alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (Encoder.java)

This example Java source code file (Encoder.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

encoder, exception, exceptionlistener, expression, hashmap, identityhashmap, map, object, persistencedelegate, persistencedelegatefinder, runtimeexception, statement, util

The Encoder.java Java example source code

/*
 * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */
package java.beans;

import com.sun.beans.finder.PersistenceDelegateFinder;

import java.util.HashMap;
import java.util.IdentityHashMap;
import java.util.Map;

/**
 * An <code>Encoder is a class which can be used to create
 * files or streams that encode the state of a collection of
 * JavaBeans in terms of their public APIs. The <code>Encoder,
 * in conjunction with its persistence delegates, is responsible for
 * breaking the object graph down into a series of <code>Statementss
 * and <code>Expressions which can be used to create it.
 * A subclass typically provides a syntax for these expressions
 * using some human readable form - like Java source code or XML.
 *
 * @since 1.4
 *
 * @author Philip Milne
 */

public class Encoder {
    private final PersistenceDelegateFinder finder = new PersistenceDelegateFinder();
    private Map<Object, Expression> bindings = new IdentityHashMap<>();
    private ExceptionListener exceptionListener;
    boolean executeStatements = true;
    private Map<Object, Object> attributes;

    /**
     * Write the specified object to the output stream.
     * The serialized form will denote a series of
     * expressions, the combined effect of which will create
     * an equivalent object when the input stream is read.
     * By default, the object is assumed to be a <em>JavaBean
     * with a nullary constructor, whose state is defined by
     * the matching pairs of "setter" and "getter" methods
     * returned by the Introspector.
     *
     * @param o The object to be written to the stream.
     *
     * @see XMLDecoder#readObject
     */
    protected void writeObject(Object o) {
        if (o == this) {
            return;
        }
        PersistenceDelegate info = getPersistenceDelegate(o == null ? null : o.getClass());
        info.writeObject(o, this);
    }

    /**
     * Sets the exception handler for this stream to <code>exceptionListener.
     * The exception handler is notified when this stream catches recoverable
     * exceptions.
     *
     * @param exceptionListener The exception handler for this stream;
     *       if <code>null the default exception listener will be used.
     *
     * @see #getExceptionListener
     */
    public void setExceptionListener(ExceptionListener exceptionListener) {
        this.exceptionListener = exceptionListener;
    }

    /**
     * Gets the exception handler for this stream.
     *
     * @return The exception handler for this stream;
     *    Will return the default exception listener if this has not explicitly been set.
     *
     * @see #setExceptionListener
     */
    public ExceptionListener getExceptionListener() {
        return (exceptionListener != null) ? exceptionListener : Statement.defaultExceptionListener;
    }

    Object getValue(Expression exp) {
        try {
            return (exp == null) ? null : exp.getValue();
        }
        catch (Exception e) {
            getExceptionListener().exceptionThrown(e);
            throw new RuntimeException("failed to evaluate: " + exp.toString());
        }
    }

    /**
     * Returns the persistence delegate for the given type.
     * The persistence delegate is calculated by applying
     * the following rules in order:
     * <ol>
     * <li>
     * If a persistence delegate is associated with the given type
     * by using the {@link #setPersistenceDelegate} method
     * it is returned.
     * <li>
     * A persistence delegate is then looked up by the name
     * composed of the the fully qualified name of the given type
     * and the "PersistenceDelegate" postfix.
     * For example, a persistence delegate for the {@code Bean} class
     * should be named {@code BeanPersistenceDelegate}
     * and located in the same package.
     * <pre>
     * public class Bean { ... }
     * public class BeanPersistenceDelegate { ... }</pre>
     * The instance of the {@code BeanPersistenceDelegate} class
     * is returned for the {@code Bean} class.
     * <li>
     * If the type is {@code null},
     * a shared internal persistence delegate is returned
     * that encodes {@code null} value.
     * <li>
     * If the type is a {@code enum} declaration,
     * a shared internal persistence delegate is returned
     * that encodes constants of this enumeration
     * by their names.
     * <li>
     * If the type is a primitive type or the corresponding wrapper,
     * a shared internal persistence delegate is returned
     * that encodes values of the given type.
     * <li>
     * If the type is an array,
     * a shared internal persistence delegate is returned
     * that encodes an array of the appropriate type and length,
     * and each of its elements as if they are properties.
     * <li>
     * If the type is a proxy,
     * a shared internal persistence delegate is returned
     * that encodes a proxy instance by using
     * the {@link java.lang.reflect.Proxy#newProxyInstance} method.
     * <li>
     * If the {@link BeanInfo} for this type has a {@link BeanDescriptor}
     * which defined a "persistenceDelegate" attribute,
     * the value of this named attribute is returned.
     * <li>
     * In all other cases the default persistence delegate is returned.
     * The default persistence delegate assumes the type is a <em>JavaBean,
     * implying that it has a default constructor and that its state
     * may be characterized by the matching pairs of "setter" and "getter"
     * methods returned by the {@link Introspector} class.
     * The default constructor is the constructor with the greatest number
     * of parameters that has the {@link ConstructorProperties} annotation.
     * If none of the constructors has the {@code ConstructorProperties} annotation,
     * then the nullary constructor (constructor with no parameters) will be used.
     * For example, in the following code fragment, the nullary constructor
     * for the {@code Foo} class will be used,
     * while the two-parameter constructor
     * for the {@code Bar} class will be used.
     * <pre>
     * public class Foo {
     *     public Foo() { ... }
     *     public Foo(int x) { ... }
     * }
     * public class Bar {
     *     public Bar() { ... }
     *     @ConstructorProperties({"x"})
     *     public Bar(int x) { ... }
     *     @ConstructorProperties({"x", "y"})
     *     public Bar(int x, int y) { ... }
     * }</pre>
     * </ol>
     *
     * @param type  the class of the objects
     * @return the persistence delegate for the given type
     *
     * @see #setPersistenceDelegate
     * @see java.beans.Introspector#getBeanInfo
     * @see java.beans.BeanInfo#getBeanDescriptor
     */
    public PersistenceDelegate getPersistenceDelegate(Class<?> type) {
        PersistenceDelegate pd = this.finder.find(type);
        if (pd == null) {
            pd = MetaData.getPersistenceDelegate(type);
            if (pd != null) {
                this.finder.register(type, pd);
            }
        }
        return pd;
    }

    /**
     * Associates the specified persistence delegate with the given type.
     *
     * @param type  the class of objects that the specified persistence delegate applies to
     * @param delegate  the persistence delegate for instances of the given type
     *
     * @see #getPersistenceDelegate
     * @see java.beans.Introspector#getBeanInfo
     * @see java.beans.BeanInfo#getBeanDescriptor
     */
    public void setPersistenceDelegate(Class<?> type, PersistenceDelegate delegate) {
        this.finder.register(type, delegate);
    }

    /**
     * Removes the entry for this instance, returning the old entry.
     *
     * @param oldInstance The entry that should be removed.
     * @return The entry that was removed.
     *
     * @see #get
     */
    public Object remove(Object oldInstance) {
        Expression exp = bindings.remove(oldInstance);
        return getValue(exp);
    }

    /**
     * Returns a tentative value for <code>oldInstance in
     * the environment created by this stream. A persistence
     * delegate can use its <code>mutatesTo method to
     * determine whether this value may be initialized to
     * form the equivalent object at the output or whether
     * a new object must be instantiated afresh. If the
     * stream has not yet seen this value, null is returned.
     *
     * @param  oldInstance The instance to be looked up.
     * @return The object, null if the object has not been seen before.
     */
    public Object get(Object oldInstance) {
        if (oldInstance == null || oldInstance == this ||
            oldInstance.getClass() == String.class) {
            return oldInstance;
        }
        Expression exp = bindings.get(oldInstance);
        return getValue(exp);
    }

    private Object writeObject1(Object oldInstance) {
        Object o = get(oldInstance);
        if (o == null) {
            writeObject(oldInstance);
            o = get(oldInstance);
        }
        return o;
    }

    private Statement cloneStatement(Statement oldExp) {
        Object oldTarget = oldExp.getTarget();
        Object newTarget = writeObject1(oldTarget);

        Object[] oldArgs = oldExp.getArguments();
        Object[] newArgs = new Object[oldArgs.length];
        for (int i = 0; i < oldArgs.length; i++) {
            newArgs[i] = writeObject1(oldArgs[i]);
        }
        Statement newExp = Statement.class.equals(oldExp.getClass())
                ? new Statement(newTarget, oldExp.getMethodName(), newArgs)
                : new Expression(newTarget, oldExp.getMethodName(), newArgs);
        newExp.loader = oldExp.loader;
        return newExp;
    }

    /**
     * Writes statement <code>oldStm to the stream.
     * The <code>oldStm should be written entirely
     * in terms of the callers environment, i.e. the
     * target and all arguments should be part of the
     * object graph being written. These expressions
     * represent a series of "what happened" expressions
     * which tell the output stream how to produce an
     * object graph like the original.
     * <p>
     * The implementation of this method will produce
     * a second expression to represent the same expression in
     * an environment that will exist when the stream is read.
     * This is achieved simply by calling <code>writeObject
     * on the target and all the arguments and building a new
     * expression with the results.
     *
     * @param oldStm The expression to be written to the stream.
     */
    public void writeStatement(Statement oldStm) {
        // System.out.println("writeStatement: " + oldExp);
        Statement newStm = cloneStatement(oldStm);
        if (oldStm.getTarget() != this && executeStatements) {
            try {
                newStm.execute();
            } catch (Exception e) {
                getExceptionListener().exceptionThrown(new Exception("Encoder: discarding statement "
                                                                     + newStm, e));
            }
        }
    }

    /**
     * The implementation first checks to see if an
     * expression with this value has already been written.
     * If not, the expression is cloned, using
     * the same procedure as <code>writeStatement,
     * and the value of this expression is reconciled
     * with the value of the cloned expression
     * by calling <code>writeObject.
     *
     * @param oldExp The expression to be written to the stream.
     */
    public void writeExpression(Expression oldExp) {
        // System.out.println("Encoder::writeExpression: " + oldExp);
        Object oldValue = getValue(oldExp);
        if (get(oldValue) != null) {
            return;
        }
        bindings.put(oldValue, (Expression)cloneStatement(oldExp));
        writeObject(oldValue);
    }

    void clear() {
        bindings.clear();
    }

    // Package private method for setting an attributes table for the encoder
    void setAttribute(Object key, Object value) {
        if (attributes == null) {
            attributes = new HashMap<>();
        }
        attributes.put(key, value);
    }

    Object getAttribute(Object key) {
        if (attributes == null) {
            return null;
        }
        return attributes.get(key);
    }
}

Other Java examples (source code examples)

Here is a short list of links related to this Java Encoder.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.