alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (CollationElementIterator.java)

This example Java source code file (CollationElementIterator.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

collationelementiterator, entrypair, normalizerbase, nullorder, rbcollationtables, rulebasedcollator, string, stringbuffer, suppresswarnings, text, unmappedcharvalue, util, vector

The CollationElementIterator.java Java example source code

/*
 * Copyright (c) 1996, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

/*
 * (C) Copyright Taligent, Inc. 1996, 1997 - All Rights Reserved
 * (C) Copyright IBM Corp. 1996-1998 - All Rights Reserved
 *
 *   The original version of this source code and documentation is copyrighted
 * and owned by Taligent, Inc., a wholly-owned subsidiary of IBM. These
 * materials are provided under terms of a License Agreement between Taligent
 * and Sun. This technology is protected by multiple US and International
 * patents. This notice and attribution to Taligent may not be removed.
 *   Taligent is a registered trademark of Taligent, Inc.
 *
 */

package java.text;

import java.lang.Character;
import java.util.Vector;
import sun.text.CollatorUtilities;
import sun.text.normalizer.NormalizerBase;

/**
 * The <code>CollationElementIterator class is used as an iterator
 * to walk through each character of an international string. Use the iterator
 * to return the ordering priority of the positioned character. The ordering
 * priority of a character, which we refer to as a key, defines how a character
 * is collated in the given collation object.
 *
 * <p>
 * For example, consider the following in Spanish:
 * <blockquote>
 * <pre>
 * "ca" ? the first key is key('c') and second key is key('a').
 * "cha" ? the first key is key('ch') and second key is key('a').
 * </pre>
 * </blockquote>
 * And in German,
 * <blockquote>
 * <pre>
 * "\u00e4b" ? the first key is key('a'), the second key is key('e'), and
 * the third key is key('b').
 * </pre>
 * </blockquote>
 * The key of a character is an integer composed of primary order(short),
 * secondary order(byte), and tertiary order(byte). Java strictly defines
 * the size and signedness of its primitive data types. Therefore, the static
 * functions <code>primaryOrder, secondaryOrder, and
 * <code>tertiaryOrder return int, short,
 * and <code>short respectively to ensure the correctness of the key
 * value.
 *
 * <p>
 * Example of the iterator usage,
 * <blockquote>
 * <pre>
 *
 *  String testString = "This is a test";
 *  Collator col = Collator.getInstance();
 *  if (col instanceof RuleBasedCollator) {
 *      RuleBasedCollator ruleBasedCollator = (RuleBasedCollator)col;
 *      CollationElementIterator collationElementIterator = ruleBasedCollator.getCollationElementIterator(testString);
 *      int primaryOrder = CollationElementIterator.primaryOrder(collationElementIterator.next());
 *          :
 *  }
 * </pre>
 * </blockquote>
 *
 * <p>
 * <code>CollationElementIterator.next returns the collation order
 * of the next character. A collation order consists of primary order,
 * secondary order and tertiary order. The data type of the collation
 * order is <strong>int. The first 16 bits of a collation order
 * is its primary order; the next 8 bits is the secondary order and the
 * last 8 bits is the tertiary order.
 *
 * <p>Note: CollationElementIterator is a part of
 * <code>RuleBasedCollator implementation. It is only usable
 * with <code>RuleBasedCollator instances.
 *
 * @see                Collator
 * @see                RuleBasedCollator
 * @author             Helena Shih, Laura Werner, Richard Gillam
 */
public final class CollationElementIterator
{
    /**
     * Null order which indicates the end of string is reached by the
     * cursor.
     */
    public final static int NULLORDER = 0xffffffff;

    /**
     * CollationElementIterator constructor.  This takes the source string and
     * the collation object.  The cursor will walk thru the source string based
     * on the predefined collation rules.  If the source string is empty,
     * NULLORDER will be returned on the calls to next().
     * @param sourceText the source string.
     * @param owner the collation object.
     */
    CollationElementIterator(String sourceText, RuleBasedCollator owner) {
        this.owner = owner;
        ordering = owner.getTables();
        if ( sourceText.length() != 0 ) {
            NormalizerBase.Mode mode =
                CollatorUtilities.toNormalizerMode(owner.getDecomposition());
            text = new NormalizerBase(sourceText, mode);
        }
    }

    /**
     * CollationElementIterator constructor.  This takes the source string and
     * the collation object.  The cursor will walk thru the source string based
     * on the predefined collation rules.  If the source string is empty,
     * NULLORDER will be returned on the calls to next().
     * @param sourceText the source string.
     * @param owner the collation object.
     */
    CollationElementIterator(CharacterIterator sourceText, RuleBasedCollator owner) {
        this.owner = owner;
        ordering = owner.getTables();
        NormalizerBase.Mode mode =
            CollatorUtilities.toNormalizerMode(owner.getDecomposition());
        text = new NormalizerBase(sourceText, mode);
    }

    /**
     * Resets the cursor to the beginning of the string.  The next call
     * to next() will return the first collation element in the string.
     */
    public void reset()
    {
        if (text != null) {
            text.reset();
            NormalizerBase.Mode mode =
                CollatorUtilities.toNormalizerMode(owner.getDecomposition());
            text.setMode(mode);
        }
        buffer = null;
        expIndex = 0;
        swapOrder = 0;
    }

    /**
     * Get the next collation element in the string.  <p>This iterator iterates
     * over a sequence of collation elements that were built from the string.
     * Because there isn't necessarily a one-to-one mapping from characters to
     * collation elements, this doesn't mean the same thing as "return the
     * collation element [or ordering priority] of the next character in the
     * string".</p>
     * <p>This function returns the collation element that the iterator is currently
     * pointing to and then updates the internal pointer to point to the next element.
     * previous() updates the pointer first and then returns the element.  This
     * means that when you change direction while iterating (i.e., call next() and
     * then call previous(), or call previous() and then call next()), you'll get
     * back the same element twice.</p>
     *
     * @return the next collation element
     */
    public int next()
    {
        if (text == null) {
            return NULLORDER;
        }
        NormalizerBase.Mode textMode = text.getMode();
        // convert the owner's mode to something the Normalizer understands
        NormalizerBase.Mode ownerMode =
            CollatorUtilities.toNormalizerMode(owner.getDecomposition());
        if (textMode != ownerMode) {
            text.setMode(ownerMode);
        }

        // if buffer contains any decomposed char values
        // return their strength orders before continuing in
        // the Normalizer's CharacterIterator.
        if (buffer != null) {
            if (expIndex < buffer.length) {
                return strengthOrder(buffer[expIndex++]);
            } else {
                buffer = null;
                expIndex = 0;
            }
        } else if (swapOrder != 0) {
            if (Character.isSupplementaryCodePoint(swapOrder)) {
                char[] chars = Character.toChars(swapOrder);
                swapOrder = chars[1];
                return chars[0] << 16;
            }
            int order = swapOrder << 16;
            swapOrder = 0;
            return order;
        }
        int ch  = text.next();

        // are we at the end of Normalizer's text?
        if (ch == NormalizerBase.DONE) {
            return NULLORDER;
        }

        int value = ordering.getUnicodeOrder(ch);
        if (value == RuleBasedCollator.UNMAPPED) {
            swapOrder = ch;
            return UNMAPPEDCHARVALUE;
        }
        else if (value >= RuleBasedCollator.CONTRACTCHARINDEX) {
            value = nextContractChar(ch);
        }
        if (value >= RuleBasedCollator.EXPANDCHARINDEX) {
            buffer = ordering.getExpandValueList(value);
            expIndex = 0;
            value = buffer[expIndex++];
        }

        if (ordering.isSEAsianSwapping()) {
            int consonant;
            if (isThaiPreVowel(ch)) {
                consonant = text.next();
                if (isThaiBaseConsonant(consonant)) {
                    buffer = makeReorderedBuffer(consonant, value, buffer, true);
                    value = buffer[0];
                    expIndex = 1;
                } else if (consonant != NormalizerBase.DONE) {
                    text.previous();
                }
            }
            if (isLaoPreVowel(ch)) {
                consonant = text.next();
                if (isLaoBaseConsonant(consonant)) {
                    buffer = makeReorderedBuffer(consonant, value, buffer, true);
                    value = buffer[0];
                    expIndex = 1;
                } else if (consonant != NormalizerBase.DONE) {
                    text.previous();
                }
            }
        }

        return strengthOrder(value);
    }

    /**
     * Get the previous collation element in the string.  <p>This iterator iterates
     * over a sequence of collation elements that were built from the string.
     * Because there isn't necessarily a one-to-one mapping from characters to
     * collation elements, this doesn't mean the same thing as "return the
     * collation element [or ordering priority] of the previous character in the
     * string".</p>
     * <p>This function updates the iterator's internal pointer to point to the
     * collation element preceding the one it's currently pointing to and then
     * returns that element, while next() returns the current element and then
     * updates the pointer.  This means that when you change direction while
     * iterating (i.e., call next() and then call previous(), or call previous()
     * and then call next()), you'll get back the same element twice.</p>
     *
     * @return the previous collation element
     * @since 1.2
     */
    public int previous()
    {
        if (text == null) {
            return NULLORDER;
        }
        NormalizerBase.Mode textMode = text.getMode();
        // convert the owner's mode to something the Normalizer understands
        NormalizerBase.Mode ownerMode =
            CollatorUtilities.toNormalizerMode(owner.getDecomposition());
        if (textMode != ownerMode) {
            text.setMode(ownerMode);
        }
        if (buffer != null) {
            if (expIndex > 0) {
                return strengthOrder(buffer[--expIndex]);
            } else {
                buffer = null;
                expIndex = 0;
            }
        } else if (swapOrder != 0) {
            if (Character.isSupplementaryCodePoint(swapOrder)) {
                char[] chars = Character.toChars(swapOrder);
                swapOrder = chars[1];
                return chars[0] << 16;
            }
            int order = swapOrder << 16;
            swapOrder = 0;
            return order;
        }
        int ch = text.previous();
        if (ch == NormalizerBase.DONE) {
            return NULLORDER;
        }

        int value = ordering.getUnicodeOrder(ch);

        if (value == RuleBasedCollator.UNMAPPED) {
            swapOrder = UNMAPPEDCHARVALUE;
            return ch;
        } else if (value >= RuleBasedCollator.CONTRACTCHARINDEX) {
            value = prevContractChar(ch);
        }
        if (value >= RuleBasedCollator.EXPANDCHARINDEX) {
            buffer = ordering.getExpandValueList(value);
            expIndex = buffer.length;
            value = buffer[--expIndex];
        }

        if (ordering.isSEAsianSwapping()) {
            int vowel;
            if (isThaiBaseConsonant(ch)) {
                vowel = text.previous();
                if (isThaiPreVowel(vowel)) {
                    buffer = makeReorderedBuffer(vowel, value, buffer, false);
                    expIndex = buffer.length - 1;
                    value = buffer[expIndex];
                } else {
                    text.next();
                }
            }
            if (isLaoBaseConsonant(ch)) {
                vowel = text.previous();
                if (isLaoPreVowel(vowel)) {
                    buffer = makeReorderedBuffer(vowel, value, buffer, false);
                    expIndex = buffer.length - 1;
                    value = buffer[expIndex];
                } else {
                    text.next();
                }
            }
        }

        return strengthOrder(value);
    }

    /**
     * Return the primary component of a collation element.
     * @param order the collation element
     * @return the element's primary component
     */
    public final static int primaryOrder(int order)
    {
        order &= RBCollationTables.PRIMARYORDERMASK;
        return (order >>> RBCollationTables.PRIMARYORDERSHIFT);
    }
    /**
     * Return the secondary component of a collation element.
     * @param order the collation element
     * @return the element's secondary component
     */
    public final static short secondaryOrder(int order)
    {
        order = order & RBCollationTables.SECONDARYORDERMASK;
        return ((short)(order >> RBCollationTables.SECONDARYORDERSHIFT));
    }
    /**
     * Return the tertiary component of a collation element.
     * @param order the collation element
     * @return the element's tertiary component
     */
    public final static short tertiaryOrder(int order)
    {
        return ((short)(order &= RBCollationTables.TERTIARYORDERMASK));
    }

    /**
     *  Get the comparison order in the desired strength.  Ignore the other
     *  differences.
     *  @param order The order value
     */
    final int strengthOrder(int order)
    {
        int s = owner.getStrength();
        if (s == Collator.PRIMARY)
        {
            order &= RBCollationTables.PRIMARYDIFFERENCEONLY;
        } else if (s == Collator.SECONDARY)
        {
            order &= RBCollationTables.SECONDARYDIFFERENCEONLY;
        }
        return order;
    }

    /**
     * Sets the iterator to point to the collation element corresponding to
     * the specified character (the parameter is a CHARACTER offset in the
     * original string, not an offset into its corresponding sequence of
     * collation elements).  The value returned by the next call to next()
     * will be the collation element corresponding to the specified position
     * in the text.  If that position is in the middle of a contracting
     * character sequence, the result of the next call to next() is the
     * collation element for that sequence.  This means that getOffset()
     * is not guaranteed to return the same value as was passed to a preceding
     * call to setOffset().
     *
     * @param newOffset The new character offset into the original text.
     * @since 1.2
     */
    @SuppressWarnings("deprecation") // getBeginIndex, getEndIndex and setIndex are deprecated
    public void setOffset(int newOffset)
    {
        if (text != null) {
            if (newOffset < text.getBeginIndex()
                || newOffset >= text.getEndIndex()) {
                    text.setIndexOnly(newOffset);
            } else {
                int c = text.setIndex(newOffset);

                // if the desired character isn't used in a contracting character
                // sequence, bypass all the backing-up logic-- we're sitting on
                // the right character already
                if (ordering.usedInContractSeq(c)) {
                    // walk backwards through the string until we see a character
                    // that DOESN'T participate in a contracting character sequence
                    while (ordering.usedInContractSeq(c)) {
                        c = text.previous();
                    }
                    // now walk forward using this object's next() method until
                    // we pass the starting point and set our current position
                    // to the beginning of the last "character" before or at
                    // our starting position
                    int last = text.getIndex();
                    while (text.getIndex() <= newOffset) {
                        last = text.getIndex();
                        next();
                    }
                    text.setIndexOnly(last);
                    // we don't need this, since last is the last index
                    // that is the starting of the contraction which encompass
                    // newOffset
                    // text.previous();
                }
            }
        }
        buffer = null;
        expIndex = 0;
        swapOrder = 0;
    }

    /**
     * Returns the character offset in the original text corresponding to the next
     * collation element.  (That is, getOffset() returns the position in the text
     * corresponding to the collation element that will be returned by the next
     * call to next().)  This value will always be the index of the FIRST character
     * corresponding to the collation element (a contracting character sequence is
     * when two or more characters all correspond to the same collation element).
     * This means if you do setOffset(x) followed immediately by getOffset(), getOffset()
     * won't necessarily return x.
     *
     * @return The character offset in the original text corresponding to the collation
     * element that will be returned by the next call to next().
     * @since 1.2
     */
    public int getOffset()
    {
        return (text != null) ? text.getIndex() : 0;
    }


    /**
     * Return the maximum length of any expansion sequences that end
     * with the specified comparison order.
     * @param order a collation order returned by previous or next.
     * @return the maximum length of any expansion sequences ending
     *         with the specified order.
     * @since 1.2
     */
    public int getMaxExpansion(int order)
    {
        return ordering.getMaxExpansion(order);
    }

    /**
     * Set a new string over which to iterate.
     *
     * @param source  the new source text
     * @since 1.2
     */
    public void setText(String source)
    {
        buffer = null;
        swapOrder = 0;
        expIndex = 0;
        NormalizerBase.Mode mode =
            CollatorUtilities.toNormalizerMode(owner.getDecomposition());
        if (text == null) {
            text = new NormalizerBase(source, mode);
        } else {
            text.setMode(mode);
            text.setText(source);
        }
    }

    /**
     * Set a new string over which to iterate.
     *
     * @param source  the new source text.
     * @since 1.2
     */
    public void setText(CharacterIterator source)
    {
        buffer = null;
        swapOrder = 0;
        expIndex = 0;
        NormalizerBase.Mode mode =
            CollatorUtilities.toNormalizerMode(owner.getDecomposition());
        if (text == null) {
            text = new NormalizerBase(source, mode);
        } else {
            text.setMode(mode);
            text.setText(source);
        }
    }

    //============================================================
    // privates
    //============================================================

    /**
     * Determine if a character is a Thai vowel (which sorts after
     * its base consonant).
     */
    private final static boolean isThaiPreVowel(int ch) {
        return (ch >= 0x0e40) && (ch <= 0x0e44);
    }

    /**
     * Determine if a character is a Thai base consonant
     */
    private final static boolean isThaiBaseConsonant(int ch) {
        return (ch >= 0x0e01) && (ch <= 0x0e2e);
    }

    /**
     * Determine if a character is a Lao vowel (which sorts after
     * its base consonant).
     */
    private final static boolean isLaoPreVowel(int ch) {
        return (ch >= 0x0ec0) && (ch <= 0x0ec4);
    }

    /**
     * Determine if a character is a Lao base consonant
     */
    private final static boolean isLaoBaseConsonant(int ch) {
        return (ch >= 0x0e81) && (ch <= 0x0eae);
    }

    /**
     * This method produces a buffer which contains the collation
     * elements for the two characters, with colFirst's values preceding
     * another character's.  Presumably, the other character precedes colFirst
     * in logical order (otherwise you wouldn't need this method would you?).
     * The assumption is that the other char's value(s) have already been
     * computed.  If this char has a single element it is passed to this
     * method as lastValue, and lastExpansion is null.  If it has an
     * expansion it is passed in lastExpansion, and colLastValue is ignored.
     */
    private int[] makeReorderedBuffer(int colFirst,
                                      int lastValue,
                                      int[] lastExpansion,
                                      boolean forward) {

        int[] result;

        int firstValue = ordering.getUnicodeOrder(colFirst);
        if (firstValue >= RuleBasedCollator.CONTRACTCHARINDEX) {
            firstValue = forward? nextContractChar(colFirst) : prevContractChar(colFirst);
        }

        int[] firstExpansion = null;
        if (firstValue >= RuleBasedCollator.EXPANDCHARINDEX) {
            firstExpansion = ordering.getExpandValueList(firstValue);
        }

        if (!forward) {
            int temp1 = firstValue;
            firstValue = lastValue;
            lastValue = temp1;
            int[] temp2 = firstExpansion;
            firstExpansion = lastExpansion;
            lastExpansion = temp2;
        }

        if (firstExpansion == null && lastExpansion == null) {
            result = new int [2];
            result[0] = firstValue;
            result[1] = lastValue;
        }
        else {
            int firstLength = firstExpansion==null? 1 : firstExpansion.length;
            int lastLength = lastExpansion==null? 1 : lastExpansion.length;
            result = new int[firstLength + lastLength];

            if (firstExpansion == null) {
                result[0] = firstValue;
            }
            else {
                System.arraycopy(firstExpansion, 0, result, 0, firstLength);
            }

            if (lastExpansion == null) {
                result[firstLength] = lastValue;
            }
            else {
                System.arraycopy(lastExpansion, 0, result, firstLength, lastLength);
            }
        }

        return result;
    }

    /**
     *  Check if a comparison order is ignorable.
     *  @return true if a character is ignorable, false otherwise.
     */
    final static boolean isIgnorable(int order)
    {
        return ((primaryOrder(order) == 0) ? true : false);
    }

    /**
     * Get the ordering priority of the next contracting character in the
     * string.
     * @param ch the starting character of a contracting character token
     * @return the next contracting character's ordering.  Returns NULLORDER
     * if the end of string is reached.
     */
    private int nextContractChar(int ch)
    {
        // First get the ordering of this single character,
        // which is always the first element in the list
        Vector<EntryPair> list = ordering.getContractValues(ch);
        EntryPair pair = list.firstElement();
        int order = pair.value;

        // find out the length of the longest contracting character sequence in the list.
        // There's logic in the builder code to make sure the longest sequence is always
        // the last.
        pair = list.lastElement();
        int maxLength = pair.entryName.length();

        // (the Normalizer is cloned here so that the seeking we do in the next loop
        // won't affect our real position in the text)
        NormalizerBase tempText = (NormalizerBase)text.clone();

        // extract the next maxLength characters in the string (we have to do this using the
        // Normalizer to ensure that our offsets correspond to those the rest of the
        // iterator is using) and store it in "fragment".
        tempText.previous();
        key.setLength(0);
        int c = tempText.next();
        while (maxLength > 0 && c != NormalizerBase.DONE) {
            if (Character.isSupplementaryCodePoint(c)) {
                key.append(Character.toChars(c));
                maxLength -= 2;
            } else {
                key.append((char)c);
                --maxLength;
            }
            c = tempText.next();
        }
        String fragment = key.toString();
        // now that we have that fragment, iterate through this list looking for the
        // longest sequence that matches the characters in the actual text.  (maxLength
        // is used here to keep track of the length of the longest sequence)
        // Upon exit from this loop, maxLength will contain the length of the matching
        // sequence and order will contain the collation-element value corresponding
        // to this sequence
        maxLength = 1;
        for (int i = list.size() - 1; i > 0; i--) {
            pair = list.elementAt(i);
            if (!pair.fwd)
                continue;

            if (fragment.startsWith(pair.entryName) && pair.entryName.length()
                    > maxLength) {
                maxLength = pair.entryName.length();
                order = pair.value;
            }
        }

        // seek our current iteration position to the end of the matching sequence
        // and return the appropriate collation-element value (if there was no matching
        // sequence, we're already seeked to the right position and order already contains
        // the correct collation-element value for the single character)
        while (maxLength > 1) {
            c = text.next();
            maxLength -= Character.charCount(c);
        }
        return order;
    }

    /**
     * Get the ordering priority of the previous contracting character in the
     * string.
     * @param ch the starting character of a contracting character token
     * @return the next contracting character's ordering.  Returns NULLORDER
     * if the end of string is reached.
     */
    private int prevContractChar(int ch)
    {
        // This function is identical to nextContractChar(), except that we've
        // switched things so that the next() and previous() calls on the Normalizer
        // are switched and so that we skip entry pairs with the fwd flag turned on
        // rather than off.  Notice that we still use append() and startsWith() when
        // working on the fragment.  This is because the entry pairs that are used
        // in reverse iteration have their names reversed already.
        Vector<EntryPair> list = ordering.getContractValues(ch);
        EntryPair pair = list.firstElement();
        int order = pair.value;

        pair = list.lastElement();
        int maxLength = pair.entryName.length();

        NormalizerBase tempText = (NormalizerBase)text.clone();

        tempText.next();
        key.setLength(0);
        int c = tempText.previous();
        while (maxLength > 0 && c != NormalizerBase.DONE) {
            if (Character.isSupplementaryCodePoint(c)) {
                key.append(Character.toChars(c));
                maxLength -= 2;
            } else {
                key.append((char)c);
                --maxLength;
            }
            c = tempText.previous();
        }
        String fragment = key.toString();

        maxLength = 1;
        for (int i = list.size() - 1; i > 0; i--) {
            pair = list.elementAt(i);
            if (pair.fwd)
                continue;

            if (fragment.startsWith(pair.entryName) && pair.entryName.length()
                    > maxLength) {
                maxLength = pair.entryName.length();
                order = pair.value;
            }
        }

        while (maxLength > 1) {
            c = text.previous();
            maxLength -= Character.charCount(c);
        }
        return order;
    }

    final static int UNMAPPEDCHARVALUE = 0x7FFF0000;

    private NormalizerBase text = null;
    private int[] buffer = null;
    private int expIndex = 0;
    private StringBuffer key = new StringBuffer(5);
    private int swapOrder = 0;
    private RBCollationTables ordering;
    private RuleBasedCollator owner;
}

Other Java examples (source code examples)

Here is a short list of links related to this Java CollationElementIterator.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.