alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (ByteArrayOutputStream.java)

This example Java source code file (ByteArrayOutputStream.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

bytearrayoutputstream, deprecated, illegalargumentexception, indexoutofboundsexception, ioexception, negative, outofmemoryerror, string, unsupportedencodingexception, util

The ByteArrayOutputStream.java Java example source code

/*
 * Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package java.io;

import java.util.Arrays;

/**
 * This class implements an output stream in which the data is
 * written into a byte array. The buffer automatically grows as data
 * is written to it.
 * The data can be retrieved using <code>toByteArray() and
 * <code>toString().
 * <p>
 * Closing a <tt>ByteArrayOutputStream has no effect. The methods in
 * this class can be called after the stream has been closed without
 * generating an <tt>IOException.
 *
 * @author  Arthur van Hoff
 * @since   JDK1.0
 */

public class ByteArrayOutputStream extends OutputStream {

    /**
     * The buffer where data is stored.
     */
    protected byte buf[];

    /**
     * The number of valid bytes in the buffer.
     */
    protected int count;

    /**
     * Creates a new byte array output stream. The buffer capacity is
     * initially 32 bytes, though its size increases if necessary.
     */
    public ByteArrayOutputStream() {
        this(32);
    }

    /**
     * Creates a new byte array output stream, with a buffer capacity of
     * the specified size, in bytes.
     *
     * @param   size   the initial size.
     * @exception  IllegalArgumentException if size is negative.
     */
    public ByteArrayOutputStream(int size) {
        if (size < 0) {
            throw new IllegalArgumentException("Negative initial size: "
                                               + size);
        }
        buf = new byte[size];
    }

    /**
     * Increases the capacity if necessary to ensure that it can hold
     * at least the number of elements specified by the minimum
     * capacity argument.
     *
     * @param minCapacity the desired minimum capacity
     * @throws OutOfMemoryError if {@code minCapacity < 0}.  This is
     * interpreted as a request for the unsatisfiably large capacity
     * {@code (long) Integer.MAX_VALUE + (minCapacity - Integer.MAX_VALUE)}.
     */
    private void ensureCapacity(int minCapacity) {
        // overflow-conscious code
        if (minCapacity - buf.length > 0)
            grow(minCapacity);
    }

    /**
     * Increases the capacity to ensure that it can hold at least the
     * number of elements specified by the minimum capacity argument.
     *
     * @param minCapacity the desired minimum capacity
     */
    private void grow(int minCapacity) {
        // overflow-conscious code
        int oldCapacity = buf.length;
        int newCapacity = oldCapacity << 1;
        if (newCapacity - minCapacity < 0)
            newCapacity = minCapacity;
        if (newCapacity < 0) {
            if (minCapacity < 0) // overflow
                throw new OutOfMemoryError();
            newCapacity = Integer.MAX_VALUE;
        }
        buf = Arrays.copyOf(buf, newCapacity);
    }

    /**
     * Writes the specified byte to this byte array output stream.
     *
     * @param   b   the byte to be written.
     */
    public synchronized void write(int b) {
        ensureCapacity(count + 1);
        buf[count] = (byte) b;
        count += 1;
    }

    /**
     * Writes <code>len bytes from the specified byte array
     * starting at offset <code>off to this byte array output stream.
     *
     * @param   b     the data.
     * @param   off   the start offset in the data.
     * @param   len   the number of bytes to write.
     */
    public synchronized void write(byte b[], int off, int len) {
        if ((off < 0) || (off > b.length) || (len < 0) ||
            ((off + len) - b.length > 0)) {
            throw new IndexOutOfBoundsException();
        }
        ensureCapacity(count + len);
        System.arraycopy(b, off, buf, count, len);
        count += len;
    }

    /**
     * Writes the complete contents of this byte array output stream to
     * the specified output stream argument, as if by calling the output
     * stream's write method using <code>out.write(buf, 0, count).
     *
     * @param      out   the output stream to which to write the data.
     * @exception  IOException  if an I/O error occurs.
     */
    public synchronized void writeTo(OutputStream out) throws IOException {
        out.write(buf, 0, count);
    }

    /**
     * Resets the <code>count field of this byte array output
     * stream to zero, so that all currently accumulated output in the
     * output stream is discarded. The output stream can be used again,
     * reusing the already allocated buffer space.
     *
     * @see     java.io.ByteArrayInputStream#count
     */
    public synchronized void reset() {
        count = 0;
    }

    /**
     * Creates a newly allocated byte array. Its size is the current
     * size of this output stream and the valid contents of the buffer
     * have been copied into it.
     *
     * @return  the current contents of this output stream, as a byte array.
     * @see     java.io.ByteArrayOutputStream#size()
     */
    public synchronized byte toByteArray()[] {
        return Arrays.copyOf(buf, count);
    }

    /**
     * Returns the current size of the buffer.
     *
     * @return  the value of the <code>count field, which is the number
     *          of valid bytes in this output stream.
     * @see     java.io.ByteArrayOutputStream#count
     */
    public synchronized int size() {
        return count;
    }

    /**
     * Converts the buffer's contents into a string decoding bytes using the
     * platform's default character set. The length of the new <tt>String
     * is a function of the character set, and hence may not be equal to the
     * size of the buffer.
     *
     * <p> This method always replaces malformed-input and unmappable-character
     * sequences with the default replacement string for the platform's
     * default character set. The {@linkplain java.nio.charset.CharsetDecoder}
     * class should be used when more control over the decoding process is
     * required.
     *
     * @return String decoded from the buffer's contents.
     * @since  JDK1.1
     */
    public synchronized String toString() {
        return new String(buf, 0, count);
    }

    /**
     * Converts the buffer's contents into a string by decoding the bytes using
     * the named {@link java.nio.charset.Charset charset}. The length of the new
     * <tt>String is a function of the charset, and hence may not be equal
     * to the length of the byte array.
     *
     * <p> This method always replaces malformed-input and unmappable-character
     * sequences with this charset's default replacement string. The {@link
     * java.nio.charset.CharsetDecoder} class should be used when more control
     * over the decoding process is required.
     *
     * @param      charsetName  the name of a supported
     *             {@link java.nio.charset.Charset charset}
     * @return     String decoded from the buffer's contents.
     * @exception  UnsupportedEncodingException
     *             If the named charset is not supported
     * @since      JDK1.1
     */
    public synchronized String toString(String charsetName)
        throws UnsupportedEncodingException
    {
        return new String(buf, 0, count, charsetName);
    }

    /**
     * Creates a newly allocated string. Its size is the current size of
     * the output stream and the valid contents of the buffer have been
     * copied into it. Each character <i>c in the resulting string is
     * constructed from the corresponding element <i>b in the byte
     * array such that:
     * <blockquote>
     *     c == (char)(((hibyte & 0xff) << 8) | (b & 0xff))
     * </pre>
     *
     * @deprecated This method does not properly convert bytes into characters.
     * As of JDK 1.1, the preferred way to do this is via the
     * <code>toString(String enc) method, which takes an encoding-name
     * argument, or the <code>toString() method, which uses the
     * platform's default character encoding.
     *
     * @param      hibyte    the high byte of each resulting Unicode character.
     * @return     the current contents of the output stream, as a string.
     * @see        java.io.ByteArrayOutputStream#size()
     * @see        java.io.ByteArrayOutputStream#toString(String)
     * @see        java.io.ByteArrayOutputStream#toString()
     */
    @Deprecated
    public synchronized String toString(int hibyte) {
        return new String(buf, hibyte, 0, count);
    }

    /**
     * Closing a <tt>ByteArrayOutputStream has no effect. The methods in
     * this class can be called after the stream has been closed without
     * generating an <tt>IOException.
     */
    public void close() throws IOException {
    }

}

Other Java examples (source code examples)

Here is a short list of links related to this Java ByteArrayOutputStream.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.