alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (LongAccumulator.java)

This example Java source code file (LongAccumulator.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

cell, longaccumulator, longbinaryoperator, object, serializable, serializationproxy, string, striped64

The LongAccumulator.java Java example source code

/*
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

/*
 * This file is available under and governed by the GNU General Public
 * License version 2 only, as published by the Free Software Foundation.
 * However, the following notice accompanied the original version of this
 * file:
 *
 * Written by Doug Lea with assistance from members of JCP JSR-166
 * Expert Group and released to the public domain, as explained at
 * http://creativecommons.org/publicdomain/zero/1.0/
 */

package java.util.concurrent.atomic;
import java.io.Serializable;
import java.util.function.LongBinaryOperator;

/**
 * One or more variables that together maintain a running {@code long}
 * value updated using a supplied function.  When updates (method
 * {@link #accumulate}) are contended across threads, the set of variables
 * may grow dynamically to reduce contention.  Method {@link #get}
 * (or, equivalently, {@link #longValue}) returns the current value
 * across the variables maintaining updates.
 *
 * <p>This class is usually preferable to {@link AtomicLong} when
 * multiple threads update a common value that is used for purposes such
 * as collecting statistics, not for fine-grained synchronization
 * control.  Under low update contention, the two classes have similar
 * characteristics. But under high contention, expected throughput of
 * this class is significantly higher, at the expense of higher space
 * consumption.
 *
 * <p>The order of accumulation within or across threads is not
 * guaranteed and cannot be depended upon, so this class is only
 * applicable to functions for which the order of accumulation does
 * not matter. The supplied accumulator function should be
 * side-effect-free, since it may be re-applied when attempted updates
 * fail due to contention among threads. The function is applied with
 * the current value as its first argument, and the given update as
 * the second argument.  For example, to maintain a running maximum
 * value, you could supply {@code Long::max} along with {@code
 * Long.MIN_VALUE} as the identity.
 *
 * <p>Class {@link LongAdder} provides analogs of the functionality of
 * this class for the common special case of maintaining counts and
 * sums.  The call {@code new LongAdder()} is equivalent to {@code new
 * LongAccumulator((x, y) -> x + y, 0L}.
 *
 * <p>This class extends {@link Number}, but does not define
 * methods such as {@code equals}, {@code hashCode} and {@code
 * compareTo} because instances are expected to be mutated, and so are
 * not useful as collection keys.
 *
 * @since 1.8
 * @author Doug Lea
 */
public class LongAccumulator extends Striped64 implements Serializable {
    private static final long serialVersionUID = 7249069246863182397L;

    private final LongBinaryOperator function;
    private final long identity;

    /**
     * Creates a new instance using the given accumulator function
     * and identity element.
     * @param accumulatorFunction a side-effect-free function of two arguments
     * @param identity identity (initial value) for the accumulator function
     */
    public LongAccumulator(LongBinaryOperator accumulatorFunction,
                           long identity) {
        this.function = accumulatorFunction;
        base = this.identity = identity;
    }

    /**
     * Updates with the given value.
     *
     * @param x the value
     */
    public void accumulate(long x) {
        Cell[] as; long b, v, r; int m; Cell a;
        if ((as = cells) != null ||
            (r = function.applyAsLong(b = base, x)) != b && !casBase(b, r)) {
            boolean uncontended = true;
            if (as == null || (m = as.length - 1) < 0 ||
                (a = as[getProbe() & m]) == null ||
                !(uncontended =
                  (r = function.applyAsLong(v = a.value, x)) == v ||
                  a.cas(v, r)))
                longAccumulate(x, function, uncontended);
        }
    }

    /**
     * Returns the current value.  The returned value is <em>NOT
     * an atomic snapshot; invocation in the absence of concurrent
     * updates returns an accurate result, but concurrent updates that
     * occur while the value is being calculated might not be
     * incorporated.
     *
     * @return the current value
     */
    public long get() {
        Cell[] as = cells; Cell a;
        long result = base;
        if (as != null) {
            for (int i = 0; i < as.length; ++i) {
                if ((a = as[i]) != null)
                    result = function.applyAsLong(result, a.value);
            }
        }
        return result;
    }

    /**
     * Resets variables maintaining updates to the identity value.
     * This method may be a useful alternative to creating a new
     * updater, but is only effective if there are no concurrent
     * updates.  Because this method is intrinsically racy, it should
     * only be used when it is known that no threads are concurrently
     * updating.
     */
    public void reset() {
        Cell[] as = cells; Cell a;
        base = identity;
        if (as != null) {
            for (int i = 0; i < as.length; ++i) {
                if ((a = as[i]) != null)
                    a.value = identity;
            }
        }
    }

    /**
     * Equivalent in effect to {@link #get} followed by {@link
     * #reset}. This method may apply for example during quiescent
     * points between multithreaded computations.  If there are
     * updates concurrent with this method, the returned value is
     * <em>not guaranteed to be the final value occurring before
     * the reset.
     *
     * @return the value before reset
     */
    public long getThenReset() {
        Cell[] as = cells; Cell a;
        long result = base;
        base = identity;
        if (as != null) {
            for (int i = 0; i < as.length; ++i) {
                if ((a = as[i]) != null) {
                    long v = a.value;
                    a.value = identity;
                    result = function.applyAsLong(result, v);
                }
            }
        }
        return result;
    }

    /**
     * Returns the String representation of the current value.
     * @return the String representation of the current value
     */
    public String toString() {
        return Long.toString(get());
    }

    /**
     * Equivalent to {@link #get}.
     *
     * @return the current value
     */
    public long longValue() {
        return get();
    }

    /**
     * Returns the {@linkplain #get current value} as an {@code int}
     * after a narrowing primitive conversion.
     */
    public int intValue() {
        return (int)get();
    }

    /**
     * Returns the {@linkplain #get current value} as a {@code float}
     * after a widening primitive conversion.
     */
    public float floatValue() {
        return (float)get();
    }

    /**
     * Returns the {@linkplain #get current value} as a {@code double}
     * after a widening primitive conversion.
     */
    public double doubleValue() {
        return (double)get();
    }

    /**
     * Serialization proxy, used to avoid reference to the non-public
     * Striped64 superclass in serialized forms.
     * @serial include
     */
    private static class SerializationProxy implements Serializable {
        private static final long serialVersionUID = 7249069246863182397L;

        /**
         * The current value returned by get().
         * @serial
         */
        private final long value;
        /**
         * The function used for updates.
         * @serial
         */
        private final LongBinaryOperator function;
        /**
         * The identity value
         * @serial
         */
        private final long identity;

        SerializationProxy(LongAccumulator a) {
            function = a.function;
            identity = a.identity;
            value = a.get();
        }

        /**
         * Returns a {@code LongAccumulator} object with initial state
         * held by this proxy.
         *
         * @return a {@code LongAccumulator} object with initial state
         * held by this proxy.
         */
        private Object readResolve() {
            LongAccumulator a = new LongAccumulator(function, identity);
            a.base = value;
            return a;
        }
    }

    /**
     * Returns a
     * <a href="../../../../serialized-form.html#java.util.concurrent.atomic.LongAccumulator.SerializationProxy">
     * SerializationProxy</a>
     * representing the state of this instance.
     *
     * @return a {@link SerializationProxy}
     * representing the state of this instance
     */
    private Object writeReplace() {
        return new SerializationProxy(this);
    }

    /**
     * @param s the stream
     * @throws java.io.InvalidObjectException always
     */
    private void readObject(java.io.ObjectInputStream s)
        throws java.io.InvalidObjectException {
        throw new java.io.InvalidObjectException("Proxy required");
    }

}

Other Java examples (source code examples)

Here is a short list of links related to this Java LongAccumulator.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.