alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (Duration.java)

This example Java source code file (Duration.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

arithmeticexception, biginteger, datetimeexception, datetimeparseexception, duration, math, nanos_per_second, override, regex, seconds_per_day, seconds_per_hour, seconds_per_minute, string, temporalunit, text, util, zero

The Duration.java Java example source code

/*
 * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

/*
 * This file is available under and governed by the GNU General Public
 * License version 2 only, as published by the Free Software Foundation.
 * However, the following notice accompanied the original version of this
 * file:
 *
 * Copyright (c) 2007-2012, Stephen Colebourne & Michael Nascimento Santos
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *  * Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *
 *  * Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 *
 *  * Neither the name of JSR-310 nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
package java.time;

import static java.time.LocalTime.NANOS_PER_SECOND;
import static java.time.LocalTime.SECONDS_PER_DAY;
import static java.time.LocalTime.SECONDS_PER_HOUR;
import static java.time.LocalTime.SECONDS_PER_MINUTE;
import static java.time.temporal.ChronoField.NANO_OF_SECOND;
import static java.time.temporal.ChronoUnit.DAYS;
import static java.time.temporal.ChronoUnit.NANOS;
import static java.time.temporal.ChronoUnit.SECONDS;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.io.InvalidObjectException;
import java.io.ObjectInputStream;
import java.io.Serializable;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.math.RoundingMode;
import java.time.format.DateTimeParseException;
import java.time.temporal.ChronoField;
import java.time.temporal.ChronoUnit;
import java.time.temporal.Temporal;
import java.time.temporal.TemporalAmount;
import java.time.temporal.TemporalUnit;
import java.time.temporal.UnsupportedTemporalTypeException;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import java.util.Objects;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

/**
 * A time-based amount of time, such as '34.5 seconds'.
 * <p>
 * This class models a quantity or amount of time in terms of seconds and nanoseconds.
 * It can be accessed using other duration-based units, such as minutes and hours.
 * In addition, the {@link ChronoUnit#DAYS DAYS} unit can be used and is treated as
 * exactly equal to 24 hours, thus ignoring daylight savings effects.
 * See {@link Period} for the date-based equivalent to this class.
 * <p>
 * A physical duration could be of infinite length.
 * For practicality, the duration is stored with constraints similar to {@link Instant}.
 * The duration uses nanosecond resolution with a maximum value of the seconds that can
 * be held in a {@code long}. This is greater than the current estimated age of the universe.
 * <p>
 * The range of a duration requires the storage of a number larger than a {@code long}.
 * To achieve this, the class stores a {@code long} representing seconds and an {@code int}
 * representing nanosecond-of-second, which will always be between 0 and 999,999,999.
 * The model is of a directed duration, meaning that the duration may be negative.
 * <p>
 * The duration is measured in "seconds", but these are not necessarily identical to
 * the scientific "SI second" definition based on atomic clocks.
 * This difference only impacts durations measured near a leap-second and should not affect
 * most applications.
 * See {@link Instant} for a discussion as to the meaning of the second and time-scales.
 *
 * <p>
 * This is a <a href="{@docRoot}/java/lang/doc-files/ValueBased.html">value-based
 * class; use of identity-sensitive operations (including reference equality
 * ({@code ==}), identity hash code, or synchronization) on instances of
 * {@code Duration} may have unpredictable results and should be avoided.
 * The {@code equals} method should be used for comparisons.
 *
 * @implSpec
 * This class is immutable and thread-safe.
 *
 * @since 1.8
 */
public final class Duration
        implements TemporalAmount, Comparable<Duration>, Serializable {

    /**
     * Constant for a duration of zero.
     */
    public static final Duration ZERO = new Duration(0, 0);
    /**
     * Serialization version.
     */
    private static final long serialVersionUID = 3078945930695997490L;
    /**
     * Constant for nanos per second.
     */
    private static final BigInteger BI_NANOS_PER_SECOND = BigInteger.valueOf(NANOS_PER_SECOND);
    /**
     * The pattern for parsing.
     */
    private static final Pattern PATTERN =
            Pattern.compile("([-+]?)P(?:([-+]?[0-9]+)D)?" +
                    "(T(?:([-+]?[0-9]+)H)?(?:([-+]?[0-9]+)M)?(?:([-+]?[0-9]+)(?:[.,]([0-9]{0,9}))?S)?)?",
                    Pattern.CASE_INSENSITIVE);

    /**
     * The number of seconds in the duration.
     */
    private final long seconds;
    /**
     * The number of nanoseconds in the duration, expressed as a fraction of the
     * number of seconds. This is always positive, and never exceeds 999,999,999.
     */
    private final int nanos;

    //-----------------------------------------------------------------------
    /**
     * Obtains a {@code Duration} representing a number of standard 24 hour days.
     * <p>
     * The seconds are calculated based on the standard definition of a day,
     * where each day is 86400 seconds which implies a 24 hour day.
     * The nanosecond in second field is set to zero.
     *
     * @param days  the number of days, positive or negative
     * @return a {@code Duration}, not null
     * @throws ArithmeticException if the input days exceeds the capacity of {@code Duration}
     */
    public static Duration ofDays(long days) {
        return create(Math.multiplyExact(days, SECONDS_PER_DAY), 0);
    }

    /**
     * Obtains a {@code Duration} representing a number of standard hours.
     * <p>
     * The seconds are calculated based on the standard definition of an hour,
     * where each hour is 3600 seconds.
     * The nanosecond in second field is set to zero.
     *
     * @param hours  the number of hours, positive or negative
     * @return a {@code Duration}, not null
     * @throws ArithmeticException if the input hours exceeds the capacity of {@code Duration}
     */
    public static Duration ofHours(long hours) {
        return create(Math.multiplyExact(hours, SECONDS_PER_HOUR), 0);
    }

    /**
     * Obtains a {@code Duration} representing a number of standard minutes.
     * <p>
     * The seconds are calculated based on the standard definition of a minute,
     * where each minute is 60 seconds.
     * The nanosecond in second field is set to zero.
     *
     * @param minutes  the number of minutes, positive or negative
     * @return a {@code Duration}, not null
     * @throws ArithmeticException if the input minutes exceeds the capacity of {@code Duration}
     */
    public static Duration ofMinutes(long minutes) {
        return create(Math.multiplyExact(minutes, SECONDS_PER_MINUTE), 0);
    }

    //-----------------------------------------------------------------------
    /**
     * Obtains a {@code Duration} representing a number of seconds.
     * <p>
     * The nanosecond in second field is set to zero.
     *
     * @param seconds  the number of seconds, positive or negative
     * @return a {@code Duration}, not null
     */
    public static Duration ofSeconds(long seconds) {
        return create(seconds, 0);
    }

    /**
     * Obtains a {@code Duration} representing a number of seconds and an
     * adjustment in nanoseconds.
     * <p>
     * This method allows an arbitrary number of nanoseconds to be passed in.
     * The factory will alter the values of the second and nanosecond in order
     * to ensure that the stored nanosecond is in the range 0 to 999,999,999.
     * For example, the following will result in the exactly the same duration:
     * <pre>
     *  Duration.ofSeconds(3, 1);
     *  Duration.ofSeconds(4, -999_999_999);
     *  Duration.ofSeconds(2, 1000_000_001);
     * </pre>
     *
     * @param seconds  the number of seconds, positive or negative
     * @param nanoAdjustment  the nanosecond adjustment to the number of seconds, positive or negative
     * @return a {@code Duration}, not null
     * @throws ArithmeticException if the adjustment causes the seconds to exceed the capacity of {@code Duration}
     */
    public static Duration ofSeconds(long seconds, long nanoAdjustment) {
        long secs = Math.addExact(seconds, Math.floorDiv(nanoAdjustment, NANOS_PER_SECOND));
        int nos = (int) Math.floorMod(nanoAdjustment, NANOS_PER_SECOND);
        return create(secs, nos);
    }

    //-----------------------------------------------------------------------
    /**
     * Obtains a {@code Duration} representing a number of milliseconds.
     * <p>
     * The seconds and nanoseconds are extracted from the specified milliseconds.
     *
     * @param millis  the number of milliseconds, positive or negative
     * @return a {@code Duration}, not null
     */
    public static Duration ofMillis(long millis) {
        long secs = millis / 1000;
        int mos = (int) (millis % 1000);
        if (mos < 0) {
            mos += 1000;
            secs--;
        }
        return create(secs, mos * 1000_000);
    }

    //-----------------------------------------------------------------------
    /**
     * Obtains a {@code Duration} representing a number of nanoseconds.
     * <p>
     * The seconds and nanoseconds are extracted from the specified nanoseconds.
     *
     * @param nanos  the number of nanoseconds, positive or negative
     * @return a {@code Duration}, not null
     */
    public static Duration ofNanos(long nanos) {
        long secs = nanos / NANOS_PER_SECOND;
        int nos = (int) (nanos % NANOS_PER_SECOND);
        if (nos < 0) {
            nos += NANOS_PER_SECOND;
            secs--;
        }
        return create(secs, nos);
    }

    //-----------------------------------------------------------------------
    /**
     * Obtains a {@code Duration} representing an amount in the specified unit.
     * <p>
     * The parameters represent the two parts of a phrase like '6 Hours'. For example:
     * <pre>
     *  Duration.of(3, SECONDS);
     *  Duration.of(465, HOURS);
     * </pre>
     * Only a subset of units are accepted by this method.
     * The unit must either have an {@linkplain TemporalUnit#isDurationEstimated() exact duration} or
     * be {@link ChronoUnit#DAYS} which is treated as 24 hours. Other units throw an exception.
     *
     * @param amount  the amount of the duration, measured in terms of the unit, positive or negative
     * @param unit  the unit that the duration is measured in, must have an exact duration, not null
     * @return a {@code Duration}, not null
     * @throws DateTimeException if the period unit has an estimated duration
     * @throws ArithmeticException if a numeric overflow occurs
     */
    public static Duration of(long amount, TemporalUnit unit) {
        return ZERO.plus(amount, unit);
    }

    //-----------------------------------------------------------------------
    /**
     * Obtains an instance of {@code Duration} from a temporal amount.
     * <p>
     * This obtains a duration based on the specified amount.
     * A {@code TemporalAmount} represents an  amount of time, which may be
     * date-based or time-based, which this factory extracts to a duration.
     * <p>
     * The conversion loops around the set of units from the amount and uses
     * the {@linkplain TemporalUnit#getDuration() duration} of the unit to
     * calculate the total {@code Duration}.
     * Only a subset of units are accepted by this method. The unit must either
     * have an {@linkplain TemporalUnit#isDurationEstimated() exact duration}
     * or be {@link ChronoUnit#DAYS} which is treated as 24 hours.
     * If any other units are found then an exception is thrown.
     *
     * @param amount  the temporal amount to convert, not null
     * @return the equivalent duration, not null
     * @throws DateTimeException if unable to convert to a {@code Duration}
     * @throws ArithmeticException if numeric overflow occurs
     */
    public static Duration from(TemporalAmount amount) {
        Objects.requireNonNull(amount, "amount");
        Duration duration = ZERO;
        for (TemporalUnit unit : amount.getUnits()) {
            duration = duration.plus(amount.get(unit), unit);
        }
        return duration;
    }

    //-----------------------------------------------------------------------
    /**
     * Obtains a {@code Duration} from a text string such as {@code PnDTnHnMn.nS}.
     * <p>
     * This will parse a textual representation of a duration, including the
     * string produced by {@code toString()}. The formats accepted are based
     * on the ISO-8601 duration format {@code PnDTnHnMn.nS} with days
     * considered to be exactly 24 hours.
     * <p>
     * The string starts with an optional sign, denoted by the ASCII negative
     * or positive symbol. If negative, the whole period is negated.
     * The ASCII letter "P" is next in upper or lower case.
     * There are then four sections, each consisting of a number and a suffix.
     * The sections have suffixes in ASCII of "D", "H", "M" and "S" for
     * days, hours, minutes and seconds, accepted in upper or lower case.
     * The suffixes must occur in order. The ASCII letter "T" must occur before
     * the first occurrence, if any, of an hour, minute or second section.
     * At least one of the four sections must be present, and if "T" is present
     * there must be at least one section after the "T".
     * The number part of each section must consist of one or more ASCII digits.
     * The number may be prefixed by the ASCII negative or positive symbol.
     * The number of days, hours and minutes must parse to an {@code long}.
     * The number of seconds must parse to an {@code long} with optional fraction.
     * The decimal point may be either a dot or a comma.
     * The fractional part may have from zero to 9 digits.
     * <p>
     * The leading plus/minus sign, and negative values for other units are
     * not part of the ISO-8601 standard.
     * <p>
     * Examples:
     * <pre>
     *    "PT20.345S" -- parses as "20.345 seconds"
     *    "PT15M"     -- parses as "15 minutes" (where a minute is 60 seconds)
     *    "PT10H"     -- parses as "10 hours" (where an hour is 3600 seconds)
     *    "P2D"       -- parses as "2 days" (where a day is 24 hours or 86400 seconds)
     *    "P2DT3H4M"  -- parses as "2 days, 3 hours and 4 minutes"
     *    "P-6H3M"    -- parses as "-6 hours and +3 minutes"
     *    "-P6H3M"    -- parses as "-6 hours and -3 minutes"
     *    "-P-6H+3M"  -- parses as "+6 hours and -3 minutes"
     * </pre>
     *
     * @param text  the text to parse, not null
     * @return the parsed duration, not null
     * @throws DateTimeParseException if the text cannot be parsed to a duration
     */
    public static Duration parse(CharSequence text) {
        Objects.requireNonNull(text, "text");
        Matcher matcher = PATTERN.matcher(text);
        if (matcher.matches()) {
            // check for letter T but no time sections
            if ("T".equals(matcher.group(3)) == false) {
                boolean negate = "-".equals(matcher.group(1));
                String dayMatch = matcher.group(2);
                String hourMatch = matcher.group(4);
                String minuteMatch = matcher.group(5);
                String secondMatch = matcher.group(6);
                String fractionMatch = matcher.group(7);
                if (dayMatch != null || hourMatch != null || minuteMatch != null || secondMatch != null) {
                    long daysAsSecs = parseNumber(text, dayMatch, SECONDS_PER_DAY, "days");
                    long hoursAsSecs = parseNumber(text, hourMatch, SECONDS_PER_HOUR, "hours");
                    long minsAsSecs = parseNumber(text, minuteMatch, SECONDS_PER_MINUTE, "minutes");
                    long seconds = parseNumber(text, secondMatch, 1, "seconds");
                    int nanos = parseFraction(text,  fractionMatch, seconds < 0 ? -1 : 1);
                    try {
                        return create(negate, daysAsSecs, hoursAsSecs, minsAsSecs, seconds, nanos);
                    } catch (ArithmeticException ex) {
                        throw (DateTimeParseException) new DateTimeParseException("Text cannot be parsed to a Duration: overflow", text, 0).initCause(ex);
                    }
                }
            }
        }
        throw new DateTimeParseException("Text cannot be parsed to a Duration", text, 0);
    }

    private static long parseNumber(CharSequence text, String parsed, int multiplier, String errorText) {
        // regex limits to [-+]?[0-9]+
        if (parsed == null) {
            return 0;
        }
        try {
            long val = Long.parseLong(parsed);
            return Math.multiplyExact(val, multiplier);
        } catch (NumberFormatException | ArithmeticException ex) {
            throw (DateTimeParseException) new DateTimeParseException("Text cannot be parsed to a Duration: " + errorText, text, 0).initCause(ex);
        }
    }

    private static int parseFraction(CharSequence text, String parsed, int negate) {
        // regex limits to [0-9]{0,9}
        if (parsed == null || parsed.length() == 0) {
            return 0;
        }
        try {
            parsed = (parsed + "000000000").substring(0, 9);
            return Integer.parseInt(parsed) * negate;
        } catch (NumberFormatException | ArithmeticException ex) {
            throw (DateTimeParseException) new DateTimeParseException("Text cannot be parsed to a Duration: fraction", text, 0).initCause(ex);
        }
    }

    private static Duration create(boolean negate, long daysAsSecs, long hoursAsSecs, long minsAsSecs, long secs, int nanos) {
        long seconds = Math.addExact(daysAsSecs, Math.addExact(hoursAsSecs, Math.addExact(minsAsSecs, secs)));
        if (negate) {
            return ofSeconds(seconds, nanos).negated();
        }
        return ofSeconds(seconds, nanos);
    }

    //-----------------------------------------------------------------------
    /**
     * Obtains a {@code Duration} representing the duration between two temporal objects.
     * <p>
     * This calculates the duration between two temporal objects. If the objects
     * are of different types, then the duration is calculated based on the type
     * of the first object. For example, if the first argument is a {@code LocalTime}
     * then the second argument is converted to a {@code LocalTime}.
     * <p>
     * The specified temporal objects must support the {@link ChronoUnit#SECONDS SECONDS} unit.
     * For full accuracy, either the {@link ChronoUnit#NANOS NANOS} unit or the
     * {@link ChronoField#NANO_OF_SECOND NANO_OF_SECOND} field should be supported.
     * <p>
     * The result of this method can be a negative period if the end is before the start.
     * To guarantee to obtain a positive duration call {@link #abs()} on the result.
     *
     * @param startInclusive  the start instant, inclusive, not null
     * @param endExclusive  the end instant, exclusive, not null
     * @return a {@code Duration}, not null
     * @throws DateTimeException if the seconds between the temporals cannot be obtained
     * @throws ArithmeticException if the calculation exceeds the capacity of {@code Duration}
     */
    public static Duration between(Temporal startInclusive, Temporal endExclusive) {
        try {
            return ofNanos(startInclusive.until(endExclusive, NANOS));
        } catch (DateTimeException | ArithmeticException ex) {
            long secs = startInclusive.until(endExclusive, SECONDS);
            long nanos;
            try {
                nanos = endExclusive.getLong(NANO_OF_SECOND) - startInclusive.getLong(NANO_OF_SECOND);
                if (secs > 0 && nanos < 0) {
                    secs++;
                } else if (secs < 0 && nanos > 0) {
                    secs--;
                }
            } catch (DateTimeException ex2) {
                nanos = 0;
            }
            return ofSeconds(secs, nanos);
        }
    }

    //-----------------------------------------------------------------------
    /**
     * Obtains an instance of {@code Duration} using seconds and nanoseconds.
     *
     * @param seconds  the length of the duration in seconds, positive or negative
     * @param nanoAdjustment  the nanosecond adjustment within the second, from 0 to 999,999,999
     */
    private static Duration create(long seconds, int nanoAdjustment) {
        if ((seconds | nanoAdjustment) == 0) {
            return ZERO;
        }
        return new Duration(seconds, nanoAdjustment);
    }

    /**
     * Constructs an instance of {@code Duration} using seconds and nanoseconds.
     *
     * @param seconds  the length of the duration in seconds, positive or negative
     * @param nanos  the nanoseconds within the second, from 0 to 999,999,999
     */
    private Duration(long seconds, int nanos) {
        super();
        this.seconds = seconds;
        this.nanos = nanos;
    }

    //-----------------------------------------------------------------------
    /**
     * Gets the value of the requested unit.
     * <p>
     * This returns a value for each of the two supported units,
     * {@link ChronoUnit#SECONDS SECONDS} and {@link ChronoUnit#NANOS NANOS}.
     * All other units throw an exception.
     *
     * @param unit the {@code TemporalUnit} for which to return the value
     * @return the long value of the unit
     * @throws DateTimeException if the unit is not supported
     * @throws UnsupportedTemporalTypeException if the unit is not supported
     */
    @Override
    public long get(TemporalUnit unit) {
        if (unit == SECONDS) {
            return seconds;
        } else if (unit == NANOS) {
            return nanos;
        } else {
            throw new UnsupportedTemporalTypeException("Unsupported unit: " + unit);
        }
    }

    /**
     * Gets the set of units supported by this duration.
     * <p>
     * The supported units are {@link ChronoUnit#SECONDS SECONDS},
     * and {@link ChronoUnit#NANOS NANOS}.
     * They are returned in the order seconds, nanos.
     * <p>
     * This set can be used in conjunction with {@link #get(TemporalUnit)}
     * to access the entire state of the period.
     *
     * @return a list containing the seconds and nanos units, not null
     */
    @Override
    public List<TemporalUnit> getUnits() {
        return DurationUnits.UNITS;
    }

    /**
     * Private class to delay initialization of this list until needed.
     * The circular dependency between Duration and ChronoUnit prevents
     * the simple initialization in Duration.
     */
    private static class DurationUnits {
        static final List<TemporalUnit> UNITS =
                Collections.unmodifiableList(Arrays.<TemporalUnit>asList(SECONDS, NANOS));
    }

    //-----------------------------------------------------------------------
    /**
     * Checks if this duration is zero length.
     * <p>
     * A {@code Duration} represents a directed distance between two points on
     * the time-line and can therefore be positive, zero or negative.
     * This method checks whether the length is zero.
     *
     * @return true if this duration has a total length equal to zero
     */
    public boolean isZero() {
        return (seconds | nanos) == 0;
    }

    /**
     * Checks if this duration is negative, excluding zero.
     * <p>
     * A {@code Duration} represents a directed distance between two points on
     * the time-line and can therefore be positive, zero or negative.
     * This method checks whether the length is less than zero.
     *
     * @return true if this duration has a total length less than zero
     */
    public boolean isNegative() {
        return seconds < 0;
    }

    //-----------------------------------------------------------------------
    /**
     * Gets the number of seconds in this duration.
     * <p>
     * The length of the duration is stored using two fields - seconds and nanoseconds.
     * The nanoseconds part is a value from 0 to 999,999,999 that is an adjustment to
     * the length in seconds.
     * The total duration is defined by calling this method and {@link #getNano()}.
     * <p>
     * A {@code Duration} represents a directed distance between two points on the time-line.
     * A negative duration is expressed by the negative sign of the seconds part.
     * A duration of -1 nanosecond is stored as -1 seconds plus 999,999,999 nanoseconds.
     *
     * @return the whole seconds part of the length of the duration, positive or negative
     */
    public long getSeconds() {
        return seconds;
    }

    /**
     * Gets the number of nanoseconds within the second in this duration.
     * <p>
     * The length of the duration is stored using two fields - seconds and nanoseconds.
     * The nanoseconds part is a value from 0 to 999,999,999 that is an adjustment to
     * the length in seconds.
     * The total duration is defined by calling this method and {@link #getSeconds()}.
     * <p>
     * A {@code Duration} represents a directed distance between two points on the time-line.
     * A negative duration is expressed by the negative sign of the seconds part.
     * A duration of -1 nanosecond is stored as -1 seconds plus 999,999,999 nanoseconds.
     *
     * @return the nanoseconds within the second part of the length of the duration, from 0 to 999,999,999
     */
    public int getNano() {
        return nanos;
    }

    //-----------------------------------------------------------------------
    /**
     * Returns a copy of this duration with the specified amount of seconds.
     * <p>
     * This returns a duration with the specified seconds, retaining the
     * nano-of-second part of this duration.
     * <p>
     * This instance is immutable and unaffected by this method call.
     *
     * @param seconds  the seconds to represent, may be negative
     * @return a {@code Duration} based on this period with the requested seconds, not null
     */
    public Duration withSeconds(long seconds) {
        return create(seconds, nanos);
    }

    /**
     * Returns a copy of this duration with the specified nano-of-second.
     * <p>
     * This returns a duration with the specified nano-of-second, retaining the
     * seconds part of this duration.
     * <p>
     * This instance is immutable and unaffected by this method call.
     *
     * @param nanoOfSecond  the nano-of-second to represent, from 0 to 999,999,999
     * @return a {@code Duration} based on this period with the requested nano-of-second, not null
     * @throws DateTimeException if the nano-of-second is invalid
     */
    public Duration withNanos(int nanoOfSecond) {
        NANO_OF_SECOND.checkValidIntValue(nanoOfSecond);
        return create(seconds, nanoOfSecond);
    }

    //-----------------------------------------------------------------------
    /**
     * Returns a copy of this duration with the specified duration added.
     * <p>
     * This instance is immutable and unaffected by this method call.
     *
     * @param duration  the duration to add, positive or negative, not null
     * @return a {@code Duration} based on this duration with the specified duration added, not null
     * @throws ArithmeticException if numeric overflow occurs
     */
    public Duration plus(Duration duration) {
        return plus(duration.getSeconds(), duration.getNano());
     }

    /**
     * Returns a copy of this duration with the specified duration added.
     * <p>
     * The duration amount is measured in terms of the specified unit.
     * Only a subset of units are accepted by this method.
     * The unit must either have an {@linkplain TemporalUnit#isDurationEstimated() exact duration} or
     * be {@link ChronoUnit#DAYS} which is treated as 24 hours. Other units throw an exception.
     * <p>
     * This instance is immutable and unaffected by this method call.
     *
     * @param amountToAdd  the amount of the period, measured in terms of the unit, positive or negative
     * @param unit  the unit that the period is measured in, must have an exact duration, not null
     * @return a {@code Duration} based on this duration with the specified duration added, not null
     * @throws UnsupportedTemporalTypeException if the unit is not supported
     * @throws ArithmeticException if numeric overflow occurs
     */
    public Duration plus(long amountToAdd, TemporalUnit unit) {
        Objects.requireNonNull(unit, "unit");
        if (unit == DAYS) {
            return plus(Math.multiplyExact(amountToAdd, SECONDS_PER_DAY), 0);
        }
        if (unit.isDurationEstimated()) {
            throw new UnsupportedTemporalTypeException("Unit must not have an estimated duration");
        }
        if (amountToAdd == 0) {
            return this;
        }
        if (unit instanceof ChronoUnit) {
            switch ((ChronoUnit) unit) {
                case NANOS: return plusNanos(amountToAdd);
                case MICROS: return plusSeconds((amountToAdd / (1000_000L * 1000)) * 1000).plusNanos((amountToAdd % (1000_000L * 1000)) * 1000);
                case MILLIS: return plusMillis(amountToAdd);
                case SECONDS: return plusSeconds(amountToAdd);
            }
            return plusSeconds(Math.multiplyExact(unit.getDuration().seconds, amountToAdd));
        }
        Duration duration = unit.getDuration().multipliedBy(amountToAdd);
        return plusSeconds(duration.getSeconds()).plusNanos(duration.getNano());
    }

    //-----------------------------------------------------------------------
    /**
     * Returns a copy of this duration with the specified duration in standard 24 hour days added.
     * <p>
     * The number of days is multiplied by 86400 to obtain the number of seconds to add.
     * This is based on the standard definition of a day as 24 hours.
     * <p>
     * This instance is immutable and unaffected by this method call.
     *
     * @param daysToAdd  the days to add, positive or negative
     * @return a {@code Duration} based on this duration with the specified days added, not null
     * @throws ArithmeticException if numeric overflow occurs
     */
    public Duration plusDays(long daysToAdd) {
        return plus(Math.multiplyExact(daysToAdd, SECONDS_PER_DAY), 0);
    }

    /**
     * Returns a copy of this duration with the specified duration in hours added.
     * <p>
     * This instance is immutable and unaffected by this method call.
     *
     * @param hoursToAdd  the hours to add, positive or negative
     * @return a {@code Duration} based on this duration with the specified hours added, not null
     * @throws ArithmeticException if numeric overflow occurs
     */
    public Duration plusHours(long hoursToAdd) {
        return plus(Math.multiplyExact(hoursToAdd, SECONDS_PER_HOUR), 0);
    }

    /**
     * Returns a copy of this duration with the specified duration in minutes added.
     * <p>
     * This instance is immutable and unaffected by this method call.
     *
     * @param minutesToAdd  the minutes to add, positive or negative
     * @return a {@code Duration} based on this duration with the specified minutes added, not null
     * @throws ArithmeticException if numeric overflow occurs
     */
    public Duration plusMinutes(long minutesToAdd) {
        return plus(Math.multiplyExact(minutesToAdd, SECONDS_PER_MINUTE), 0);
    }

    /**
     * Returns a copy of this duration with the specified duration in seconds added.
     * <p>
     * This instance is immutable and unaffected by this method call.
     *
     * @param secondsToAdd  the seconds to add, positive or negative
     * @return a {@code Duration} based on this duration with the specified seconds added, not null
     * @throws ArithmeticException if numeric overflow occurs
     */
    public Duration plusSeconds(long secondsToAdd) {
        return plus(secondsToAdd, 0);
    }

    /**
     * Returns a copy of this duration with the specified duration in milliseconds added.
     * <p>
     * This instance is immutable and unaffected by this method call.
     *
     * @param millisToAdd  the milliseconds to add, positive or negative
     * @return a {@code Duration} based on this duration with the specified milliseconds added, not null
     * @throws ArithmeticException if numeric overflow occurs
     */
    public Duration plusMillis(long millisToAdd) {
        return plus(millisToAdd / 1000, (millisToAdd % 1000) * 1000_000);
    }

    /**
     * Returns a copy of this duration with the specified duration in nanoseconds added.
     * <p>
     * This instance is immutable and unaffected by this method call.
     *
     * @param nanosToAdd  the nanoseconds to add, positive or negative
     * @return a {@code Duration} based on this duration with the specified nanoseconds added, not null
     * @throws ArithmeticException if numeric overflow occurs
     */
    public Duration plusNanos(long nanosToAdd) {
        return plus(0, nanosToAdd);
    }

    /**
     * Returns a copy of this duration with the specified duration added.
     * <p>
     * This instance is immutable and unaffected by this method call.
     *
     * @param secondsToAdd  the seconds to add, positive or negative
     * @param nanosToAdd  the nanos to add, positive or negative
     * @return a {@code Duration} based on this duration with the specified seconds added, not null
     * @throws ArithmeticException if numeric overflow occurs
     */
    private Duration plus(long secondsToAdd, long nanosToAdd) {
        if ((secondsToAdd | nanosToAdd) == 0) {
            return this;
        }
        long epochSec = Math.addExact(seconds, secondsToAdd);
        epochSec = Math.addExact(epochSec, nanosToAdd / NANOS_PER_SECOND);
        nanosToAdd = nanosToAdd % NANOS_PER_SECOND;
        long nanoAdjustment = nanos + nanosToAdd;  // safe int+NANOS_PER_SECOND
        return ofSeconds(epochSec, nanoAdjustment);
    }

    //-----------------------------------------------------------------------
    /**
     * Returns a copy of this duration with the specified duration subtracted.
     * <p>
     * This instance is immutable and unaffected by this method call.
     *
     * @param duration  the duration to subtract, positive or negative, not null
     * @return a {@code Duration} based on this duration with the specified duration subtracted, not null
     * @throws ArithmeticException if numeric overflow occurs
     */
    public Duration minus(Duration duration) {
        long secsToSubtract = duration.getSeconds();
        int nanosToSubtract = duration.getNano();
        if (secsToSubtract == Long.MIN_VALUE) {
            return plus(Long.MAX_VALUE, -nanosToSubtract).plus(1, 0);
        }
        return plus(-secsToSubtract, -nanosToSubtract);
     }

    /**
     * Returns a copy of this duration with the specified duration subtracted.
     * <p>
     * The duration amount is measured in terms of the specified unit.
     * Only a subset of units are accepted by this method.
     * The unit must either have an {@linkplain TemporalUnit#isDurationEstimated() exact duration} or
     * be {@link ChronoUnit#DAYS} which is treated as 24 hours. Other units throw an exception.
     * <p>
     * This instance is immutable and unaffected by this method call.
     *
     * @param amountToSubtract  the amount of the period, measured in terms of the unit, positive or negative
     * @param unit  the unit that the period is measured in, must have an exact duration, not null
     * @return a {@code Duration} based on this duration with the specified duration subtracted, not null
     * @throws ArithmeticException if numeric overflow occurs
     */
    public Duration minus(long amountToSubtract, TemporalUnit unit) {
        return (amountToSubtract == Long.MIN_VALUE ? plus(Long.MAX_VALUE, unit).plus(1, unit) : plus(-amountToSubtract, unit));
    }

    //-----------------------------------------------------------------------
    /**
     * Returns a copy of this duration with the specified duration in standard 24 hour days subtracted.
     * <p>
     * The number of days is multiplied by 86400 to obtain the number of seconds to subtract.
     * This is based on the standard definition of a day as 24 hours.
     * <p>
     * This instance is immutable and unaffected by this method call.
     *
     * @param daysToSubtract  the days to subtract, positive or negative
     * @return a {@code Duration} based on this duration with the specified days subtracted, not null
     * @throws ArithmeticException if numeric overflow occurs
     */
    public Duration minusDays(long daysToSubtract) {
        return (daysToSubtract == Long.MIN_VALUE ? plusDays(Long.MAX_VALUE).plusDays(1) : plusDays(-daysToSubtract));
    }

    /**
     * Returns a copy of this duration with the specified duration in hours subtracted.
     * <p>
     * The number of hours is multiplied by 3600 to obtain the number of seconds to subtract.
     * <p>
     * This instance is immutable and unaffected by this method call.
     *
     * @param hoursToSubtract  the hours to subtract, positive or negative
     * @return a {@code Duration} based on this duration with the specified hours subtracted, not null
     * @throws ArithmeticException if numeric overflow occurs
     */
    public Duration minusHours(long hoursToSubtract) {
        return (hoursToSubtract == Long.MIN_VALUE ? plusHours(Long.MAX_VALUE).plusHours(1) : plusHours(-hoursToSubtract));
    }

    /**
     * Returns a copy of this duration with the specified duration in minutes subtracted.
     * <p>
     * The number of hours is multiplied by 60 to obtain the number of seconds to subtract.
     * <p>
     * This instance is immutable and unaffected by this method call.
     *
     * @param minutesToSubtract  the minutes to subtract, positive or negative
     * @return a {@code Duration} based on this duration with the specified minutes subtracted, not null
     * @throws ArithmeticException if numeric overflow occurs
     */
    public Duration minusMinutes(long minutesToSubtract) {
        return (minutesToSubtract == Long.MIN_VALUE ? plusMinutes(Long.MAX_VALUE).plusMinutes(1) : plusMinutes(-minutesToSubtract));
    }

    /**
     * Returns a copy of this duration with the specified duration in seconds subtracted.
     * <p>
     * This instance is immutable and unaffected by this method call.
     *
     * @param secondsToSubtract  the seconds to subtract, positive or negative
     * @return a {@code Duration} based on this duration with the specified seconds subtracted, not null
     * @throws ArithmeticException if numeric overflow occurs
     */
    public Duration minusSeconds(long secondsToSubtract) {
        return (secondsToSubtract == Long.MIN_VALUE ? plusSeconds(Long.MAX_VALUE).plusSeconds(1) : plusSeconds(-secondsToSubtract));
    }

    /**
     * Returns a copy of this duration with the specified duration in milliseconds subtracted.
     * <p>
     * This instance is immutable and unaffected by this method call.
     *
     * @param millisToSubtract  the milliseconds to subtract, positive or negative
     * @return a {@code Duration} based on this duration with the specified milliseconds subtracted, not null
     * @throws ArithmeticException if numeric overflow occurs
     */
    public Duration minusMillis(long millisToSubtract) {
        return (millisToSubtract == Long.MIN_VALUE ? plusMillis(Long.MAX_VALUE).plusMillis(1) : plusMillis(-millisToSubtract));
    }

    /**
     * Returns a copy of this duration with the specified duration in nanoseconds subtracted.
     * <p>
     * This instance is immutable and unaffected by this method call.
     *
     * @param nanosToSubtract  the nanoseconds to subtract, positive or negative
     * @return a {@code Duration} based on this duration with the specified nanoseconds subtracted, not null
     * @throws ArithmeticException if numeric overflow occurs
     */
    public Duration minusNanos(long nanosToSubtract) {
        return (nanosToSubtract == Long.MIN_VALUE ? plusNanos(Long.MAX_VALUE).plusNanos(1) : plusNanos(-nanosToSubtract));
    }

    //-----------------------------------------------------------------------
    /**
     * Returns a copy of this duration multiplied by the scalar.
     * <p>
     * This instance is immutable and unaffected by this method call.
     *
     * @param multiplicand  the value to multiply the duration by, positive or negative
     * @return a {@code Duration} based on this duration multiplied by the specified scalar, not null
     * @throws ArithmeticException if numeric overflow occurs
     */
    public Duration multipliedBy(long multiplicand) {
        if (multiplicand == 0) {
            return ZERO;
        }
        if (multiplicand == 1) {
            return this;
        }
        return create(toSeconds().multiply(BigDecimal.valueOf(multiplicand)));
     }

    /**
     * Returns a copy of this duration divided by the specified value.
     * <p>
     * This instance is immutable and unaffected by this method call.
     *
     * @param divisor  the value to divide the duration by, positive or negative, not zero
     * @return a {@code Duration} based on this duration divided by the specified divisor, not null
     * @throws ArithmeticException if the divisor is zero or if numeric overflow occurs
     */
    public Duration dividedBy(long divisor) {
        if (divisor == 0) {
            throw new ArithmeticException("Cannot divide by zero");
        }
        if (divisor == 1) {
            return this;
        }
        return create(toSeconds().divide(BigDecimal.valueOf(divisor), RoundingMode.DOWN));
     }

    /**
     * Converts this duration to the total length in seconds and
     * fractional nanoseconds expressed as a {@code BigDecimal}.
     *
     * @return the total length of the duration in seconds, with a scale of 9, not null
     */
    private BigDecimal toSeconds() {
        return BigDecimal.valueOf(seconds).add(BigDecimal.valueOf(nanos, 9));
    }

    /**
     * Creates an instance of {@code Duration} from a number of seconds.
     *
     * @param seconds  the number of seconds, up to scale 9, positive or negative
     * @return a {@code Duration}, not null
     * @throws ArithmeticException if numeric overflow occurs
     */
    private static Duration create(BigDecimal seconds) {
        BigInteger nanos = seconds.movePointRight(9).toBigIntegerExact();
        BigInteger[] divRem = nanos.divideAndRemainder(BI_NANOS_PER_SECOND);
        if (divRem[0].bitLength() > 63) {
            throw new ArithmeticException("Exceeds capacity of Duration: " + nanos);
        }
        return ofSeconds(divRem[0].longValue(), divRem[1].intValue());
    }

    //-----------------------------------------------------------------------
    /**
     * Returns a copy of this duration with the length negated.
     * <p>
     * This method swaps the sign of the total length of this duration.
     * For example, {@code PT1.3S} will be returned as {@code PT-1.3S}.
     * <p>
     * This instance is immutable and unaffected by this method call.
     *
     * @return a {@code Duration} based on this duration with the amount negated, not null
     * @throws ArithmeticException if numeric overflow occurs
     */
    public Duration negated() {
        return multipliedBy(-1);
    }

    /**
     * Returns a copy of this duration with a positive length.
     * <p>
     * This method returns a positive duration by effectively removing the sign from any negative total length.
     * For example, {@code PT-1.3S} will be returned as {@code PT1.3S}.
     * <p>
     * This instance is immutable and unaffected by this method call.
     *
     * @return a {@code Duration} based on this duration with an absolute length, not null
     * @throws ArithmeticException if numeric overflow occurs
     */
    public Duration abs() {
        return isNegative() ? negated() : this;
    }

    //-------------------------------------------------------------------------
    /**
     * Adds this duration to the specified temporal object.
     * <p>
     * This returns a temporal object of the same observable type as the input
     * with this duration added.
     * <p>
     * In most cases, it is clearer to reverse the calling pattern by using
     * {@link Temporal#plus(TemporalAmount)}.
     * <pre>
     *   // these two lines are equivalent, but the second approach is recommended
     *   dateTime = thisDuration.addTo(dateTime);
     *   dateTime = dateTime.plus(thisDuration);
     * </pre>
     * <p>
     * The calculation will add the seconds, then nanos.
     * Only non-zero amounts will be added.
     * <p>
     * This instance is immutable and unaffected by this method call.
     *
     * @param temporal  the temporal object to adjust, not null
     * @return an object of the same type with the adjustment made, not null
     * @throws DateTimeException if unable to add
     * @throws ArithmeticException if numeric overflow occurs
     */
    @Override
    public Temporal addTo(Temporal temporal) {
        if (seconds != 0) {
            temporal = temporal.plus(seconds, SECONDS);
        }
        if (nanos != 0) {
            temporal = temporal.plus(nanos, NANOS);
        }
        return temporal;
    }

    /**
     * Subtracts this duration from the specified temporal object.
     * <p>
     * This returns a temporal object of the same observable type as the input
     * with this duration subtracted.
     * <p>
     * In most cases, it is clearer to reverse the calling pattern by using
     * {@link Temporal#minus(TemporalAmount)}.
     * <pre>
     *   // these two lines are equivalent, but the second approach is recommended
     *   dateTime = thisDuration.subtractFrom(dateTime);
     *   dateTime = dateTime.minus(thisDuration);
     * </pre>
     * <p>
     * The calculation will subtract the seconds, then nanos.
     * Only non-zero amounts will be added.
     * <p>
     * This instance is immutable and unaffected by this method call.
     *
     * @param temporal  the temporal object to adjust, not null
     * @return an object of the same type with the adjustment made, not null
     * @throws DateTimeException if unable to subtract
     * @throws ArithmeticException if numeric overflow occurs
     */
    @Override
    public Temporal subtractFrom(Temporal temporal) {
        if (seconds != 0) {
            temporal = temporal.minus(seconds, SECONDS);
        }
        if (nanos != 0) {
            temporal = temporal.minus(nanos, NANOS);
        }
        return temporal;
    }

    //-----------------------------------------------------------------------
    /**
     * Gets the number of days in this duration.
     * <p>
     * This returns the total number of days in the duration by dividing the
     * number of seconds by 86400.
     * This is based on the standard definition of a day as 24 hours.
     * <p>
     * This instance is immutable and unaffected by this method call.
     *
     * @return the number of days in the duration, may be negative
     */
    public long toDays() {
        return seconds / SECONDS_PER_DAY;
    }

    /**
     * Gets the number of hours in this duration.
     * <p>
     * This returns the total number of hours in the duration by dividing the
     * number of seconds by 3600.
     * <p>
     * This instance is immutable and unaffected by this method call.
     *
     * @return the number of hours in the duration, may be negative
     */
    public long toHours() {
        return seconds / SECONDS_PER_HOUR;
    }

    /**
     * Gets the number of minutes in this duration.
     * <p>
     * This returns the total number of minutes in the duration by dividing the
     * number of seconds by 60.
     * <p>
     * This instance is immutable and unaffected by this method call.
     *
     * @return the number of minutes in the duration, may be negative
     */
    public long toMinutes() {
        return seconds / SECONDS_PER_MINUTE;
    }

    /**
     * Converts this duration to the total length in milliseconds.
     * <p>
     * If this duration is too large to fit in a {@code long} milliseconds, then an
     * exception is thrown.
     * <p>
     * If this duration has greater than millisecond precision, then the conversion
     * will drop any excess precision information as though the amount in nanoseconds
     * was subject to integer division by one million.
     *
     * @return the total length of the duration in milliseconds
     * @throws ArithmeticException if numeric overflow occurs
     */
    public long toMillis() {
        long millis = Math.multiplyExact(seconds, 1000);
        millis = Math.addExact(millis, nanos / 1000_000);
        return millis;
    }

    /**
     * Converts this duration to the total length in nanoseconds expressed as a {@code long}.
     * <p>
     * If this duration is too large to fit in a {@code long} nanoseconds, then an
     * exception is thrown.
     *
     * @return the total length of the duration in nanoseconds
     * @throws ArithmeticException if numeric overflow occurs
     */
    public long toNanos() {
        long totalNanos = Math.multiplyExact(seconds, NANOS_PER_SECOND);
        totalNanos = Math.addExact(totalNanos, nanos);
        return totalNanos;
    }

    //-----------------------------------------------------------------------
    /**
     * Compares this duration to the specified {@code Duration}.
     * <p>
     * The comparison is based on the total length of the durations.
     * It is "consistent with equals", as defined by {@link Comparable}.
     *
     * @param otherDuration  the other duration to compare to, not null
     * @return the comparator value, negative if less, positive if greater
     */
    @Override
    public int compareTo(Duration otherDuration) {
        int cmp = Long.compare(seconds, otherDuration.seconds);
        if (cmp != 0) {
            return cmp;
        }
        return nanos - otherDuration.nanos;
    }

    //-----------------------------------------------------------------------
    /**
     * Checks if this duration is equal to the specified {@code Duration}.
     * <p>
     * The comparison is based on the total length of the durations.
     *
     * @param otherDuration  the other duration, null returns false
     * @return true if the other duration is equal to this one
     */
    @Override
    public boolean equals(Object otherDuration) {
        if (this == otherDuration) {
            return true;
        }
        if (otherDuration instanceof Duration) {
            Duration other = (Duration) otherDuration;
            return this.seconds == other.seconds &&
                   this.nanos == other.nanos;
        }
        return false;
    }

    /**
     * A hash code for this duration.
     *
     * @return a suitable hash code
     */
    @Override
    public int hashCode() {
        return ((int) (seconds ^ (seconds >>> 32))) + (51 * nanos);
    }

    //-----------------------------------------------------------------------
    /**
     * A string representation of this duration using ISO-8601 seconds
     * based representation, such as {@code PT8H6M12.345S}.
     * <p>
     * The format of the returned string will be {@code PTnHnMnS}, where n is
     * the relevant hours, minutes or seconds part of the duration.
     * Any fractional seconds are placed after a decimal point i the seconds section.
     * If a section has a zero value, it is omitted.
     * The hours, minutes and seconds will all have the same sign.
     * <p>
     * Examples:
     * <pre>
     *    "20.345 seconds"                 -- "PT20.345S
     *    "15 minutes" (15 * 60 seconds)   -- "PT15M"
     *    "10 hours" (10 * 3600 seconds)   -- "PT10H"
     *    "2 days" (2 * 86400 seconds)     -- "PT48H"
     * </pre>
     * Note that multiples of 24 hours are not output as days to avoid confusion
     * with {@code Period}.
     *
     * @return an ISO-8601 representation of this duration, not null
     */
    @Override
    public String toString() {
        if (this == ZERO) {
            return "PT0S";
        }
        long hours = seconds / SECONDS_PER_HOUR;
        int minutes = (int) ((seconds % SECONDS_PER_HOUR) / SECONDS_PER_MINUTE);
        int secs = (int) (seconds % SECONDS_PER_MINUTE);
        StringBuilder buf = new StringBuilder(24);
        buf.append("PT");
        if (hours != 0) {
            buf.append(hours).append('H');
        }
        if (minutes != 0) {
            buf.append(minutes).append('M');
        }
        if (secs == 0 && nanos == 0 && buf.length() > 2) {
            return buf.toString();
        }
        if (secs < 0 && nanos > 0) {
            if (secs == -1) {
                buf.append("-0");
            } else {
                buf.append(secs + 1);
            }
        } else {
            buf.append(secs);
        }
        if (nanos > 0) {
            int pos = buf.length();
            if (secs < 0) {
                buf.append(2 * NANOS_PER_SECOND - nanos);
            } else {
                buf.append(nanos + NANOS_PER_SECOND);
            }
            while (buf.charAt(buf.length() - 1) == '0') {
                buf.setLength(buf.length() - 1);
            }
            buf.setCharAt(pos, '.');
        }
        buf.append('S');
        return buf.toString();
    }

    //-----------------------------------------------------------------------
    /**
     * Writes the object using a
     * <a href="../../serialized-form.html#java.time.Ser">dedicated serialized form.
     * @serialData
     * <pre>
     *  out.writeByte(1);  // identifies a Duration
     *  out.writeLong(seconds);
     *  out.writeInt(nanos);
     * </pre>
     *
     * @return the instance of {@code Ser}, not null
     */
    private Object writeReplace() {
        return new Ser(Ser.DURATION_TYPE, this);
    }

    /**
     * Defend against malicious streams.
     *
     * @throws InvalidObjectException always
     */
    private void readObject(ObjectInputStream s) throws InvalidObjectException {
        throw new InvalidObjectException("Deserialization via serialization delegate");
    }

    void writeExternal(DataOutput out) throws IOException {
        out.writeLong(seconds);
        out.writeInt(nanos);
    }

    static Duration readExternal(DataInput in) throws IOException {
        long seconds = in.readLong();
        int nanos = in.readInt();
        return Duration.ofSeconds(seconds, nanos);
    }

}

Other Java examples (source code examples)

Here is a short list of links related to this Java Duration.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.