with which this image was created. * @see java.awt.GraphicsConfiguration#createCompatibleVolatileImage(int, * int,int) * @see java.awt.GraphicsConfiguration#createCompatibleVolatileImage(int, * int,ImageCapabilities,int) * @see Transparency * @since 1.5 */ protected int transparency = TRANSLUCENT; /** * Returns the transparency. Returns either OPAQUE, BITMASK, * or TRANSLUCENT. * @return the transparency of this <code>VolatileImage. * @see Transparency#OPAQUE * @see Transparency#BITMASK * @see Transparency#TRANSLUCENT * @since 1.5 */ public int getTransparency() { return transparency; } }

Other Java examples (source code examples)

Here is a short list of links related to this Java VolatileImage.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.