alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (Channels.java)

This example Java source code file (Channels.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

bytebuffer, indexoutofboundsexception, inputstream, invoker\'s, ioexception, nio, object, outputstream, override, readablebytechannelimpl, selectablechannel, string, threading, threads, transfer_size, writablebytechannel, writablebytechannelimpl

The Channels.java Java example source code

/*
 * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package java.nio.channels;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.Reader;
import java.io.Writer;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.nio.charset.Charset;
import java.nio.charset.CharsetDecoder;
import java.nio.charset.CharsetEncoder;
import java.nio.charset.UnsupportedCharsetException;
import java.nio.channels.spi.AbstractInterruptibleChannel;
import java.util.concurrent.ExecutionException;
import sun.nio.ch.ChannelInputStream;
import sun.nio.cs.StreamDecoder;
import sun.nio.cs.StreamEncoder;


/**
 * Utility methods for channels and streams.
 *
 * <p> This class defines static methods that support the interoperation of the
 * stream classes of the <tt>{@link java.io} package with the channel
 * classes of this package.  </p>
 *
 *
 * @author Mark Reinhold
 * @author Mike McCloskey
 * @author JSR-51 Expert Group
 * @since 1.4
 */

public final class Channels {

    private Channels() { }              // No instantiation

    private static void checkNotNull(Object o, String name) {
        if (o == null)
            throw new NullPointerException("\"" + name + "\" is null!");
    }

    /**
     * Write all remaining bytes in buffer to the given channel.
     * If the channel is selectable then it must be configured blocking.
     */
    private static void writeFullyImpl(WritableByteChannel ch, ByteBuffer bb)
        throws IOException
    {
        while (bb.remaining() > 0) {
            int n = ch.write(bb);
            if (n <= 0)
                throw new RuntimeException("no bytes written");
        }
    }

    /**
     * Write all remaining bytes in buffer to the given channel.
     *
     * @throws  IllegalBlockingModeException
     *          If the channel is selectable and configured non-blocking.
     */
    private static void writeFully(WritableByteChannel ch, ByteBuffer bb)
        throws IOException
    {
        if (ch instanceof SelectableChannel) {
            SelectableChannel sc = (SelectableChannel)ch;
            synchronized (sc.blockingLock()) {
                if (!sc.isBlocking())
                    throw new IllegalBlockingModeException();
                writeFullyImpl(ch, bb);
            }
        } else {
            writeFullyImpl(ch, bb);
        }
    }

    // -- Byte streams from channels --

    /**
     * Constructs a stream that reads bytes from the given channel.
     *
     * <p> The read methods of the resulting stream will throw an
     * {@link IllegalBlockingModeException} if invoked while the underlying
     * channel is in non-blocking mode.  The stream will not be buffered, and
     * it will not support the {@link InputStream#mark mark} or {@link
     * InputStream#reset reset} methods.  The stream will be safe for access by
     * multiple concurrent threads.  Closing the stream will in turn cause the
     * channel to be closed.  </p>
     *
     * @param  ch
     *         The channel from which bytes will be read
     *
     * @return  A new input stream
     */
    public static InputStream newInputStream(ReadableByteChannel ch) {
        checkNotNull(ch, "ch");
        return new sun.nio.ch.ChannelInputStream(ch);
    }

    /**
     * Constructs a stream that writes bytes to the given channel.
     *
     * <p> The write methods of the resulting stream will throw an
     * {@link IllegalBlockingModeException} if invoked while the underlying
     * channel is in non-blocking mode.  The stream will not be buffered.  The
     * stream will be safe for access by multiple concurrent threads.  Closing
     * the stream will in turn cause the channel to be closed.  </p>
     *
     * @param  ch
     *         The channel to which bytes will be written
     *
     * @return  A new output stream
     */
    public static OutputStream newOutputStream(final WritableByteChannel ch) {
        checkNotNull(ch, "ch");

        return new OutputStream() {

                private ByteBuffer bb = null;
                private byte[] bs = null;       // Invoker's previous array
                private byte[] b1 = null;

                public synchronized void write(int b) throws IOException {
                   if (b1 == null)
                        b1 = new byte[1];
                    b1[0] = (byte)b;
                    this.write(b1);
                }

                public synchronized void write(byte[] bs, int off, int len)
                    throws IOException
                {
                    if ((off < 0) || (off > bs.length) || (len < 0) ||
                        ((off + len) > bs.length) || ((off + len) < 0)) {
                        throw new IndexOutOfBoundsException();
                    } else if (len == 0) {
                        return;
                    }
                    ByteBuffer bb = ((this.bs == bs)
                                     ? this.bb
                                     : ByteBuffer.wrap(bs));
                    bb.limit(Math.min(off + len, bb.capacity()));
                    bb.position(off);
                    this.bb = bb;
                    this.bs = bs;
                    Channels.writeFully(ch, bb);
                }

                public void close() throws IOException {
                    ch.close();
                }

            };
    }

    /**
     * Constructs a stream that reads bytes from the given channel.
     *
     * <p> The stream will not be buffered, and it will not support the {@link
     * InputStream#mark mark} or {@link InputStream#reset reset} methods.  The
     * stream will be safe for access by multiple concurrent threads.  Closing
     * the stream will in turn cause the channel to be closed.  </p>
     *
     * @param  ch
     *         The channel from which bytes will be read
     *
     * @return  A new input stream
     *
     * @since 1.7
     */
    public static InputStream newInputStream(final AsynchronousByteChannel ch) {
        checkNotNull(ch, "ch");
        return new InputStream() {

            private ByteBuffer bb = null;
            private byte[] bs = null;           // Invoker's previous array
            private byte[] b1 = null;

            @Override
            public synchronized int read() throws IOException {
                if (b1 == null)
                    b1 = new byte[1];
                int n = this.read(b1);
                if (n == 1)
                    return b1[0] & 0xff;
                return -1;
            }

            @Override
            public synchronized int read(byte[] bs, int off, int len)
                throws IOException
            {
                if ((off < 0) || (off > bs.length) || (len < 0) ||
                    ((off + len) > bs.length) || ((off + len) < 0)) {
                    throw new IndexOutOfBoundsException();
                } else if (len == 0)
                    return 0;

                ByteBuffer bb = ((this.bs == bs)
                                 ? this.bb
                                 : ByteBuffer.wrap(bs));
                bb.position(off);
                bb.limit(Math.min(off + len, bb.capacity()));
                this.bb = bb;
                this.bs = bs;

                boolean interrupted = false;
                try {
                    for (;;) {
                        try {
                            return ch.read(bb).get();
                        } catch (ExecutionException ee) {
                            throw new IOException(ee.getCause());
                        } catch (InterruptedException ie) {
                            interrupted = true;
                        }
                    }
                } finally {
                    if (interrupted)
                        Thread.currentThread().interrupt();
                }
            }

            @Override
            public void close() throws IOException {
                ch.close();
            }
        };
    }

    /**
     * Constructs a stream that writes bytes to the given channel.
     *
     * <p> The stream will not be buffered. The stream will be safe for access
     * by multiple concurrent threads.  Closing the stream will in turn cause
     * the channel to be closed.  </p>
     *
     * @param  ch
     *         The channel to which bytes will be written
     *
     * @return  A new output stream
     *
     * @since 1.7
     */
    public static OutputStream newOutputStream(final AsynchronousByteChannel ch) {
        checkNotNull(ch, "ch");
        return new OutputStream() {

            private ByteBuffer bb = null;
            private byte[] bs = null;   // Invoker's previous array
            private byte[] b1 = null;

            @Override
            public synchronized void write(int b) throws IOException {
               if (b1 == null)
                    b1 = new byte[1];
                b1[0] = (byte)b;
                this.write(b1);
            }

            @Override
            public synchronized void write(byte[] bs, int off, int len)
                throws IOException
            {
                if ((off < 0) || (off > bs.length) || (len < 0) ||
                    ((off + len) > bs.length) || ((off + len) < 0)) {
                    throw new IndexOutOfBoundsException();
                } else if (len == 0) {
                    return;
                }
                ByteBuffer bb = ((this.bs == bs)
                                 ? this.bb
                                 : ByteBuffer.wrap(bs));
                bb.limit(Math.min(off + len, bb.capacity()));
                bb.position(off);
                this.bb = bb;
                this.bs = bs;

                boolean interrupted = false;
                try {
                    while (bb.remaining() > 0) {
                        try {
                            ch.write(bb).get();
                        } catch (ExecutionException ee) {
                            throw new IOException(ee.getCause());
                        } catch (InterruptedException ie) {
                            interrupted = true;
                        }
                    }
                } finally {
                    if (interrupted)
                        Thread.currentThread().interrupt();
                }
            }

            @Override
            public void close() throws IOException {
                ch.close();
            }
        };
    }


    // -- Channels from streams --

    /**
     * Constructs a channel that reads bytes from the given stream.
     *
     * <p> The resulting channel will not be buffered; it will simply redirect
     * its I/O operations to the given stream.  Closing the channel will in
     * turn cause the stream to be closed.  </p>
     *
     * @param  in
     *         The stream from which bytes are to be read
     *
     * @return  A new readable byte channel
     */
    public static ReadableByteChannel newChannel(final InputStream in) {
        checkNotNull(in, "in");

        if (in instanceof FileInputStream &&
            FileInputStream.class.equals(in.getClass())) {
            return ((FileInputStream)in).getChannel();
        }

        return new ReadableByteChannelImpl(in);
    }

    private static class ReadableByteChannelImpl
        extends AbstractInterruptibleChannel    // Not really interruptible
        implements ReadableByteChannel
    {
        InputStream in;
        private static final int TRANSFER_SIZE = 8192;
        private byte buf[] = new byte[0];
        private boolean open = true;
        private Object readLock = new Object();

        ReadableByteChannelImpl(InputStream in) {
            this.in = in;
        }

        public int read(ByteBuffer dst) throws IOException {
            int len = dst.remaining();
            int totalRead = 0;
            int bytesRead = 0;
            synchronized (readLock) {
                while (totalRead < len) {
                    int bytesToRead = Math.min((len - totalRead),
                                               TRANSFER_SIZE);
                    if (buf.length < bytesToRead)
                        buf = new byte[bytesToRead];
                    if ((totalRead > 0) && !(in.available() > 0))
                        break; // block at most once
                    try {
                        begin();
                        bytesRead = in.read(buf, 0, bytesToRead);
                    } finally {
                        end(bytesRead > 0);
                    }
                    if (bytesRead < 0)
                        break;
                    else
                        totalRead += bytesRead;
                    dst.put(buf, 0, bytesRead);
                }
                if ((bytesRead < 0) && (totalRead == 0))
                    return -1;

                return totalRead;
            }
        }

        protected void implCloseChannel() throws IOException {
            in.close();
            open = false;
        }
    }


    /**
     * Constructs a channel that writes bytes to the given stream.
     *
     * <p> The resulting channel will not be buffered; it will simply redirect
     * its I/O operations to the given stream.  Closing the channel will in
     * turn cause the stream to be closed.  </p>
     *
     * @param  out
     *         The stream to which bytes are to be written
     *
     * @return  A new writable byte channel
     */
    public static WritableByteChannel newChannel(final OutputStream out) {
        checkNotNull(out, "out");

        if (out instanceof FileOutputStream &&
            FileOutputStream.class.equals(out.getClass())) {
                return ((FileOutputStream)out).getChannel();
        }

        return new WritableByteChannelImpl(out);
    }

    private static class WritableByteChannelImpl
        extends AbstractInterruptibleChannel    // Not really interruptible
        implements WritableByteChannel
    {
        OutputStream out;
        private static final int TRANSFER_SIZE = 8192;
        private byte buf[] = new byte[0];
        private boolean open = true;
        private Object writeLock = new Object();

        WritableByteChannelImpl(OutputStream out) {
            this.out = out;
        }

        public int write(ByteBuffer src) throws IOException {
            int len = src.remaining();
            int totalWritten = 0;
            synchronized (writeLock) {
                while (totalWritten < len) {
                    int bytesToWrite = Math.min((len - totalWritten),
                                                TRANSFER_SIZE);
                    if (buf.length < bytesToWrite)
                        buf = new byte[bytesToWrite];
                    src.get(buf, 0, bytesToWrite);
                    try {
                        begin();
                        out.write(buf, 0, bytesToWrite);
                    } finally {
                        end(bytesToWrite > 0);
                    }
                    totalWritten += bytesToWrite;
                }
                return totalWritten;
            }
        }

        protected void implCloseChannel() throws IOException {
            out.close();
            open = false;
        }
    }


    // -- Character streams from channels --

    /**
     * Constructs a reader that decodes bytes from the given channel using the
     * given decoder.
     *
     * <p> The resulting stream will contain an internal input buffer of at
     * least <tt>minBufferCap bytes.  The stream's read methods
     * will, as needed, fill the buffer by reading bytes from the underlying
     * channel; if the channel is in non-blocking mode when bytes are to be
     * read then an {@link IllegalBlockingModeException} will be thrown.  The
     * resulting stream will not otherwise be buffered, and it will not support
     * the {@link Reader#mark mark} or {@link Reader#reset reset} methods.
     * Closing the stream will in turn cause the channel to be closed.  </p>
     *
     * @param  ch
     *         The channel from which bytes will be read
     *
     * @param  dec
     *         The charset decoder to be used
     *
     * @param  minBufferCap
     *         The minimum capacity of the internal byte buffer,
     *         or <tt>-1 if an implementation-dependent
     *         default capacity is to be used
     *
     * @return  A new reader
     */
    public static Reader newReader(ReadableByteChannel ch,
                                   CharsetDecoder dec,
                                   int minBufferCap)
    {
        checkNotNull(ch, "ch");
        return StreamDecoder.forDecoder(ch, dec.reset(), minBufferCap);
    }

    /**
     * Constructs a reader that decodes bytes from the given channel according
     * to the named charset.
     *
     * <p> An invocation of this method of the form
     *
     * <blockquote>
     * Channels.newReader(ch, csname)</pre>
     *
     * behaves in exactly the same way as the expression
     *
     * <blockquote>
     * Channels.newReader(ch,
     *                    Charset.forName(csName)
     *                        .newDecoder(),
     *                    -1);</pre>
     *
     * @param  ch
     *         The channel from which bytes will be read
     *
     * @param  csName
     *         The name of the charset to be used
     *
     * @return  A new reader
     *
     * @throws  UnsupportedCharsetException
     *          If no support for the named charset is available
     *          in this instance of the Java virtual machine
     */
    public static Reader newReader(ReadableByteChannel ch,
                                   String csName)
    {
        checkNotNull(csName, "csName");
        return newReader(ch, Charset.forName(csName).newDecoder(), -1);
    }

    /**
     * Constructs a writer that encodes characters using the given encoder and
     * writes the resulting bytes to the given channel.
     *
     * <p> The resulting stream will contain an internal output buffer of at
     * least <tt>minBufferCap bytes.  The stream's write methods
     * will, as needed, flush the buffer by writing bytes to the underlying
     * channel; if the channel is in non-blocking mode when bytes are to be
     * written then an {@link IllegalBlockingModeException} will be thrown.
     * The resulting stream will not otherwise be buffered.  Closing the stream
     * will in turn cause the channel to be closed.  </p>
     *
     * @param  ch
     *         The channel to which bytes will be written
     *
     * @param  enc
     *         The charset encoder to be used
     *
     * @param  minBufferCap
     *         The minimum capacity of the internal byte buffer,
     *         or <tt>-1 if an implementation-dependent
     *         default capacity is to be used
     *
     * @return  A new writer
     */
    public static Writer newWriter(final WritableByteChannel ch,
                                   final CharsetEncoder enc,
                                   final int minBufferCap)
    {
        checkNotNull(ch, "ch");
        return StreamEncoder.forEncoder(ch, enc.reset(), minBufferCap);
    }

    /**
     * Constructs a writer that encodes characters according to the named
     * charset and writes the resulting bytes to the given channel.
     *
     * <p> An invocation of this method of the form
     *
     * <blockquote>
     * Channels.newWriter(ch, csname)</pre>
     *
     * behaves in exactly the same way as the expression
     *
     * <blockquote>
     * Channels.newWriter(ch,
     *                    Charset.forName(csName)
     *                        .newEncoder(),
     *                    -1);</pre>
     *
     * @param  ch
     *         The channel to which bytes will be written
     *
     * @param  csName
     *         The name of the charset to be used
     *
     * @return  A new writer
     *
     * @throws  UnsupportedCharsetException
     *          If no support for the named charset is available
     *          in this instance of the Java virtual machine
     */
    public static Writer newWriter(WritableByteChannel ch,
                                   String csName)
    {
        checkNotNull(csName, "csName");
        return newWriter(ch, Charset.forName(csName).newEncoder(), -1);
    }
}

Other Java examples (source code examples)

Here is a short list of links related to this Java Channels.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.