alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  
* <td> The size of the socket send buffer * </tr> * <tr> * <td> {@link java.net.StandardSocketOptions#SO_RCVBUF SO_RCVBUF} * <td> The size of the socket receive buffer * </tr> * <tr> * <td> {@link java.net.StandardSocketOptions#SO_KEEPALIVE SO_KEEPALIVE} * <td> Keep connection alive * </tr> * <tr> * <td> {@link java.net.StandardSocketOptions#SO_REUSEADDR SO_REUSEADDR} * <td> Re-use address * </tr> * <tr> * <td> {@link java.net.StandardSocketOptions#TCP_NODELAY TCP_NODELAY} * <td> Disable the Nagle algorithm * </tr> * </table> * </blockquote> * Additional (implementation specific) options may also be supported. * * <h2>Timeouts * * <p> The {@link #read(ByteBuffer,long,TimeUnit,Object,CompletionHandler) read} * and {@link #write(ByteBuffer,long,TimeUnit,Object,CompletionHandler) write} * methods defined by this class allow a timeout to be specified when initiating * a read or write operation. If the timeout elapses before an operation completes * then the operation completes with the exception {@link * InterruptedByTimeoutException}. A timeout may leave the channel, or the * underlying connection, in an inconsistent state. Where the implementation * cannot guarantee that bytes have not been read from the channel then it puts * the channel into an implementation specific <em>error state. A subsequent * attempt to initiate a {@code read} operation causes an unspecified runtime * exception to be thrown. Similarly if a {@code write} operation times out and * the implementation cannot guarantee bytes have not been written to the * channel then further attempts to {@code write} to the channel cause an * unspecified runtime exception to be thrown. When a timeout elapses then the * state of the {@link ByteBuffer}, or the sequence of buffers, for the I/O * operation is not defined. Buffers should be discarded or at least care must * be taken to ensure that the buffers are not accessed while the channel remains * open. All methods that accept timeout parameters treat values less than or * equal to zero to mean that the I/O operation does not timeout. * * @since 1.7 */ public abstract class AsynchronousSocketChannel implements AsynchronousByteChannel, NetworkChannel { private final AsynchronousChannelProvider provider; /** * Initializes a new instance of this class. * * @param provider * The provider that created this channel */ protected AsynchronousSocketChannel(AsynchronousChannelProvider provider) { this.provider = provider; } /** * Returns the provider that created this channel. * * @return The provider that created this channel */ public final AsynchronousChannelProvider provider() { return provider; } /** * Opens an asynchronous socket channel. * * <p> The new channel is created by invoking the {@link * AsynchronousChannelProvider#openAsynchronousSocketChannel * openAsynchronousSocketChannel} method on the {@link * AsynchronousChannelProvider} that created the group. If the group parameter * is {@code null} then the resulting channel is created by the system-wide * default provider, and bound to the <em>default group. * * @param group * The group to which the newly constructed channel should be bound, * or {@code null} for the default group * * @return A new asynchronous socket channel * * @throws ShutdownChannelGroupException * If the channel group is shutdown * @throws IOException * If an I/O error occurs */ public static AsynchronousSocketChannel open(AsynchronousChannelGroup group) throws IOException { AsynchronousChannelProvider provider = (group == null) ? AsynchronousChannelProvider.provider() : group.provider(); return provider.openAsynchronousSocketChannel(group); } /** * Opens an asynchronous socket channel. * * <p> This method returns an asynchronous socket channel that is bound to * the <em>default group.This method is equivalent to evaluating the * expression: * <blockquote>
     * open((AsynchronousChannelGroup)null);
     * </pre>
     *
     * @return  A new asynchronous socket channel
     *
     * @throws  IOException
     *          If an I/O error occurs
     */
    public static AsynchronousSocketChannel open()
        throws IOException
    {
        return open(null);
    }


    // -- socket options and related --

    /**
     * @throws  ConnectionPendingException
     *          If a connection operation is already in progress on this channel
     * @throws  AlreadyBoundException               {@inheritDoc}
     * @throws  UnsupportedAddressTypeException     {@inheritDoc}
     * @throws  ClosedChannelException              {@inheritDoc}
     * @throws  IOException                         {@inheritDoc}
     * @throws  SecurityException
     *          If a security manager has been installed and its
     *          {@link SecurityManager#checkListen checkListen} method denies
     *          the operation
     */
    @Override
    public abstract AsynchronousSocketChannel bind(SocketAddress local)
        throws IOException;

    /**
     * @throws  IllegalArgumentException                {@inheritDoc}
     * @throws  ClosedChannelException                  {@inheritDoc}
     * @throws  IOException                             {@inheritDoc}
     */
    @Override
    public abstract <T> AsynchronousSocketChannel setOption(SocketOption name, T value)
        throws IOException;

    /**
     * Shutdown the connection for reading without closing the channel.
     *
     * <p> Once shutdown for reading then further reads on the channel will
     * return {@code -1}, the end-of-stream indication. If the input side of the
     * connection is already shutdown then invoking this method has no effect.
     * The effect on an outstanding read operation is system dependent and
     * therefore not specified. The effect, if any, when there is data in the
     * socket receive buffer that has not been read, or data arrives subsequently,
     * is also system dependent.
     *
     * @return  The channel
     *
     * @throws  NotYetConnectedException
     *          If this channel is not yet connected
     * @throws  ClosedChannelException
     *          If this channel is closed
     * @throws  IOException
     *          If some other I/O error occurs
     */
    public abstract AsynchronousSocketChannel shutdownInput() throws IOException;

    /**
     * Shutdown the connection for writing without closing the channel.
     *
     * <p> Once shutdown for writing then further attempts to write to the
     * channel will throw {@link ClosedChannelException}. If the output side of
     * the connection is already shutdown then invoking this method has no
     * effect. The effect on an outstanding write operation is system dependent
     * and therefore not specified.
     *
     * @return  The channel
     *
     * @throws  NotYetConnectedException
     *          If this channel is not yet connected
     * @throws  ClosedChannelException
     *          If this channel is closed
     * @throws  IOException
     *          If some other I/O error occurs
     */
    public abstract AsynchronousSocketChannel shutdownOutput() throws IOException;

    // -- state --

    /**
     * Returns the remote address to which this channel's socket is connected.
     *
     * <p> Where the channel is bound and connected to an Internet Protocol
     * socket address then the return value from this method is of type {@link
     * java.net.InetSocketAddress}.
     *
     * @return  The remote address; {@code null} if the channel's socket is not
     *          connected
     *
     * @throws  ClosedChannelException
     *          If the channel is closed
     * @throws  IOException
     *          If an I/O error occurs
     */
    public abstract SocketAddress getRemoteAddress() throws IOException;

    // -- asynchronous operations --

    /**
     * Connects this channel.
     *
     * <p> This method initiates an operation to connect this channel. The
     * {@code handler} parameter is a completion handler that is invoked when
     * the connection is successfully established or connection cannot be
     * established. If the connection cannot be established then the channel is
     * closed.
     *
     * <p> This method performs exactly the same security checks as the {@link
     * java.net.Socket} class.  That is, if a security manager has been
     * installed then this method verifies that its {@link
     * java.lang.SecurityManager#checkConnect checkConnect} method permits
     * connecting to the address and port number of the given remote endpoint.
     *
     * @param   <A>
     *          The type of the attachment
     * @param   remote
     *          The remote address to which this channel is to be connected
     * @param   attachment
     *          The object to attach to the I/O operation; can be {@code null}
     * @param   handler
     *          The handler for consuming the result
     *
     * @throws  UnresolvedAddressException
     *          If the given remote address is not fully resolved
     * @throws  UnsupportedAddressTypeException
     *          If the type of the given remote address is not supported
     * @throws  AlreadyConnectedException
     *          If this channel is already connected
     * @throws  ConnectionPendingException
     *          If a connection operation is already in progress on this channel
     * @throws  ShutdownChannelGroupException
     *          If the channel group has terminated
     * @throws  SecurityException
     *          If a security manager has been installed
     *          and it does not permit access to the given remote endpoint
     *
     * @see #getRemoteAddress
     */
    public abstract <A> void connect(SocketAddress remote,
                                     A attachment,
                                     CompletionHandler<Void,? super A> handler);

    /**
     * Connects this channel.
     *
     * <p> This method initiates an operation to connect this channel. This
     * method behaves in exactly the same manner as the {@link
     * #connect(SocketAddress, Object, CompletionHandler)} method except that
     * instead of specifying a completion handler, this method returns a {@code
     * Future} representing the pending result. The {@code Future}'s {@link
     * Future#get() get} method returns {@code null} on successful completion.
     *
     * @param   remote
     *          The remote address to which this channel is to be connected
     *
     * @return  A {@code Future} object representing the pending result
     *
     * @throws  UnresolvedAddressException
     *          If the given remote address is not fully resolved
     * @throws  UnsupportedAddressTypeException
     *          If the type of the given remote address is not supported
     * @throws  AlreadyConnectedException
     *          If this channel is already connected
     * @throws  ConnectionPendingException
     *          If a connection operation is already in progress on this channel
     * @throws  SecurityException
     *          If a security manager has been installed
     *          and it does not permit access to the given remote endpoint
     */
    public abstract Future<Void> connect(SocketAddress remote);

    /**
     * Reads a sequence of bytes from this channel into the given buffer.
     *
     * <p> This method initiates an asynchronous read operation to read a
     * sequence of bytes from this channel into the given buffer. The {@code
     * handler} parameter is a completion handler that is invoked when the read
     * operation completes (or fails). The result passed to the completion
     * handler is the number of bytes read or {@code -1} if no bytes could be
     * read because the channel has reached end-of-stream.
     *
     * <p> If a timeout is specified and the timeout elapses before the operation
     * completes then the operation completes with the exception {@link
     * InterruptedByTimeoutException}. Where a timeout occurs, and the
     * implementation cannot guarantee that bytes have not been read, or will not
     * be read from the channel into the given buffer, then further attempts to
     * read from the channel will cause an unspecific runtime exception to be
     * thrown.
     *
     * <p> Otherwise this method works in the same manner as the {@link
     * AsynchronousByteChannel#read(ByteBuffer,Object,CompletionHandler)}
     * method.
     *
     * @param   <A>
     *          The type of the attachment
     * @param   dst
     *          The buffer into which bytes are to be transferred
     * @param   timeout
     *          The maximum time for the I/O operation to complete
     * @param   unit
     *          The time unit of the {@code timeout} argument
     * @param   attachment
     *          The object to attach to the I/O operation; can be {@code null}
     * @param   handler
     *          The handler for consuming the result
     *
     * @throws  IllegalArgumentException
     *          If the buffer is read-only
     * @throws  ReadPendingException
     *          If a read operation is already in progress on this channel
     * @throws  NotYetConnectedException
     *          If this channel is not yet connected
     * @throws  ShutdownChannelGroupException
     *          If the channel group has terminated
     */
    public abstract <A> void read(ByteBuffer dst,
                                  long timeout,
                                  TimeUnit unit,
                                  A attachment,
                                  CompletionHandler<Integer,? super A> handler);

    /**
     * @throws  IllegalArgumentException        {@inheritDoc}
     * @throws  ReadPendingException            {@inheritDoc}
     * @throws  NotYetConnectedException
     *          If this channel is not yet connected
     * @throws  ShutdownChannelGroupException
     *          If the channel group has terminated
     */
    @Override
    public final <A> void read(ByteBuffer dst,
                               A attachment,
                               CompletionHandler<Integer,? super A> handler)
    {
        read(dst, 0L, TimeUnit.MILLISECONDS, attachment, handler);
    }

    /**
     * @throws  IllegalArgumentException        {@inheritDoc}
     * @throws  ReadPendingException            {@inheritDoc}
     * @throws  NotYetConnectedException
     *          If this channel is not yet connected
     */
    @Override
    public abstract Future<Integer> read(ByteBuffer dst);

    /**
     * Reads a sequence of bytes from this channel into a subsequence of the
     * given buffers. This operation, sometimes called a <em>scattering read,
     * is often useful when implementing network protocols that group data into
     * segments consisting of one or more fixed-length headers followed by a
     * variable-length body. The {@code handler} parameter is a completion
     * handler that is invoked when the read operation completes (or fails). The
     * result passed to the completion handler is the number of bytes read or
     * {@code -1} if no bytes could be read because the channel has reached
     * end-of-stream.
     *
     * <p> This method initiates a read of up to r bytes from this channel,
     * where <i>r is the total number of bytes remaining in the specified
     * subsequence of the given buffer array, that is,
     *
     * <blockquote>
     * dsts[offset].remaining()
     *     + dsts[offset+1].remaining()
     *     + ... + dsts[offset+length-1].remaining()</pre>
     *
     * at the moment that the read is attempted.
     *
     * <p> Suppose that a byte sequence of length n is read, where
     * <tt>0 < n <= r.
     * Up to the first <tt>dsts[offset].remaining() bytes of this sequence
     * are transferred into buffer <tt>dsts[offset], up to the next
     * <tt>dsts[offset+1].remaining() bytes are transferred into buffer
     * <tt>dsts[offset+1], and so forth, until the entire byte sequence
     * is transferred into the given buffers.  As many bytes as possible are
     * transferred into each buffer, hence the final position of each updated
     * buffer, except the last updated buffer, is guaranteed to be equal to
     * that buffer's limit. The underlying operating system may impose a limit
     * on the number of buffers that may be used in an I/O operation. Where the
     * number of buffers (with bytes remaining), exceeds this limit, then the
     * I/O operation is performed with the maximum number of buffers allowed by
     * the operating system.
     *
     * <p> If a timeout is specified and the timeout elapses before the operation
     * completes then it completes with the exception {@link
     * InterruptedByTimeoutException}. Where a timeout occurs, and the
     * implementation cannot guarantee that bytes have not been read, or will not
     * be read from the channel into the given buffers, then further attempts to
     * read from the channel will cause an unspecific runtime exception to be
     * thrown.
     *
     * @param   <A>
     *          The type of the attachment
     * @param   dsts
     *          The buffers into which bytes are to be transferred
     * @param   offset
     *          The offset within the buffer array of the first buffer into which
     *          bytes are to be transferred; must be non-negative and no larger than
     *          {@code dsts.length}
     * @param   length
     *          The maximum number of buffers to be accessed; must be non-negative
     *          and no larger than {@code dsts.length - offset}
     * @param   timeout
     *          The maximum time for the I/O operation to complete
     * @param   unit
     *          The time unit of the {@code timeout} argument
     * @param   attachment
     *          The object to attach to the I/O operation; can be {@code null}
     * @param   handler
     *          The handler for consuming the result
     *
     * @throws  IndexOutOfBoundsException
     *          If the pre-conditions for the {@code offset}  and {@code length}
     *          parameter aren't met
     * @throws  IllegalArgumentException
     *          If the buffer is read-only
     * @throws  ReadPendingException
     *          If a read operation is already in progress on this channel
     * @throws  NotYetConnectedException
     *          If this channel is not yet connected
     * @throws  ShutdownChannelGroupException
     *          If the channel group has terminated
     */
    public abstract <A> void read(ByteBuffer[] dsts,
                                  int offset,
                                  int length,
                                  long timeout,
                                  TimeUnit unit,
                                  A attachment,
                                  CompletionHandler<Long,? super A> handler);

    /**
     * Writes a sequence of bytes to this channel from the given buffer.
     *
     * <p> This method initiates an asynchronous write operation to write a
     * sequence of bytes to this channel from the given buffer. The {@code
     * handler} parameter is a completion handler that is invoked when the write
     * operation completes (or fails). The result passed to the completion
     * handler is the number of bytes written.
     *
     * <p> If a timeout is specified and the timeout elapses before the operation
     * completes then it completes with the exception {@link
     * InterruptedByTimeoutException}. Where a timeout occurs, and the
     * implementation cannot guarantee that bytes have not been written, or will
     * not be written to the channel from the given buffer, then further attempts
     * to write to the channel will cause an unspecific runtime exception to be
     * thrown.
     *
     * <p> Otherwise this method works in the same manner as the {@link
     * AsynchronousByteChannel#write(ByteBuffer,Object,CompletionHandler)}
     * method.
     *
     * @param   <A>
     *          The type of the attachment
     * @param   src
     *          The buffer from which bytes are to be retrieved
     * @param   timeout
     *          The maximum time for the I/O operation to complete
     * @param   unit
     *          The time unit of the {@code timeout} argument
     * @param   attachment
     *          The object to attach to the I/O operation; can be {@code null}
     * @param   handler
     *          The handler for consuming the result
     *
     * @throws  WritePendingException
     *          If a write operation is already in progress on this channel
     * @throws  NotYetConnectedException
     *          If this channel is not yet connected
     * @throws  ShutdownChannelGroupException
     *          If the channel group has terminated
     */
    public abstract <A> void write(ByteBuffer src,
                                   long timeout,
                                   TimeUnit unit,
                                   A attachment,
                                   CompletionHandler<Integer,? super A> handler);

    /**
     * @throws  WritePendingException          {@inheritDoc}
     * @throws  NotYetConnectedException
     *          If this channel is not yet connected
     * @throws  ShutdownChannelGroupException
     *          If the channel group has terminated
     */
    @Override
    public final <A> void write(ByteBuffer src,
                                A attachment,
                                CompletionHandler<Integer,? super A> handler)

    {
        write(src, 0L, TimeUnit.MILLISECONDS, attachment, handler);
    }

    /**
     * @throws  WritePendingException       {@inheritDoc}
     * @throws  NotYetConnectedException
     *          If this channel is not yet connected
     */
    @Override
    public abstract Future<Integer> write(ByteBuffer src);

    /**
     * Writes a sequence of bytes to this channel from a subsequence of the given
     * buffers. This operation, sometimes called a <em>gathering write, is
     * often useful when implementing network protocols that group data into
     * segments consisting of one or more fixed-length headers followed by a
     * variable-length body. The {@code handler} parameter is a completion
     * handler that is invoked when the write operation completes (or fails).
     * The result passed to the completion handler is the number of bytes written.
     *
     * <p> This method initiates a write of up to r bytes to this channel,
     * where <i>r is the total number of bytes remaining in the specified
     * subsequence of the given buffer array, that is,
     *
     * <blockquote>
     * srcs[offset].remaining()
     *     + srcs[offset+1].remaining()
     *     + ... + srcs[offset+length-1].remaining()</pre>
     *
     * at the moment that the write is attempted.
     *
     * <p> Suppose that a byte sequence of length n is written, where
     * <tt>0 < n <= r.
     * Up to the first <tt>srcs[offset].remaining() bytes of this sequence
     * are written from buffer <tt>srcs[offset], up to the next
     * <tt>srcs[offset+1].remaining() bytes are written from buffer
     * <tt>srcs[offset+1], and so forth, until the entire byte sequence is
     * written.  As many bytes as possible are written from each buffer, hence
     * the final position of each updated buffer, except the last updated
     * buffer, is guaranteed to be equal to that buffer's limit. The underlying
     * operating system may impose a limit on the number of buffers that may be
     * used in an I/O operation. Where the number of buffers (with bytes
     * remaining), exceeds this limit, then the I/O operation is performed with
     * the maximum number of buffers allowed by the operating system.
     *
     * <p> If a timeout is specified and the timeout elapses before the operation
     * completes then it completes with the exception {@link
     * InterruptedByTimeoutException}. Where a timeout occurs, and the
     * implementation cannot guarantee that bytes have not been written, or will
     * not be written to the channel from the given buffers, then further attempts
     * to write to the channel will cause an unspecific runtime exception to be
     * thrown.
     *
     * @param   <A>
     *          The type of the attachment
     * @param   srcs
     *          The buffers from which bytes are to be retrieved
     * @param   offset
     *          The offset within the buffer array of the first buffer from which
     *          bytes are to be retrieved; must be non-negative and no larger
     *          than {@code srcs.length}
     * @param   length
     *          The maximum number of buffers to be accessed; must be non-negative
     *          and no larger than {@code srcs.length - offset}
     * @param   timeout
     *          The maximum time for the I/O operation to complete
     * @param   unit
     *          The time unit of the {@code timeout} argument
     * @param   attachment
     *          The object to attach to the I/O operation; can be {@code null}
     * @param   handler
     *          The handler for consuming the result
     *
     * @throws  IndexOutOfBoundsException
     *          If the pre-conditions for the {@code offset}  and {@code length}
     *          parameter aren't met
     * @throws  WritePendingException
     *          If a write operation is already in progress on this channel
     * @throws  NotYetConnectedException
     *          If this channel is not yet connected
     * @throws  ShutdownChannelGroupException
     *          If the channel group has terminated
     */
    public abstract <A> void write(ByteBuffer[] srcs,
                                   int offset,
                                   int length,
                                   long timeout,
                                   TimeUnit unit,
                                   A attachment,
                                   CompletionHandler<Long,? super A> handler);

    /**
     * {@inheritDoc}
     * <p>
     * If there is a security manager set, its {@code checkConnect} method is
     * called with the local address and {@code -1} as its arguments to see
     * if the operation is allowed. If the operation is not allowed,
     * a {@code SocketAddress} representing the
     * {@link java.net.InetAddress#getLoopbackAddress loopback} address and the
     * local port of the channel's socket is returned.
     *
     * @return  The {@code SocketAddress} that the socket is bound to, or the
     *          {@code SocketAddress} representing the loopback address if
     *          denied by the security manager, or {@code null} if the
     *          channel's socket is not bound
     *
     * @throws  ClosedChannelException     {@inheritDoc}
     * @throws  IOException                {@inheritDoc}
     */
    public abstract SocketAddress getLocalAddress() throws IOException;
}

Other Java examples (source code examples)

Here is a short list of links related to this Java AsynchronousSocketChannel.java source code file:

Java example source code file (AsynchronousSocketChannel.java)

This example Java source code file (AsynchronousSocketChannel.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

asynchronousbytechannel, asynchronouschannelprovider, asynchronoussocketchannel, completionhandler, future, ioexception, net, network, networkchannel, nio, override, socketaddress, threading, threads, timeunit

The AsynchronousSocketChannel.java Java example source code

/*
 * Copyright (c) 2007, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package java.nio.channels;

import java.nio.channels.spi.*;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.Future;
import java.io.IOException;
import java.net.SocketOption;
import java.net.SocketAddress;
import java.nio.ByteBuffer;

/**
 * An asynchronous channel for stream-oriented connecting sockets.
 *
 * <p> Asynchronous socket channels are created in one of two ways. A newly-created
 * {@code AsynchronousSocketChannel} is created by invoking one of the {@link
 * #open open} methods defined by this class. A newly-created channel is open but
 * not yet connected. A connected {@code AsynchronousSocketChannel} is created
 * when a connection is made to the socket of an {@link AsynchronousServerSocketChannel}.
 * It is not possible to create an asynchronous socket channel for an arbitrary,
 * pre-existing {@link java.net.Socket socket}.
 *
 * <p> A newly-created channel is connected by invoking its {@link #connect connect}
 * method; once connected, a channel remains connected until it is closed.  Whether
 * or not a socket channel is connected may be determined by invoking its {@link
 * #getRemoteAddress getRemoteAddress} method. An attempt to invoke an I/O
 * operation upon an unconnected channel will cause a {@link NotYetConnectedException}
 * to be thrown.
 *
 * <p> Channels of this type are safe for use by multiple concurrent threads.
 * They support concurrent reading and writing, though at most one read operation
 * and one write operation can be outstanding at any time.
 * If a thread initiates a read operation before a previous read operation has
 * completed then a {@link ReadPendingException} will be thrown. Similarly, an
 * attempt to initiate a write operation before a previous write has completed
 * will throw a {@link WritePendingException}.
 *
 * <p> Socket options are configured using the {@link #setOption(SocketOption,Object)
 * setOption} method. Asynchronous socket channels support the following options:
 * <blockquote>
 * <table border summary="Socket options">
 *   <tr>
 *     <th>Option Name
 *     <th>Description
 *   </tr>
 *   <tr>
 *     <td> {@link java.net.StandardSocketOptions#SO_SNDBUF SO_SNDBUF} 
... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.