alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (IdentityHashMap.java)

This example Java source code file (IdentityHashMap.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

concurrentmodificationexception, entry, entryspliterator, identityhashmap, identityhashmapspliterator, keyspliterator, nullpointerexception, object, reflection, suppresswarnings, valuespliterator

The IdentityHashMap.java Java example source code

/*
 * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package java.util;

import java.io.*;
import java.lang.reflect.Array;
import java.util.function.BiConsumer;
import java.util.function.BiFunction;
import java.util.function.Consumer;

/**
 * This class implements the <tt>Map interface with a hash table, using
 * reference-equality in place of object-equality when comparing keys (and
 * values).  In other words, in an <tt>IdentityHashMap, two keys
 * <tt>k1 and k2 are considered equal if and only if
 * <tt>(k1==k2).  (In normal Map implementations (like
 * <tt>HashMap) two keys k1 and k2 are considered equal
 * if and only if <tt>(k1==null ? k2==null : k1.equals(k2)).)
 *
 * <p>This class is not a general-purpose Map
 * implementation!  While this class implements the <tt>Map interface, it
 * intentionally violates <tt>Map's general contract, which mandates the
 * use of the <tt>equals method when comparing objects.  This class is
 * designed for use only in the rare cases wherein reference-equality
 * semantics are required.</b>
 *
 * <p>A typical use of this class is topology-preserving object graph
 * transformations</i>, such as serialization or deep-copying.  To perform such
 * a transformation, a program must maintain a "node table" that keeps track
 * of all the object references that have already been processed.  The node
 * table must not equate distinct objects even if they happen to be equal.
 * Another typical use of this class is to maintain <i>proxy objects.  For
 * example, a debugging facility might wish to maintain a proxy object for
 * each object in the program being debugged.
 *
 * <p>This class provides all of the optional map operations, and permits
 * <tt>null values and the null key.  This class makes no
 * guarantees as to the order of the map; in particular, it does not guarantee
 * that the order will remain constant over time.
 *
 * <p>This class provides constant-time performance for the basic
 * operations (<tt>get and put), assuming the system
 * identity hash function ({@link System#identityHashCode(Object)})
 * disperses elements properly among the buckets.
 *
 * <p>This class has one tuning parameter (which affects performance but not
 * semantics): <i>expected maximum size.  This parameter is the maximum
 * number of key-value mappings that the map is expected to hold.  Internally,
 * this parameter is used to determine the number of buckets initially
 * comprising the hash table.  The precise relationship between the expected
 * maximum size and the number of buckets is unspecified.
 *
 * <p>If the size of the map (the number of key-value mappings) sufficiently
 * exceeds the expected maximum size, the number of buckets is increased
 * Increasing the number of buckets ("rehashing") may be fairly expensive, so
 * it pays to create identity hash maps with a sufficiently large expected
 * maximum size.  On the other hand, iteration over collection views requires
 * time proportional to the number of buckets in the hash table, so it
 * pays not to set the expected maximum size too high if you are especially
 * concerned with iteration performance or memory usage.
 *
 * <p>Note that this implementation is not synchronized.
 * If multiple threads access an identity hash map concurrently, and at
 * least one of the threads modifies the map structurally, it <i>must
 * be synchronized externally.  (A structural modification is any operation
 * that adds or deletes one or more mappings; merely changing the value
 * associated with a key that an instance already contains is not a
 * structural modification.)  This is typically accomplished by
 * synchronizing on some object that naturally encapsulates the map.
 *
 * If no such object exists, the map should be "wrapped" using the
 * {@link Collections#synchronizedMap Collections.synchronizedMap}
 * method.  This is best done at creation time, to prevent accidental
 * unsynchronized access to the map:<pre>
 *   Map m = Collections.synchronizedMap(new IdentityHashMap(...));</pre>
 *
 * <p>The iterators returned by the iterator method of the
 * collections returned by all of this class's "collection view
 * methods" are <i>fail-fast: if the map is structurally modified
 * at any time after the iterator is created, in any way except
 * through the iterator's own <tt>remove method, the iterator
 * will throw a {@link ConcurrentModificationException}.  Thus, in the
 * face of concurrent modification, the iterator fails quickly and
 * cleanly, rather than risking arbitrary, non-deterministic behavior
 * at an undetermined time in the future.
 *
 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
 * as it is, generally speaking, impossible to make any hard guarantees in the
 * presence of unsynchronized concurrent modification.  Fail-fast iterators
 * throw <tt>ConcurrentModificationException on a best-effort basis.
 * Therefore, it would be wrong to write a program that depended on this
 * exception for its correctness: <i>fail-fast iterators should be used only
 * to detect bugs.</i>
 *
 * <p>Implementation note: This is a simple linear-probe hash table,
 * as described for example in texts by Sedgewick and Knuth.  The array
 * alternates holding keys and values.  (This has better locality for large
 * tables than does using separate arrays.)  For many JRE implementations
 * and operation mixes, this class will yield better performance than
 * {@link HashMap} (which uses <i>chaining rather than linear-probing).
 *
 * <p>This class is a member of the
 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
 * Java Collections Framework</a>.
 *
 * @see     System#identityHashCode(Object)
 * @see     Object#hashCode()
 * @see     Collection
 * @see     Map
 * @see     HashMap
 * @see     TreeMap
 * @author  Doug Lea and Josh Bloch
 * @since   1.4
 */

public class IdentityHashMap<K,V>
    extends AbstractMap<K,V>
    implements Map<K,V>, java.io.Serializable, Cloneable
{
    /**
     * The initial capacity used by the no-args constructor.
     * MUST be a power of two.  The value 32 corresponds to the
     * (specified) expected maximum size of 21, given a load factor
     * of 2/3.
     */
    private static final int DEFAULT_CAPACITY = 32;

    /**
     * The minimum capacity, used if a lower value is implicitly specified
     * by either of the constructors with arguments.  The value 4 corresponds
     * to an expected maximum size of 2, given a load factor of 2/3.
     * MUST be a power of two.
     */
    private static final int MINIMUM_CAPACITY = 4;

    /**
     * The maximum capacity, used if a higher value is implicitly specified
     * by either of the constructors with arguments.
     * MUST be a power of two <= 1<<29.
     */
    private static final int MAXIMUM_CAPACITY = 1 << 29;

    /**
     * The table, resized as necessary. Length MUST always be a power of two.
     */
    transient Object[] table; // non-private to simplify nested class access

    /**
     * The number of key-value mappings contained in this identity hash map.
     *
     * @serial
     */
    int size;

    /**
     * The number of modifications, to support fast-fail iterators
     */
    transient int modCount;

    /**
     * The next size value at which to resize (capacity * load factor).
     */
    private transient int threshold;

    /**
     * Value representing null keys inside tables.
     */
    static final Object NULL_KEY = new Object();

    /**
     * Use NULL_KEY for key if it is null.
     */
    private static Object maskNull(Object key) {
        return (key == null ? NULL_KEY : key);
    }

    /**
     * Returns internal representation of null key back to caller as null.
     */
    static final Object unmaskNull(Object key) {
        return (key == NULL_KEY ? null : key);
    }

    /**
     * Constructs a new, empty identity hash map with a default expected
     * maximum size (21).
     */
    public IdentityHashMap() {
        init(DEFAULT_CAPACITY);
    }

    /**
     * Constructs a new, empty map with the specified expected maximum size.
     * Putting more than the expected number of key-value mappings into
     * the map may cause the internal data structure to grow, which may be
     * somewhat time-consuming.
     *
     * @param expectedMaxSize the expected maximum size of the map
     * @throws IllegalArgumentException if <tt>expectedMaxSize is negative
     */
    public IdentityHashMap(int expectedMaxSize) {
        if (expectedMaxSize < 0)
            throw new IllegalArgumentException("expectedMaxSize is negative: "
                                               + expectedMaxSize);
        init(capacity(expectedMaxSize));
    }

    /**
     * Returns the appropriate capacity for the specified expected maximum
     * size.  Returns the smallest power of two between MINIMUM_CAPACITY
     * and MAXIMUM_CAPACITY, inclusive, that is greater than
     * (3 * expectedMaxSize)/2, if such a number exists.  Otherwise
     * returns MAXIMUM_CAPACITY.  If (3 * expectedMaxSize)/2 is negative, it
     * is assumed that overflow has occurred, and MAXIMUM_CAPACITY is returned.
     */
    private int capacity(int expectedMaxSize) {
        // Compute min capacity for expectedMaxSize given a load factor of 2/3
        int minCapacity = (3 * expectedMaxSize)/2;

        // Compute the appropriate capacity
        int result;
        if (minCapacity > MAXIMUM_CAPACITY || minCapacity < 0) {
            result = MAXIMUM_CAPACITY;
        } else {
            result = MINIMUM_CAPACITY;
            while (result < minCapacity)
                result <<= 1;
        }
        return result;
    }

    /**
     * Initializes object to be an empty map with the specified initial
     * capacity, which is assumed to be a power of two between
     * MINIMUM_CAPACITY and MAXIMUM_CAPACITY inclusive.
     */
    private void init(int initCapacity) {
        // assert (initCapacity & -initCapacity) == initCapacity; // power of 2
        // assert initCapacity >= MINIMUM_CAPACITY;
        // assert initCapacity <= MAXIMUM_CAPACITY;

        threshold = (initCapacity * 2)/3;
        table = new Object[2 * initCapacity];
    }

    /**
     * Constructs a new identity hash map containing the keys-value mappings
     * in the specified map.
     *
     * @param m the map whose mappings are to be placed into this map
     * @throws NullPointerException if the specified map is null
     */
    public IdentityHashMap(Map<? extends K, ? extends V> m) {
        // Allow for a bit of growth
        this((int) ((1 + m.size()) * 1.1));
        putAll(m);
    }

    /**
     * Returns the number of key-value mappings in this identity hash map.
     *
     * @return the number of key-value mappings in this map
     */
    public int size() {
        return size;
    }

    /**
     * Returns <tt>true if this identity hash map contains no key-value
     * mappings.
     *
     * @return <tt>true if this identity hash map contains no key-value
     *         mappings
     */
    public boolean isEmpty() {
        return size == 0;
    }

    /**
     * Returns index for Object x.
     */
    private static int hash(Object x, int length) {
        int h = System.identityHashCode(x);
        // Multiply by -127, and left-shift to use least bit as part of hash
        return ((h << 1) - (h << 8)) & (length - 1);
    }

    /**
     * Circularly traverses table of size len.
     */
    private static int nextKeyIndex(int i, int len) {
        return (i + 2 < len ? i + 2 : 0);
    }

    /**
     * Returns the value to which the specified key is mapped,
     * or {@code null} if this map contains no mapping for the key.
     *
     * <p>More formally, if this map contains a mapping from a key
     * {@code k} to a value {@code v} such that {@code (key == k)},
     * then this method returns {@code v}; otherwise it returns
     * {@code null}.  (There can be at most one such mapping.)
     *
     * <p>A return value of {@code null} does not necessarily
     * indicate that the map contains no mapping for the key; it's also
     * possible that the map explicitly maps the key to {@code null}.
     * The {@link #containsKey containsKey} operation may be used to
     * distinguish these two cases.
     *
     * @see #put(Object, Object)
     */
    @SuppressWarnings("unchecked")
    public V get(Object key) {
        Object k = maskNull(key);
        Object[] tab = table;
        int len = tab.length;
        int i = hash(k, len);
        while (true) {
            Object item = tab[i];
            if (item == k)
                return (V) tab[i + 1];
            if (item == null)
                return null;
            i = nextKeyIndex(i, len);
        }
    }

    /**
     * Tests whether the specified object reference is a key in this identity
     * hash map.
     *
     * @param   key   possible key
     * @return  <code>true if the specified object reference is a key
     *          in this map
     * @see     #containsValue(Object)
     */
    public boolean containsKey(Object key) {
        Object k = maskNull(key);
        Object[] tab = table;
        int len = tab.length;
        int i = hash(k, len);
        while (true) {
            Object item = tab[i];
            if (item == k)
                return true;
            if (item == null)
                return false;
            i = nextKeyIndex(i, len);
        }
    }

    /**
     * Tests whether the specified object reference is a value in this identity
     * hash map.
     *
     * @param value value whose presence in this map is to be tested
     * @return <tt>true if this map maps one or more keys to the
     *         specified object reference
     * @see     #containsKey(Object)
     */
    public boolean containsValue(Object value) {
        Object[] tab = table;
        for (int i = 1; i < tab.length; i += 2)
            if (tab[i] == value && tab[i - 1] != null)
                return true;

        return false;
    }

    /**
     * Tests if the specified key-value mapping is in the map.
     *
     * @param   key   possible key
     * @param   value possible value
     * @return  <code>true if and only if the specified key-value
     *          mapping is in the map
     */
    private boolean containsMapping(Object key, Object value) {
        Object k = maskNull(key);
        Object[] tab = table;
        int len = tab.length;
        int i = hash(k, len);
        while (true) {
            Object item = tab[i];
            if (item == k)
                return tab[i + 1] == value;
            if (item == null)
                return false;
            i = nextKeyIndex(i, len);
        }
    }

    /**
     * Associates the specified value with the specified key in this identity
     * hash map.  If the map previously contained a mapping for the key, the
     * old value is replaced.
     *
     * @param key the key with which the specified value is to be associated
     * @param value the value to be associated with the specified key
     * @return the previous value associated with <tt>key, or
     *         <tt>null if there was no mapping for key.
     *         (A <tt>null return can also indicate that the map
     *         previously associated <tt>null with key.)
     * @see     Object#equals(Object)
     * @see     #get(Object)
     * @see     #containsKey(Object)
     */
    public V put(K key, V value) {
        Object k = maskNull(key);
        Object[] tab = table;
        int len = tab.length;
        int i = hash(k, len);

        Object item;
        while ( (item = tab[i]) != null) {
            if (item == k) {
                @SuppressWarnings("unchecked")
                    V oldValue = (V) tab[i + 1];
                tab[i + 1] = value;
                return oldValue;
            }
            i = nextKeyIndex(i, len);
        }

        modCount++;
        tab[i] = k;
        tab[i + 1] = value;
        if (++size >= threshold)
            resize(len); // len == 2 * current capacity.
        return null;
    }

    /**
     * Resize the table to hold given capacity.
     *
     * @param newCapacity the new capacity, must be a power of two.
     */
    private void resize(int newCapacity) {
        // assert (newCapacity & -newCapacity) == newCapacity; // power of 2
        int newLength = newCapacity * 2;

        Object[] oldTable = table;
        int oldLength = oldTable.length;
        if (oldLength == 2*MAXIMUM_CAPACITY) { // can't expand any further
            if (threshold == MAXIMUM_CAPACITY-1)
                throw new IllegalStateException("Capacity exhausted.");
            threshold = MAXIMUM_CAPACITY-1;  // Gigantic map!
            return;
        }
        if (oldLength >= newLength)
            return;

        Object[] newTable = new Object[newLength];
        threshold = newLength / 3;

        for (int j = 0; j < oldLength; j += 2) {
            Object key = oldTable[j];
            if (key != null) {
                Object value = oldTable[j+1];
                oldTable[j] = null;
                oldTable[j+1] = null;
                int i = hash(key, newLength);
                while (newTable[i] != null)
                    i = nextKeyIndex(i, newLength);
                newTable[i] = key;
                newTable[i + 1] = value;
            }
        }
        table = newTable;
    }

    /**
     * Copies all of the mappings from the specified map to this map.
     * These mappings will replace any mappings that this map had for
     * any of the keys currently in the specified map.
     *
     * @param m mappings to be stored in this map
     * @throws NullPointerException if the specified map is null
     */
    public void putAll(Map<? extends K, ? extends V> m) {
        int n = m.size();
        if (n == 0)
            return;
        if (n > threshold) // conservatively pre-expand
            resize(capacity(n));

        for (Entry<? extends K, ? extends V> e : m.entrySet())
            put(e.getKey(), e.getValue());
    }

    /**
     * Removes the mapping for this key from this map if present.
     *
     * @param key key whose mapping is to be removed from the map
     * @return the previous value associated with <tt>key, or
     *         <tt>null if there was no mapping for key.
     *         (A <tt>null return can also indicate that the map
     *         previously associated <tt>null with key.)
     */
    public V remove(Object key) {
        Object k = maskNull(key);
        Object[] tab = table;
        int len = tab.length;
        int i = hash(k, len);

        while (true) {
            Object item = tab[i];
            if (item == k) {
                modCount++;
                size--;
                @SuppressWarnings("unchecked")
                    V oldValue = (V) tab[i + 1];
                tab[i + 1] = null;
                tab[i] = null;
                closeDeletion(i);
                return oldValue;
            }
            if (item == null)
                return null;
            i = nextKeyIndex(i, len);
        }

    }

    /**
     * Removes the specified key-value mapping from the map if it is present.
     *
     * @param   key   possible key
     * @param   value possible value
     * @return  <code>true if and only if the specified key-value
     *          mapping was in the map
     */
    private boolean removeMapping(Object key, Object value) {
        Object k = maskNull(key);
        Object[] tab = table;
        int len = tab.length;
        int i = hash(k, len);

        while (true) {
            Object item = tab[i];
            if (item == k) {
                if (tab[i + 1] != value)
                    return false;
                modCount++;
                size--;
                tab[i] = null;
                tab[i + 1] = null;
                closeDeletion(i);
                return true;
            }
            if (item == null)
                return false;
            i = nextKeyIndex(i, len);
        }
    }

    /**
     * Rehash all possibly-colliding entries following a
     * deletion. This preserves the linear-probe
     * collision properties required by get, put, etc.
     *
     * @param d the index of a newly empty deleted slot
     */
    private void closeDeletion(int d) {
        // Adapted from Knuth Section 6.4 Algorithm R
        Object[] tab = table;
        int len = tab.length;

        // Look for items to swap into newly vacated slot
        // starting at index immediately following deletion,
        // and continuing until a null slot is seen, indicating
        // the end of a run of possibly-colliding keys.
        Object item;
        for (int i = nextKeyIndex(d, len); (item = tab[i]) != null;
             i = nextKeyIndex(i, len) ) {
            // The following test triggers if the item at slot i (which
            // hashes to be at slot r) should take the spot vacated by d.
            // If so, we swap it in, and then continue with d now at the
            // newly vacated i.  This process will terminate when we hit
            // the null slot at the end of this run.
            // The test is messy because we are using a circular table.
            int r = hash(item, len);
            if ((i < r && (r <= d || d <= i)) || (r <= d && d <= i)) {
                tab[d] = item;
                tab[d + 1] = tab[i + 1];
                tab[i] = null;
                tab[i + 1] = null;
                d = i;
            }
        }
    }

    /**
     * Removes all of the mappings from this map.
     * The map will be empty after this call returns.
     */
    public void clear() {
        modCount++;
        Object[] tab = table;
        for (int i = 0; i < tab.length; i++)
            tab[i] = null;
        size = 0;
    }

    /**
     * Compares the specified object with this map for equality.  Returns
     * <tt>true if the given object is also a map and the two maps
     * represent identical object-reference mappings.  More formally, this
     * map is equal to another map <tt>m if and only if
     * <tt>this.entrySet().equals(m.entrySet()).
     *
     * <p>Owing to the reference-equality-based semantics of this map it is
     * possible that the symmetry and transitivity requirements of the
     * <tt>Object.equals contract may be violated if this map is compared
     * to a normal map.  However, the <tt>Object.equals contract is
     * guaranteed to hold among <tt>IdentityHashMap instances.
     *
     * @param  o object to be compared for equality with this map
     * @return <tt>true if the specified object is equal to this map
     * @see Object#equals(Object)
     */
    public boolean equals(Object o) {
        if (o == this) {
            return true;
        } else if (o instanceof IdentityHashMap) {
            IdentityHashMap<?,?> m = (IdentityHashMap) o;
            if (m.size() != size)
                return false;

            Object[] tab = m.table;
            for (int i = 0; i < tab.length; i+=2) {
                Object k = tab[i];
                if (k != null && !containsMapping(k, tab[i + 1]))
                    return false;
            }
            return true;
        } else if (o instanceof Map) {
            Map<?,?> m = (Map)o;
            return entrySet().equals(m.entrySet());
        } else {
            return false;  // o is not a Map
        }
    }

    /**
     * Returns the hash code value for this map.  The hash code of a map is
     * defined to be the sum of the hash codes of each entry in the map's
     * <tt>entrySet() view.  This ensures that m1.equals(m2)
     * implies that <tt>m1.hashCode()==m2.hashCode() for any two
     * <tt>IdentityHashMap instances m1 and m2, as
     * required by the general contract of {@link Object#hashCode}.
     *
     * <p>Owing to the reference-equality-based semantics of the
     * <tt>Map.Entry instances in the set returned by this map's
     * <tt>entrySet method, it is possible that the contractual
     * requirement of <tt>Object.hashCode mentioned in the previous
     * paragraph will be violated if one of the two objects being compared is
     * an <tt>IdentityHashMap instance and the other is a normal map.
     *
     * @return the hash code value for this map
     * @see Object#equals(Object)
     * @see #equals(Object)
     */
    public int hashCode() {
        int result = 0;
        Object[] tab = table;
        for (int i = 0; i < tab.length; i +=2) {
            Object key = tab[i];
            if (key != null) {
                Object k = unmaskNull(key);
                result += System.identityHashCode(k) ^
                          System.identityHashCode(tab[i + 1]);
            }
        }
        return result;
    }

    /**
     * Returns a shallow copy of this identity hash map: the keys and values
     * themselves are not cloned.
     *
     * @return a shallow copy of this map
     */
    public Object clone() {
        try {
            IdentityHashMap<?,?> m = (IdentityHashMap) super.clone();
            m.entrySet = null;
            m.table = table.clone();
            return m;
        } catch (CloneNotSupportedException e) {
            throw new InternalError(e);
        }
    }

    private abstract class IdentityHashMapIterator<T> implements Iterator {
        int index = (size != 0 ? 0 : table.length); // current slot.
        int expectedModCount = modCount; // to support fast-fail
        int lastReturnedIndex = -1;      // to allow remove()
        boolean indexValid; // To avoid unnecessary next computation
        Object[] traversalTable = table; // reference to main table or copy

        public boolean hasNext() {
            Object[] tab = traversalTable;
            for (int i = index; i < tab.length; i+=2) {
                Object key = tab[i];
                if (key != null) {
                    index = i;
                    return indexValid = true;
                }
            }
            index = tab.length;
            return false;
        }

        protected int nextIndex() {
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            if (!indexValid && !hasNext())
                throw new NoSuchElementException();

            indexValid = false;
            lastReturnedIndex = index;
            index += 2;
            return lastReturnedIndex;
        }

        public void remove() {
            if (lastReturnedIndex == -1)
                throw new IllegalStateException();
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();

            expectedModCount = ++modCount;
            int deletedSlot = lastReturnedIndex;
            lastReturnedIndex = -1;
            // back up index to revisit new contents after deletion
            index = deletedSlot;
            indexValid = false;

            // Removal code proceeds as in closeDeletion except that
            // it must catch the rare case where an element already
            // seen is swapped into a vacant slot that will be later
            // traversed by this iterator. We cannot allow future
            // next() calls to return it again.  The likelihood of
            // this occurring under 2/3 load factor is very slim, but
            // when it does happen, we must make a copy of the rest of
            // the table to use for the rest of the traversal. Since
            // this can only happen when we are near the end of the table,
            // even in these rare cases, this is not very expensive in
            // time or space.

            Object[] tab = traversalTable;
            int len = tab.length;

            int d = deletedSlot;
            Object key = tab[d];
            tab[d] = null;        // vacate the slot
            tab[d + 1] = null;

            // If traversing a copy, remove in real table.
            // We can skip gap-closure on copy.
            if (tab != IdentityHashMap.this.table) {
                IdentityHashMap.this.remove(key);
                expectedModCount = modCount;
                return;
            }

            size--;

            Object item;
            for (int i = nextKeyIndex(d, len); (item = tab[i]) != null;
                 i = nextKeyIndex(i, len)) {
                int r = hash(item, len);
                // See closeDeletion for explanation of this conditional
                if ((i < r && (r <= d || d <= i)) ||
                    (r <= d && d <= i)) {

                    // If we are about to swap an already-seen element
                    // into a slot that may later be returned by next(),
                    // then clone the rest of table for use in future
                    // next() calls. It is OK that our copy will have
                    // a gap in the "wrong" place, since it will never
                    // be used for searching anyway.

                    if (i < deletedSlot && d >= deletedSlot &&
                        traversalTable == IdentityHashMap.this.table) {
                        int remaining = len - deletedSlot;
                        Object[] newTable = new Object[remaining];
                        System.arraycopy(tab, deletedSlot,
                                         newTable, 0, remaining);
                        traversalTable = newTable;
                        index = 0;
                    }

                    tab[d] = item;
                    tab[d + 1] = tab[i + 1];
                    tab[i] = null;
                    tab[i + 1] = null;
                    d = i;
                }
            }
        }
    }

    private class KeyIterator extends IdentityHashMapIterator<K> {
        @SuppressWarnings("unchecked")
        public K next() {
            return (K) unmaskNull(traversalTable[nextIndex()]);
        }
    }

    private class ValueIterator extends IdentityHashMapIterator<V> {
        @SuppressWarnings("unchecked")
        public V next() {
            return (V) traversalTable[nextIndex() + 1];
        }
    }

    private class EntryIterator
        extends IdentityHashMapIterator<Map.Entry
    {
        private Entry lastReturnedEntry = null;

        public Map.Entry<K,V> next() {
            lastReturnedEntry = new Entry(nextIndex());
            return lastReturnedEntry;
        }

        public void remove() {
            lastReturnedIndex =
                ((null == lastReturnedEntry) ? -1 : lastReturnedEntry.index);
            super.remove();
            lastReturnedEntry.index = lastReturnedIndex;
            lastReturnedEntry = null;
        }

        private class Entry implements Map.Entry<K,V> {
            private int index;

            private Entry(int index) {
                this.index = index;
            }

            @SuppressWarnings("unchecked")
            public K getKey() {
                checkIndexForEntryUse();
                return (K) unmaskNull(traversalTable[index]);
            }

            @SuppressWarnings("unchecked")
            public V getValue() {
                checkIndexForEntryUse();
                return (V) traversalTable[index+1];
            }

            @SuppressWarnings("unchecked")
            public V setValue(V value) {
                checkIndexForEntryUse();
                V oldValue = (V) traversalTable[index+1];
                traversalTable[index+1] = value;
                // if shadowing, force into main table
                if (traversalTable != IdentityHashMap.this.table)
                    put((K) traversalTable[index], value);
                return oldValue;
            }

            public boolean equals(Object o) {
                if (index < 0)
                    return super.equals(o);

                if (!(o instanceof Map.Entry))
                    return false;
                Map.Entry<?,?> e = (Map.Entry)o;
                return (e.getKey() == unmaskNull(traversalTable[index]) &&
                       e.getValue() == traversalTable[index+1]);
            }

            public int hashCode() {
                if (lastReturnedIndex < 0)
                    return super.hashCode();

                return (System.identityHashCode(unmaskNull(traversalTable[index])) ^
                       System.identityHashCode(traversalTable[index+1]));
            }

            public String toString() {
                if (index < 0)
                    return super.toString();

                return (unmaskNull(traversalTable[index]) + "="
                        + traversalTable[index+1]);
            }

            private void checkIndexForEntryUse() {
                if (index < 0)
                    throw new IllegalStateException("Entry was removed");
            }
        }
    }

    // Views

    /**
     * This field is initialized to contain an instance of the entry set
     * view the first time this view is requested.  The view is stateless,
     * so there's no reason to create more than one.
     */
    private transient Set<Map.Entry entrySet = null;

    /**
     * Returns an identity-based set view of the keys contained in this map.
     * The set is backed by the map, so changes to the map are reflected in
     * the set, and vice-versa.  If the map is modified while an iteration
     * over the set is in progress, the results of the iteration are
     * undefined.  The set supports element removal, which removes the
     * corresponding mapping from the map, via the <tt>Iterator.remove,
     * <tt>Set.remove, removeAll, retainAll, and
     * <tt>clear methods.  It does not support the add or
     * <tt>addAll methods.
     *
     * <p>While the object returned by this method implements the
     * <tt>Set interface, it does not obey Set's general
     * contract.  Like its backing map, the set returned by this method
     * defines element equality as reference-equality rather than
     * object-equality.  This affects the behavior of its <tt>contains,
     * <tt>remove, containsAll, equals, and
     * <tt>hashCode methods.
     *
     * <p>The equals method of the returned set returns true
     * only if the specified object is a set containing exactly the same
     * object references as the returned set.  The symmetry and transitivity
     * requirements of the <tt>Object.equals contract may be violated if
     * the set returned by this method is compared to a normal set.  However,
     * the <tt>Object.equals contract is guaranteed to hold among sets
     * returned by this method.</b>
     *
     * <p>The hashCode method of the returned set returns the sum of
     * the <i>identity hashcodes of the elements in the set, rather than
     * the sum of their hashcodes.  This is mandated by the change in the
     * semantics of the <tt>equals method, in order to enforce the
     * general contract of the <tt>Object.hashCode method among sets
     * returned by this method.
     *
     * @return an identity-based set view of the keys contained in this map
     * @see Object#equals(Object)
     * @see System#identityHashCode(Object)
     */
    public Set<K> keySet() {
        Set<K> ks = keySet;
        if (ks != null)
            return ks;
        else
            return keySet = new KeySet();
    }

    private class KeySet extends AbstractSet<K> {
        public Iterator<K> iterator() {
            return new KeyIterator();
        }
        public int size() {
            return size;
        }
        public boolean contains(Object o) {
            return containsKey(o);
        }
        public boolean remove(Object o) {
            int oldSize = size;
            IdentityHashMap.this.remove(o);
            return size != oldSize;
        }
        /*
         * Must revert from AbstractSet's impl to AbstractCollection's, as
         * the former contains an optimization that results in incorrect
         * behavior when c is a smaller "normal" (non-identity-based) Set.
         */
        public boolean removeAll(Collection<?> c) {
            Objects.requireNonNull(c);
            boolean modified = false;
            for (Iterator<K> i = iterator(); i.hasNext(); ) {
                if (c.contains(i.next())) {
                    i.remove();
                    modified = true;
                }
            }
            return modified;
        }
        public void clear() {
            IdentityHashMap.this.clear();
        }
        public int hashCode() {
            int result = 0;
            for (K key : this)
                result += System.identityHashCode(key);
            return result;
        }
        public Object[] toArray() {
            return toArray(new Object[0]);
        }
        @SuppressWarnings("unchecked")
        public <T> T[] toArray(T[] a) {
            int expectedModCount = modCount;
            int size = size();
            if (a.length < size)
                a = (T[]) Array.newInstance(a.getClass().getComponentType(), size);
            Object[] tab = table;
            int ti = 0;
            for (int si = 0; si < tab.length; si += 2) {
                Object key;
                if ((key = tab[si]) != null) { // key present ?
                    // more elements than expected -> concurrent modification from other thread
                    if (ti >= size) {
                        throw new ConcurrentModificationException();
                    }
                    a[ti++] = (T) unmaskNull(key); // unmask key
                }
            }
            // fewer elements than expected or concurrent modification from other thread detected
            if (ti < size || expectedModCount != modCount) {
                throw new ConcurrentModificationException();
            }
            // final null marker as per spec
            if (ti < a.length) {
                a[ti] = null;
            }
            return a;
        }

        public Spliterator<K> spliterator() {
            return new KeySpliterator<>(IdentityHashMap.this, 0, -1, 0, 0);
        }
    }

    /**
     * Returns a {@link Collection} view of the values contained in this map.
     * The collection is backed by the map, so changes to the map are
     * reflected in the collection, and vice-versa.  If the map is
     * modified while an iteration over the collection is in progress,
     * the results of the iteration are undefined.  The collection
     * supports element removal, which removes the corresponding
     * mapping from the map, via the <tt>Iterator.remove,
     * <tt>Collection.remove, removeAll,
     * <tt>retainAll and clear methods.  It does not
     * support the <tt>add or addAll methods.
     *
     * <p>While the object returned by this method implements the
     * <tt>Collection interface, it does not obey
     * <tt>Collection's general contract.  Like its backing map,
     * the collection returned by this method defines element equality as
     * reference-equality rather than object-equality.  This affects the
     * behavior of its <tt>contains, remove and
     * <tt>containsAll methods.
     */
    public Collection<V> values() {
        Collection<V> vs = values;
        if (vs != null)
            return vs;
        else
            return values = new Values();
    }

    private class Values extends AbstractCollection<V> {
        public Iterator<V> iterator() {
            return new ValueIterator();
        }
        public int size() {
            return size;
        }
        public boolean contains(Object o) {
            return containsValue(o);
        }
        public boolean remove(Object o) {
            for (Iterator<V> i = iterator(); i.hasNext(); ) {
                if (i.next() == o) {
                    i.remove();
                    return true;
                }
            }
            return false;
        }
        public void clear() {
            IdentityHashMap.this.clear();
        }
        public Object[] toArray() {
            return toArray(new Object[0]);
        }
        @SuppressWarnings("unchecked")
        public <T> T[] toArray(T[] a) {
            int expectedModCount = modCount;
            int size = size();
            if (a.length < size)
                a = (T[]) Array.newInstance(a.getClass().getComponentType(), size);
            Object[] tab = table;
            int ti = 0;
            for (int si = 0; si < tab.length; si += 2) {
                if (tab[si] != null) { // key present ?
                    // more elements than expected -> concurrent modification from other thread
                    if (ti >= size) {
                        throw new ConcurrentModificationException();
                    }
                    a[ti++] = (T) tab[si+1]; // copy value
                }
            }
            // fewer elements than expected or concurrent modification from other thread detected
            if (ti < size || expectedModCount != modCount) {
                throw new ConcurrentModificationException();
            }
            // final null marker as per spec
            if (ti < a.length) {
                a[ti] = null;
            }
            return a;
        }

        public Spliterator<V> spliterator() {
            return new ValueSpliterator<>(IdentityHashMap.this, 0, -1, 0, 0);
        }
    }

    /**
     * Returns a {@link Set} view of the mappings contained in this map.
     * Each element in the returned set is a reference-equality-based
     * <tt>Map.Entry.  The set is backed by the map, so changes
     * to the map are reflected in the set, and vice-versa.  If the
     * map is modified while an iteration over the set is in progress,
     * the results of the iteration are undefined.  The set supports
     * element removal, which removes the corresponding mapping from
     * the map, via the <tt>Iterator.remove, Set.remove,
     * <tt>removeAll, retainAll and clear
     * methods.  It does not support the <tt>add or
     * <tt>addAll methods.
     *
     * <p>Like the backing map, the Map.Entry objects in the set
     * returned by this method define key and value equality as
     * reference-equality rather than object-equality.  This affects the
     * behavior of the <tt>equals and hashCode methods of these
     * <tt>Map.Entry objects.  A reference-equality based Map.Entry
     * e</tt> is equal to an object o if and only if o is a
     * <tt>Map.Entry and e.getKey()==o.getKey() &&
     * e.getValue()==o.getValue()</tt>.  To accommodate these equals
     * semantics, the <tt>hashCode method returns
     * <tt>System.identityHashCode(e.getKey()) ^
     * System.identityHashCode(e.getValue())</tt>.
     *
     * <p>Owing to the reference-equality-based semantics of the
     * <tt>Map.Entry instances in the set returned by this method,
     * it is possible that the symmetry and transitivity requirements of
     * the {@link Object#equals(Object)} contract may be violated if any of
     * the entries in the set is compared to a normal map entry, or if
     * the set returned by this method is compared to a set of normal map
     * entries (such as would be returned by a call to this method on a normal
     * map).  However, the <tt>Object.equals contract is guaranteed to
     * hold among identity-based map entries, and among sets of such entries.
     * </b>
     *
     * @return a set view of the identity-mappings contained in this map
     */
    public Set<Map.Entry entrySet() {
        Set<Map.Entry es = entrySet;
        if (es != null)
            return es;
        else
            return entrySet = new EntrySet();
    }

    private class EntrySet extends AbstractSet<Map.Entry {
        public Iterator<Map.Entry iterator() {
            return new EntryIterator();
        }
        public boolean contains(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry<?,?> entry = (Map.Entry)o;
            return containsMapping(entry.getKey(), entry.getValue());
        }
        public boolean remove(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry<?,?> entry = (Map.Entry)o;
            return removeMapping(entry.getKey(), entry.getValue());
        }
        public int size() {
            return size;
        }
        public void clear() {
            IdentityHashMap.this.clear();
        }
        /*
         * Must revert from AbstractSet's impl to AbstractCollection's, as
         * the former contains an optimization that results in incorrect
         * behavior when c is a smaller "normal" (non-identity-based) Set.
         */
        public boolean removeAll(Collection<?> c) {
            Objects.requireNonNull(c);
            boolean modified = false;
            for (Iterator<Map.Entry i = iterator(); i.hasNext(); ) {
                if (c.contains(i.next())) {
                    i.remove();
                    modified = true;
                }
            }
            return modified;
        }

        public Object[] toArray() {
            return toArray(new Object[0]);
        }

        @SuppressWarnings("unchecked")
        public <T> T[] toArray(T[] a) {
            int expectedModCount = modCount;
            int size = size();
            if (a.length < size)
                a = (T[]) Array.newInstance(a.getClass().getComponentType(), size);
            Object[] tab = table;
            int ti = 0;
            for (int si = 0; si < tab.length; si += 2) {
                Object key;
                if ((key = tab[si]) != null) { // key present ?
                    // more elements than expected -> concurrent modification from other thread
                    if (ti >= size) {
                        throw new ConcurrentModificationException();
                    }
                    a[ti++] = (T) new AbstractMap.SimpleEntry<>(unmaskNull(key), tab[si + 1]);
                }
            }
            // fewer elements than expected or concurrent modification from other thread detected
            if (ti < size || expectedModCount != modCount) {
                throw new ConcurrentModificationException();
            }
            // final null marker as per spec
            if (ti < a.length) {
                a[ti] = null;
            }
            return a;
        }

        public Spliterator<Map.Entry spliterator() {
            return new EntrySpliterator<>(IdentityHashMap.this, 0, -1, 0, 0);
        }
    }


    private static final long serialVersionUID = 8188218128353913216L;

    /**
     * Save the state of the <tt>IdentityHashMap instance to a stream
     * (i.e., serialize it).
     *
     * @serialData The <i>size of the HashMap (the number of key-value
     *          mappings) (<tt>int), followed by the key (Object) and
     *          value (Object) for each key-value mapping represented by the
     *          IdentityHashMap.  The key-value mappings are emitted in no
     *          particular order.
     */
    private void writeObject(java.io.ObjectOutputStream s)
        throws java.io.IOException  {
        // Write out and any hidden stuff
        s.defaultWriteObject();

        // Write out size (number of Mappings)
        s.writeInt(size);

        // Write out keys and values (alternating)
        Object[] tab = table;
        for (int i = 0; i < tab.length; i += 2) {
            Object key = tab[i];
            if (key != null) {
                s.writeObject(unmaskNull(key));
                s.writeObject(tab[i + 1]);
            }
        }
    }

    /**
     * Reconstitute the <tt>IdentityHashMap instance from a stream (i.e.,
     * deserialize it).
     */
    private void readObject(java.io.ObjectInputStream s)
        throws java.io.IOException, ClassNotFoundException  {
        // Read in any hidden stuff
        s.defaultReadObject();

        // Read in size (number of Mappings)
        int size = s.readInt();

        // Allow for 33% growth (i.e., capacity is >= 2* size()).
        init(capacity((size*4)/3));

        // Read the keys and values, and put the mappings in the table
        for (int i=0; i<size; i++) {
            @SuppressWarnings("unchecked")
                K key = (K) s.readObject();
            @SuppressWarnings("unchecked")
                V value = (V) s.readObject();
            putForCreate(key, value);
        }
    }

    /**
     * The put method for readObject.  It does not resize the table,
     * update modCount, etc.
     */
    private void putForCreate(K key, V value)
        throws IOException
    {
        Object k = maskNull(key);
        Object[] tab = table;
        int len = tab.length;
        int i = hash(k, len);

        Object item;
        while ( (item = tab[i]) != null) {
            if (item == k)
                throw new java.io.StreamCorruptedException();
            i = nextKeyIndex(i, len);
        }
        tab[i] = k;
        tab[i + 1] = value;
    }

    @SuppressWarnings("unchecked")
    @Override
    public void forEach(BiConsumer<? super K, ? super V> action) {
        Objects.requireNonNull(action);
        int expectedModCount = modCount;

        Object[] t = table;
        for (int index = 0; index < t.length; index += 2) {
            Object k = t[index];
            if (k != null) {
                action.accept((K) unmaskNull(k), (V) t[index + 1]);
            }

            if (modCount != expectedModCount) {
                throw new ConcurrentModificationException();
            }
        }
    }

    @SuppressWarnings("unchecked")
    @Override
    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
        Objects.requireNonNull(function);
        int expectedModCount = modCount;

        Object[] t = table;
        for (int index = 0; index < t.length; index += 2) {
            Object k = t[index];
            if (k != null) {
                t[index + 1] = function.apply((K) unmaskNull(k), (V) t[index + 1]);
            }

            if (modCount != expectedModCount) {
                throw new ConcurrentModificationException();
            }
        }
    }

    /**
     * Similar form as array-based Spliterators, but skips blank elements,
     * and guestimates size as decreasing by half per split.
     */
    static class IdentityHashMapSpliterator<K,V> {
        final IdentityHashMap<K,V> map;
        int index;             // current index, modified on advance/split
        int fence;             // -1 until first use; then one past last index
        int est;               // size estimate
        int expectedModCount;  // initialized when fence set

        IdentityHashMapSpliterator(IdentityHashMap<K,V> map, int origin,
                                   int fence, int est, int expectedModCount) {
            this.map = map;
            this.index = origin;
            this.fence = fence;
            this.est = est;
            this.expectedModCount = expectedModCount;
        }

        final int getFence() { // initialize fence and size on first use
            int hi;
            if ((hi = fence) < 0) {
                est = map.size;
                expectedModCount = map.modCount;
                hi = fence = map.table.length;
            }
            return hi;
        }

        public final long estimateSize() {
            getFence(); // force init
            return (long) est;
        }
    }

    static final class KeySpliterator<K,V>
        extends IdentityHashMapSpliterator<K,V>
        implements Spliterator<K> {
        KeySpliterator(IdentityHashMap<K,V> map, int origin, int fence, int est,
                       int expectedModCount) {
            super(map, origin, fence, est, expectedModCount);
        }

        public KeySpliterator<K,V> trySplit() {
            int hi = getFence(), lo = index, mid = ((lo + hi) >>> 1) & ~1;
            return (lo >= mid) ? null :
                new KeySpliterator<K,V>(map, lo, index = mid, est >>>= 1,
                                        expectedModCount);
        }

        @SuppressWarnings("unchecked")
        public void forEachRemaining(Consumer<? super K> action) {
            if (action == null)
                throw new NullPointerException();
            int i, hi, mc; Object key;
            IdentityHashMap<K,V> m; Object[] a;
            if ((m = map) != null && (a = m.table) != null &&
                (i = index) >= 0 && (index = hi = getFence()) <= a.length) {
                for (; i < hi; i += 2) {
                    if ((key = a[i]) != null)
                        action.accept((K)unmaskNull(key));
                }
                if (m.modCount == expectedModCount)
                    return;
            }
            throw new ConcurrentModificationException();
        }

        @SuppressWarnings("unchecked")
        public boolean tryAdvance(Consumer<? super K> action) {
            if (action == null)
                throw new NullPointerException();
            Object[] a = map.table;
            int hi = getFence();
            while (index < hi) {
                Object key = a[index];
                index += 2;
                if (key != null) {
                    action.accept((K)unmaskNull(key));
                    if (map.modCount != expectedModCount)
                        throw new ConcurrentModificationException();
                    return true;
                }
            }
            return false;
        }

        public int characteristics() {
            return (fence < 0 || est == map.size ? SIZED : 0) | Spliterator.DISTINCT;
        }
    }

    static final class ValueSpliterator<K,V>
        extends IdentityHashMapSpliterator<K,V>
        implements Spliterator<V> {
        ValueSpliterator(IdentityHashMap<K,V> m, int origin, int fence, int est,
                         int expectedModCount) {
            super(m, origin, fence, est, expectedModCount);
        }

        public ValueSpliterator<K,V> trySplit() {
            int hi = getFence(), lo = index, mid = ((lo + hi) >>> 1) & ~1;
            return (lo >= mid) ? null :
                new ValueSpliterator<K,V>(map, lo, index = mid, est >>>= 1,
                                          expectedModCount);
        }

        public void forEachRemaining(Consumer<? super V> action) {
            if (action == null)
                throw new NullPointerException();
            int i, hi, mc;
            IdentityHashMap<K,V> m; Object[] a;
            if ((m = map) != null && (a = m.table) != null &&
                (i = index) >= 0 && (index = hi = getFence()) <= a.length) {
                for (; i < hi; i += 2) {
                    if (a[i] != null) {
                        @SuppressWarnings("unchecked") V v = (V)a[i+1];
                        action.accept(v);
                    }
                }
                if (m.modCount == expectedModCount)
                    return;
            }
            throw new ConcurrentModificationException();
        }

        public boolean tryAdvance(Consumer<? super V> action) {
            if (action == null)
                throw new NullPointerException();
            Object[] a = map.table;
            int hi = getFence();
            while (index < hi) {
                Object key = a[index];
                @SuppressWarnings("unchecked") V v = (V)a[index+1];
                index += 2;
                if (key != null) {
                    action.accept(v);
                    if (map.modCount != expectedModCount)
                        throw new ConcurrentModificationException();
                    return true;
                }
            }
            return false;
        }

        public int characteristics() {
            return (fence < 0 || est == map.size ? SIZED : 0);
        }

    }

    static final class EntrySpliterator<K,V>
        extends IdentityHashMapSpliterator<K,V>
        implements Spliterator<Map.Entry {
        EntrySpliterator(IdentityHashMap<K,V> m, int origin, int fence, int est,
                         int expectedModCount) {
            super(m, origin, fence, est, expectedModCount);
        }

        public EntrySpliterator<K,V> trySplit() {
            int hi = getFence(), lo = index, mid = ((lo + hi) >>> 1) & ~1;
            return (lo >= mid) ? null :
                new EntrySpliterator<K,V>(map, lo, index = mid, est >>>= 1,
                                          expectedModCount);
        }

        public void forEachRemaining(Consumer<? super Map.Entry action) {
            if (action == null)
                throw new NullPointerException();
            int i, hi, mc;
            IdentityHashMap<K,V> m; Object[] a;
            if ((m = map) != null && (a = m.table) != null &&
                (i = index) >= 0 && (index = hi = getFence()) <= a.length) {
                for (; i < hi; i += 2) {
                    Object key = a[i];
                    if (key != null) {
                        @SuppressWarnings("unchecked") K k =
                            (K)unmaskNull(key);
                        @SuppressWarnings("unchecked") V v = (V)a[i+1];
                        action.accept
                            (new AbstractMap.SimpleImmutableEntry<K,V>(k, v));

                    }
                }
                if (m.modCount == expectedModCount)
                    return;
            }
            throw new ConcurrentModificationException();
        }

        public boolean tryAdvance(Consumer<? super Map.Entry action) {
            if (action == null)
                throw new NullPointerException();
            Object[] a = map.table;
            int hi = getFence();
            while (index < hi) {
                Object key = a[index];
                @SuppressWarnings("unchecked") V v = (V)a[index+1];
                index += 2;
                if (key != null) {
                    @SuppressWarnings("unchecked") K k =
                        (K)unmaskNull(key);
                    action.accept
                        (new AbstractMap.SimpleImmutableEntry<K,V>(k, v));
                    if (map.modCount != expectedModCount)
                        throw new ConcurrentModificationException();
                    return true;
                }
            }
            return false;
        }

        public int characteristics() {
            return (fence < 0 || est == map.size ? SIZED : 0) | Spliterator.DISTINCT;
        }
    }

}

Other Java examples (source code examples)

Here is a short list of links related to this Java IdentityHashMap.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.