alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (Path.java)

This example Java source code file (Path.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

comparable, file, filesystem, ioexception, iterable, iterator, net, network, override, path, string, uri, util, watchable, watchkey

The Path.java Java example source code

/*
 * Copyright (c) 2007, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package java.nio.file;

import java.io.File;
import java.io.IOException;
import java.net.URI;
import java.util.Iterator;

/**
 * An object that may be used to locate a file in a file system. It will
 * typically represent a system dependent file path.
 *
 * <p> A {@code Path} represents a path that is hierarchical and composed of a
 * sequence of directory and file name elements separated by a special separator
 * or delimiter. A <em>root component, that identifies a file system
 * hierarchy, may also be present. The name element that is <em>farthest
 * from the root of the directory hierarchy is the name of a file or directory.
 * The other name elements are directory names. A {@code Path} can represent a
 * root, a root and a sequence of names, or simply one or more name elements.
 * A {@code Path} is considered to be an <i>empty path if it consists
 * solely of one name element that is empty. Accessing a file using an
 * <i>empty path is equivalent to accessing the default directory of the
 * file system. {@code Path} defines the {@link #getFileName() getFileName},
 * {@link #getParent getParent}, {@link #getRoot getRoot}, and {@link #subpath
 * subpath} methods to access the path components or a subsequence of its name
 * elements.
 *
 * <p> In addition to accessing the components of a path, a {@code Path} also
 * defines the {@link #resolve(Path) resolve} and {@link #resolveSibling(Path)
 * resolveSibling} methods to combine paths. The {@link #relativize relativize}
 * method that can be used to construct a relative path between two paths.
 * Paths can be {@link #compareTo compared}, and tested against each other using
 * the {@link #startsWith startsWith} and {@link #endsWith endsWith} methods.
 *
 * <p> This interface extends {@link Watchable} interface so that a directory
 * located by a path can be {@link #register registered} with a {@link
 * WatchService} and entries in the directory watched. </p>
 *
 * <p> WARNING: This interface is only intended to be implemented by
 * those developing custom file system implementations. Methods may be added to
 * this interface in future releases. </p>
 *
 * <h2>Accessing Files
 * <p> Paths may be used with the {@link Files} class to operate on files,
 * directories, and other types of files. For example, suppose we want a {@link
 * java.io.BufferedReader} to read text from a file "{@code access.log}". The
 * file is located in a directory "{@code logs}" relative to the current working
 * directory and is UTF-8 encoded.
 * <pre>
 *     Path path = FileSystems.getDefault().getPath("logs", "access.log");
 *     BufferedReader reader = Files.newBufferedReader(path, StandardCharsets.UTF_8);
 * </pre>
 *
 * <a name="interop">

Interoperability

* <p> Paths associated with the default {@link * java.nio.file.spi.FileSystemProvider provider} are generally interoperable * with the {@link java.io.File java.io.File} class. Paths created by other * providers are unlikely to be interoperable with the abstract path names * represented by {@code java.io.File}. The {@link java.io.File#toPath toPath} * method may be used to obtain a {@code Path} from the abstract path name * represented by a {@code java.io.File} object. The resulting {@code Path} can * be used to operate on the same file as the {@code java.io.File} object. In * addition, the {@link #toFile toFile} method is useful to construct a {@code * File} from the {@code String} representation of a {@code Path}. * * <h2>Concurrency * <p> Implementations of this interface are immutable and safe for use by * multiple concurrent threads. * * @since 1.7 * @see Paths */ public interface Path extends Comparable<Path>, Iterable, Watchable { /** * Returns the file system that created this object. * * @return the file system that created this object */ FileSystem getFileSystem(); /** * Tells whether or not this path is absolute. * * <p> An absolute path is complete in that it doesn't need to be combined * with other path information in order to locate a file. * * @return {@code true} if, and only if, this path is absolute */ boolean isAbsolute(); /** * Returns the root component of this path as a {@code Path} object, * or {@code null} if this path does not have a root component. * * @return a path representing the root component of this path, * or {@code null} */ Path getRoot(); /** * Returns the name of the file or directory denoted by this path as a * {@code Path} object. The file name is the <em>farthest element from * the root in the directory hierarchy. * * @return a path representing the name of the file or directory, or * {@code null} if this path has zero elements */ Path getFileName(); /** * Returns the <em>parent path, or {@code null} if this path does not * have a parent. * * <p> The parent of this path object consists of this path's root * component, if any, and each element in the path except for the * <em>farthest from the root in the directory hierarchy. This method * does not access the file system; the path or its parent may not exist. * Furthermore, this method does not eliminate special names such as "." * and ".." that may be used in some implementations. On UNIX for example, * the parent of "{@code /a/b/c}" is "{@code /a/b}", and the parent of * {@code "x/y/.}" is "{@code x/y}". This method may be used with the {@link * #normalize normalize} method, to eliminate redundant names, for cases where * <em>shell-like navigation is required. * * <p> If this path has one or more elements, and no root component, then * this method is equivalent to evaluating the expression: * <blockquote>
     * subpath(0, getNameCount()-1);
     * </pre>
     *
     * @return  a path representing the path's parent
     */
    Path getParent();

    /**
     * Returns the number of name elements in the path.
     *
     * @return  the number of elements in the path, or {@code 0} if this path
     *          only represents a root component
     */
    int getNameCount();

    /**
     * Returns a name element of this path as a {@code Path} object.
     *
     * <p> The {@code index} parameter is the index of the name element to return.
     * The element that is <em>closest to the root in the directory hierarchy
     * has index {@code 0}. The element that is <em>farthest from the root
     * has index {@link #getNameCount count}{@code -1}.
     *
     * @param   index
     *          the index of the element
     *
     * @return  the name element
     *
     * @throws  IllegalArgumentException
     *          if {@code index} is negative, {@code index} is greater than or
     *          equal to the number of elements, or this path has zero name
     *          elements
     */
    Path getName(int index);

    /**
     * Returns a relative {@code Path} that is a subsequence of the name
     * elements of this path.
     *
     * <p> The {@code beginIndex} and {@code endIndex} parameters specify the
     * subsequence of name elements. The name that is <em>closest to the root
     * in the directory hierarchy has index {@code 0}. The name that is
     * <em>farthest from the root has index {@link #getNameCount
     * count}{@code -1}. The returned {@code Path} object has the name elements
     * that begin at {@code beginIndex} and extend to the element at index {@code
     * endIndex-1}.
     *
     * @param   beginIndex
     *          the index of the first element, inclusive
     * @param   endIndex
     *          the index of the last element, exclusive
     *
     * @return  a new {@code Path} object that is a subsequence of the name
     *          elements in this {@code Path}
     *
     * @throws  IllegalArgumentException
     *          if {@code beginIndex} is negative, or greater than or equal to
     *          the number of elements. If {@code endIndex} is less than or
     *          equal to {@code beginIndex}, or larger than the number of elements.
     */
    Path subpath(int beginIndex, int endIndex);

    /**
     * Tests if this path starts with the given path.
     *
     * <p> This path starts with the given path if this path's root
     * component <em>starts with the root component of the given path,
     * and this path starts with the same name elements as the given path.
     * If the given path has more name elements than this path then {@code false}
     * is returned.
     *
     * <p> Whether or not the root component of this path starts with the root
     * component of the given path is file system specific. If this path does
     * not have a root component and the given path has a root component then
     * this path does not start with the given path.
     *
     * <p> If the given path is associated with a different {@code FileSystem}
     * to this path then {@code false} is returned.
     *
     * @param   other
     *          the given path
     *
     * @return  {@code true} if this path starts with the given path; otherwise
     *          {@code false}
     */
    boolean startsWith(Path other);

    /**
     * Tests if this path starts with a {@code Path}, constructed by converting
     * the given path string, in exactly the manner specified by the {@link
     * #startsWith(Path) startsWith(Path)} method. On UNIX for example, the path
     * "{@code foo/bar}" starts with "{@code foo}" and "{@code foo/bar}". It
     * does not start with "{@code f}" or "{@code fo}".
     *
     * @param   other
     *          the given path string
     *
     * @return  {@code true} if this path starts with the given path; otherwise
     *          {@code false}
     *
     * @throws  InvalidPathException
     *          If the path string cannot be converted to a Path.
     */
    boolean startsWith(String other);

    /**
     * Tests if this path ends with the given path.
     *
     * <p> If the given path has N elements, and no root component,
     * and this path has <em>N or more elements, then this path ends with
     * the given path if the last <em>N elements of each path, starting at
     * the element farthest from the root, are equal.
     *
     * <p> If the given path has a root component then this path ends with the
     * given path if the root component of this path <em>ends with the root
     * component of the given path, and the corresponding elements of both paths
     * are equal. Whether or not the root component of this path ends with the
     * root component of the given path is file system specific. If this path
     * does not have a root component and the given path has a root component
     * then this path does not end with the given path.
     *
     * <p> If the given path is associated with a different {@code FileSystem}
     * to this path then {@code false} is returned.
     *
     * @param   other
     *          the given path
     *
     * @return  {@code true} if this path ends with the given path; otherwise
     *          {@code false}
     */
    boolean endsWith(Path other);

    /**
     * Tests if this path ends with a {@code Path}, constructed by converting
     * the given path string, in exactly the manner specified by the {@link
     * #endsWith(Path) endsWith(Path)} method. On UNIX for example, the path
     * "{@code foo/bar}" ends with "{@code foo/bar}" and "{@code bar}". It does
     * not end with "{@code r}" or "{@code /bar}". Note that trailing separators
     * are not taken into account, and so invoking this method on the {@code
     * Path}"{@code foo/bar}" with the {@code String} "{@code bar/}" returns
     * {@code true}.
     *
     * @param   other
     *          the given path string
     *
     * @return  {@code true} if this path ends with the given path; otherwise
     *          {@code false}
     *
     * @throws  InvalidPathException
     *          If the path string cannot be converted to a Path.
     */
    boolean endsWith(String other);

    /**
     * Returns a path that is this path with redundant name elements eliminated.
     *
     * <p> The precise definition of this method is implementation dependent but
     * in general it derives from this path, a path that does not contain
     * <em>redundant name elements. In many file systems, the "{@code .}"
     * and "{@code ..}" are special names used to indicate the current directory
     * and parent directory. In such file systems all occurrences of "{@code .}"
     * are considered redundant. If a "{@code ..}" is preceded by a
     * non-"{@code ..}" name then both names are considered redundant (the
     * process to identify such names is repeated until it is no longer
     * applicable).
     *
     * <p> This method does not access the file system; the path may not locate
     * a file that exists. Eliminating "{@code ..}" and a preceding name from a
     * path may result in the path that locates a different file than the original
     * path. This can arise when the preceding name is a symbolic link.
     *
     * @return  the resulting path or this path if it does not contain
     *          redundant name elements; an empty path is returned if this path
     *          does have a root component and all name elements are redundant
     *
     * @see #getParent
     * @see #toRealPath
     */
    Path normalize();

    // -- resolution and relativization --

    /**
     * Resolve the given path against this path.
     *
     * <p> If the {@code other} parameter is an {@link #isAbsolute() absolute}
     * path then this method trivially returns {@code other}. If {@code other}
     * is an <i>empty path then this method trivially returns this path.
     * Otherwise this method considers this path to be a directory and resolves
     * the given path against this path. In the simplest case, the given path
     * does not have a {@link #getRoot root} component, in which case this method
     * <em>joins the given path to this path and returns a resulting path
     * that {@link #endsWith ends} with the given path. Where the given path has
     * a root component then resolution is highly implementation dependent and
     * therefore unspecified.
     *
     * @param   other
     *          the path to resolve against this path
     *
     * @return  the resulting path
     *
     * @see #relativize
     */
    Path resolve(Path other);

    /**
     * Converts a given path string to a {@code Path} and resolves it against
     * this {@code Path} in exactly the manner specified by the {@link
     * #resolve(Path) resolve} method. For example, suppose that the name
     * separator is "{@code /}" and a path represents "{@code foo/bar}", then
     * invoking this method with the path string "{@code gus}" will result in
     * the {@code Path} "{@code foo/bar/gus}".
     *
     * @param   other
     *          the path string to resolve against this path
     *
     * @return  the resulting path
     *
     * @throws  InvalidPathException
     *          if the path string cannot be converted to a Path.
     *
     * @see FileSystem#getPath
     */
    Path resolve(String other);

    /**
     * Resolves the given path against this path's {@link #getParent parent}
     * path. This is useful where a file name needs to be <i>replaced with
     * another file name. For example, suppose that the name separator is
     * "{@code /}" and a path represents "{@code dir1/dir2/foo}", then invoking
     * this method with the {@code Path} "{@code bar}" will result in the {@code
     * Path} "{@code dir1/dir2/bar}". If this path does not have a parent path,
     * or {@code other} is {@link #isAbsolute() absolute}, then this method
     * returns {@code other}. If {@code other} is an empty path then this method
     * returns this path's parent, or where this path doesn't have a parent, the
     * empty path.
     *
     * @param   other
     *          the path to resolve against this path's parent
     *
     * @return  the resulting path
     *
     * @see #resolve(Path)
     */
    Path resolveSibling(Path other);

    /**
     * Converts a given path string to a {@code Path} and resolves it against
     * this path's {@link #getParent parent} path in exactly the manner
     * specified by the {@link #resolveSibling(Path) resolveSibling} method.
     *
     * @param   other
     *          the path string to resolve against this path's parent
     *
     * @return  the resulting path
     *
     * @throws  InvalidPathException
     *          if the path string cannot be converted to a Path.
     *
     * @see FileSystem#getPath
     */
    Path resolveSibling(String other);

    /**
     * Constructs a relative path between this path and a given path.
     *
     * <p> Relativization is the inverse of {@link #resolve(Path) resolution}.
     * This method attempts to construct a {@link #isAbsolute relative} path
     * that when {@link #resolve(Path) resolved} against this path, yields a
     * path that locates the same file as the given path. For example, on UNIX,
     * if this path is {@code "/a/b"} and the given path is {@code "/a/b/c/d"}
     * then the resulting relative path would be {@code "c/d"}. Where this
     * path and the given path do not have a {@link #getRoot root} component,
     * then a relative path can be constructed. A relative path cannot be
     * constructed if only one of the paths have a root component. Where both
     * paths have a root component then it is implementation dependent if a
     * relative path can be constructed. If this path and the given path are
     * {@link #equals equal} then an <i>empty path is returned.
     *
     * <p> For any two {@link #normalize normalized} paths p and
     * <i>q, where q does not have a root component,
     * <blockquote>
     *   <i>p.relativize(p.resolve(q)).equals(q)
     * </blockquote>
     *
     * <p> When symbolic links are supported, then whether the resulting path,
     * when resolved against this path, yields a path that can be used to locate
     * the {@link Files#isSameFile same} file as {@code other} is implementation
     * dependent. For example, if this path is  {@code "/a/b"} and the given
     * path is {@code "/a/x"} then the resulting relative path may be {@code
     * "../x"}. If {@code "b"} is a symbolic link then is implementation
     * dependent if {@code "a/b/../x"} would locate the same file as {@code "/a/x"}.
     *
     * @param   other
     *          the path to relativize against this path
     *
     * @return  the resulting relative path, or an empty path if both paths are
     *          equal
     *
     * @throws  IllegalArgumentException
     *          if {@code other} is not a {@code Path} that can be relativized
     *          against this path
     */
    Path relativize(Path other);

    /**
     * Returns a URI to represent this path.
     *
     * <p> This method constructs an absolute {@link URI} with a {@link
     * URI#getScheme() scheme} equal to the URI scheme that identifies the
     * provider. The exact form of the scheme specific part is highly provider
     * dependent.
     *
     * <p> In the case of the default provider, the URI is hierarchical with
     * a {@link URI#getPath() path} component that is absolute. The query and
     * fragment components are undefined. Whether the authority component is
     * defined or not is implementation dependent. There is no guarantee that
     * the {@code URI} may be used to construct a {@link java.io.File java.io.File}.
     * In particular, if this path represents a Universal Naming Convention (UNC)
     * path, then the UNC server name may be encoded in the authority component
     * of the resulting URI. In the case of the default provider, and the file
     * exists, and it can be determined that the file is a directory, then the
     * resulting {@code URI} will end with a slash.
     *
     * <p> The default provider provides a similar round-trip guarantee
     * to the {@link java.io.File} class. For a given {@code Path} <i>p it
     * is guaranteed that
     * <blockquote>
     * {@link Paths#get(URI) Paths.get}(</tt>p.toUri()).equals(p
     * <tt>.{@link #toAbsolutePath() toAbsolutePath}())
     * </blockquote>
     * so long as the original {@code Path}, the {@code URI}, and the new {@code
     * Path} are all created in (possibly different invocations of) the same
     * Java virtual machine. Whether other providers make any guarantees is
     * provider specific and therefore unspecified.
     *
     * <p> When a file system is constructed to access the contents of a file
     * as a file system then it is highly implementation specific if the returned
     * URI represents the given path in the file system or it represents a
     * <em>compound URI that encodes the URI of the enclosing file system.
     * A format for compound URIs is not defined in this release; such a scheme
     * may be added in a future release.
     *
     * @return  the URI representing this path
     *
     * @throws  java.io.IOError
     *          if an I/O error occurs obtaining the absolute path, or where a
     *          file system is constructed to access the contents of a file as
     *          a file system, and the URI of the enclosing file system cannot be
     *          obtained
     *
     * @throws  SecurityException
     *          In the case of the default provider, and a security manager
     *          is installed, the {@link #toAbsolutePath toAbsolutePath} method
     *          throws a security exception.
     */
    URI toUri();

    /**
     * Returns a {@code Path} object representing the absolute path of this
     * path.
     *
     * <p> If this path is already {@link Path#isAbsolute absolute} then this
     * method simply returns this path. Otherwise, this method resolves the path
     * in an implementation dependent manner, typically by resolving the path
     * against a file system default directory. Depending on the implementation,
     * this method may throw an I/O error if the file system is not accessible.
     *
     * @return  a {@code Path} object representing the absolute path
     *
     * @throws  java.io.IOError
     *          if an I/O error occurs
     * @throws  SecurityException
     *          In the case of the default provider, a security manager
     *          is installed, and this path is not absolute, then the security
     *          manager's {@link SecurityManager#checkPropertyAccess(String)
     *          checkPropertyAccess} method is invoked to check access to the
     *          system property {@code user.dir}
     */
    Path toAbsolutePath();

    /**
     * Returns the <em>real path of an existing file.
     *
     * <p> The precise definition of this method is implementation dependent but
     * in general it derives from this path, an {@link #isAbsolute absolute}
     * path that locates the {@link Files#isSameFile same} file as this path, but
     * with name elements that represent the actual name of the directories
     * and the file. For example, where filename comparisons on a file system
     * are case insensitive then the name elements represent the names in their
     * actual case. Additionally, the resulting path has redundant name
     * elements removed.
     *
     * <p> If this path is relative then its absolute path is first obtained,
     * as if by invoking the {@link #toAbsolutePath toAbsolutePath} method.
     *
     * <p> The {@code options} array may be used to indicate how symbolic links
     * are handled. By default, symbolic links are resolved to their final
     * target. If the option {@link LinkOption#NOFOLLOW_LINKS NOFOLLOW_LINKS} is
     * present then this method does not resolve symbolic links.
     *
     * Some implementations allow special names such as "{@code ..}" to refer to
     * the parent directory. When deriving the <em>real path, and a
     * "{@code ..}" (or equivalent) is preceded by a non-"{@code ..}" name then
     * an implementation will typically cause both names to be removed. When
     * not resolving symbolic links and the preceding name is a symbolic link
     * then the names are only removed if it guaranteed that the resulting path
     * will locate the same file as this path.
     *
     * @param   options
     *          options indicating how symbolic links are handled
     *
     * @return  an absolute path represent the <em>real path of the file
     *          located by this object
     *
     * @throws  IOException
     *          if the file does not exist or an I/O error occurs
     * @throws  SecurityException
     *          In the case of the default provider, and a security manager
     *          is installed, its {@link SecurityManager#checkRead(String) checkRead}
     *          method is invoked to check read access to the file, and where
     *          this path is not absolute, its {@link SecurityManager#checkPropertyAccess(String)
     *          checkPropertyAccess} method is invoked to check access to the
     *          system property {@code user.dir}
     */
    Path toRealPath(LinkOption... options) throws IOException;

    /**
     * Returns a {@link File} object representing this path. Where this {@code
     * Path} is associated with the default provider, then this method is
     * equivalent to returning a {@code File} object constructed with the
     * {@code String} representation of this path.
     *
     * <p> If this path was created by invoking the {@code File} {@link
     * File#toPath toPath} method then there is no guarantee that the {@code
     * File} object returned by this method is {@link #equals equal} to the
     * original {@code File}.
     *
     * @return  a {@code File} object representing this path
     *
     * @throws  UnsupportedOperationException
     *          if this {@code Path} is not associated with the default provider
     */
    File toFile();

    // -- watchable --

    /**
     * Registers the file located by this path with a watch service.
     *
     * <p> In this release, this path locates a directory that exists. The
     * directory is registered with the watch service so that entries in the
     * directory can be watched. The {@code events} parameter is the events to
     * register and may contain the following events:
     * <ul>
     *   <li>{@link StandardWatchEventKinds#ENTRY_CREATE ENTRY_CREATE} -
     *       entry created or moved into the directory</li>
     *   <li>{@link StandardWatchEventKinds#ENTRY_DELETE ENTRY_DELETE} -
     *        entry deleted or moved out of the directory</li>
     *   <li>{@link StandardWatchEventKinds#ENTRY_MODIFY ENTRY_MODIFY} -
     *        entry in directory was modified</li>
     * </ul>
     *
     * <p> The {@link WatchEvent#context context} for these events is the
     * relative path between the directory located by this path, and the path
     * that locates the directory entry that is created, deleted, or modified.
     *
     * <p> The set of events may include additional implementation specific
     * event that are not defined by the enum {@link StandardWatchEventKinds}
     *
     * <p> The {@code modifiers} parameter specifies modifiers that
     * qualify how the directory is registered. This release does not define any
     * <em>standard modifiers. It may contain implementation specific
     * modifiers.
     *
     * <p> Where a file is registered with a watch service by means of a symbolic
     * link then it is implementation specific if the watch continues to depend
     * on the existence of the symbolic link after it is registered.
     *
     * @param   watcher
     *          the watch service to which this object is to be registered
     * @param   events
     *          the events for which this object should be registered
     * @param   modifiers
     *          the modifiers, if any, that modify how the object is registered
     *
     * @return  a key representing the registration of this object with the
     *          given watch service
     *
     * @throws  UnsupportedOperationException
     *          if unsupported events or modifiers are specified
     * @throws  IllegalArgumentException
     *          if an invalid combination of events or modifiers is specified
     * @throws  ClosedWatchServiceException
     *          if the watch service is closed
     * @throws  NotDirectoryException
     *          if the file is registered to watch the entries in a directory
     *          and the file is not a directory  <i>(optional specific exception)
     * @throws  IOException
     *          if an I/O error occurs
     * @throws  SecurityException
     *          In the case of the default provider, and a security manager is
     *          installed, the {@link SecurityManager#checkRead(String) checkRead}
     *          method is invoked to check read access to the file.
     */
    @Override
    WatchKey register(WatchService watcher,
                      WatchEvent.Kind<?>[] events,
                      WatchEvent.Modifier... modifiers)
        throws IOException;

    /**
     * Registers the file located by this path with a watch service.
     *
     * <p> An invocation of this method behaves in exactly the same way as the
     * invocation
     * <pre>
     *     watchable.{@link #register(WatchService,WatchEvent.Kind[],WatchEvent.Modifier[]) register}(watcher, events, new WatchEvent.Modifier[0]);
     * </pre>
     *
     * <p> Usage Example:
     * Suppose we wish to register a directory for entry create, delete, and modify
     * events:
     * <pre>
     *     Path dir = ...
     *     WatchService watcher = ...
     *
     *     WatchKey key = dir.register(watcher, ENTRY_CREATE, ENTRY_DELETE, ENTRY_MODIFY);
     * </pre>
     * @param   watcher
     *          The watch service to which this object is to be registered
     * @param   events
     *          The events for which this object should be registered
     *
     * @return  A key representing the registration of this object with the
     *          given watch service
     *
     * @throws  UnsupportedOperationException
     *          If unsupported events are specified
     * @throws  IllegalArgumentException
     *          If an invalid combination of events is specified
     * @throws  ClosedWatchServiceException
     *          If the watch service is closed
     * @throws  NotDirectoryException
     *          If the file is registered to watch the entries in a directory
     *          and the file is not a directory  <i>(optional specific exception)
     * @throws  IOException
     *          If an I/O error occurs
     * @throws  SecurityException
     *          In the case of the default provider, and a security manager is
     *          installed, the {@link SecurityManager#checkRead(String) checkRead}
     *          method is invoked to check read access to the file.
     */
    @Override
    WatchKey register(WatchService watcher,
                      WatchEvent.Kind<?>... events)
        throws IOException;

    // -- Iterable --

    /**
     * Returns an iterator over the name elements of this path.
     *
     * <p> The first element returned by the iterator represents the name
     * element that is closest to the root in the directory hierarchy, the
     * second element is the next closest, and so on. The last element returned
     * is the name of the file or directory denoted by this path. The {@link
     * #getRoot root} component, if present, is not returned by the iterator.
     *
     * @return  an iterator over the name elements of this path.
     */
    @Override
    Iterator<Path> iterator();

    // -- compareTo/equals/hashCode --

    /**
     * Compares two abstract paths lexicographically. The ordering defined by
     * this method is provider specific, and in the case of the default
     * provider, platform specific. This method does not access the file system
     * and neither file is required to exist.
     *
     * <p> This method may not be used to compare paths that are associated
     * with different file system providers.
     *
     * @param   other  the path compared to this path.
     *
     * @return  zero if the argument is {@link #equals equal} to this path, a
     *          value less than zero if this path is lexicographically less than
     *          the argument, or a value greater than zero if this path is
     *          lexicographically greater than the argument
     *
     * @throws  ClassCastException
     *          if the paths are associated with different providers
     */
    @Override
    int compareTo(Path other);

    /**
     * Tests this path for equality with the given object.
     *
     * <p> If the given object is not a Path, or is a Path associated with a
     * different {@code FileSystem}, then this method returns {@code false}.
     *
     * <p> Whether or not two path are equal depends on the file system
     * implementation. In some cases the paths are compared without regard
     * to case, and others are case sensitive. This method does not access the
     * file system and the file is not required to exist. Where required, the
     * {@link Files#isSameFile isSameFile} method may be used to check if two
     * paths locate the same file.
     *
     * <p> This method satisfies the general contract of the {@link
     * java.lang.Object#equals(Object) Object.equals} method. </p>
     *
     * @param   other
     *          the object to which this object is to be compared
     *
     * @return  {@code true} if, and only if, the given object is a {@code Path}
     *          that is identical to this {@code Path}
     */
    boolean equals(Object other);

    /**
     * Computes a hash code for this path.
     *
     * <p> The hash code is based upon the components of the path, and
     * satisfies the general contract of the {@link Object#hashCode
     * Object.hashCode} method.
     *
     * @return  the hash-code value for this path
     */
    int hashCode();

    /**
     * Returns the string representation of this path.
     *
     * <p> If this path was created by converting a path string using the
     * {@link FileSystem#getPath getPath} method then the path string returned
     * by this method may differ from the original String used to create the path.
     *
     * <p> The returned path string uses the default name {@link
     * FileSystem#getSeparator separator} to separate names in the path.
     *
     * @return  the string representation of this path
     */
    String toString();
}

Other Java examples (source code examples)

Here is a short list of links related to this Java Path.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.