alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (Striped64.java)

This example Java source code file (Striped64.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

base, cas, cell, cellsbusy, class, error, exception, fall, ncpu, probe, slot, striped64, threading, threads, try, unsafe

The Striped64.java Java example source code

/*
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

/*
 * This file is available under and governed by the GNU General Public
 * License version 2 only, as published by the Free Software Foundation.
 * However, the following notice accompanied the original version of this
 * file:
 *
 * Written by Doug Lea with assistance from members of JCP JSR-166
 * Expert Group and released to the public domain, as explained at
 * http://creativecommons.org/publicdomain/zero/1.0/
 */

package java.util.concurrent.atomic;
import java.util.function.LongBinaryOperator;
import java.util.function.DoubleBinaryOperator;
import java.util.concurrent.ThreadLocalRandom;

/**
 * A package-local class holding common representation and mechanics
 * for classes supporting dynamic striping on 64bit values. The class
 * extends Number so that concrete subclasses must publicly do so.
 */
@SuppressWarnings("serial")
abstract class Striped64 extends Number {
    /*
     * This class maintains a lazily-initialized table of atomically
     * updated variables, plus an extra "base" field. The table size
     * is a power of two. Indexing uses masked per-thread hash codes.
     * Nearly all declarations in this class are package-private,
     * accessed directly by subclasses.
     *
     * Table entries are of class Cell; a variant of AtomicLong padded
     * (via @sun.misc.Contended) to reduce cache contention. Padding
     * is overkill for most Atomics because they are usually
     * irregularly scattered in memory and thus don't interfere much
     * with each other. But Atomic objects residing in arrays will
     * tend to be placed adjacent to each other, and so will most
     * often share cache lines (with a huge negative performance
     * impact) without this precaution.
     *
     * In part because Cells are relatively large, we avoid creating
     * them until they are needed.  When there is no contention, all
     * updates are made to the base field.  Upon first contention (a
     * failed CAS on base update), the table is initialized to size 2.
     * The table size is doubled upon further contention until
     * reaching the nearest power of two greater than or equal to the
     * number of CPUS. Table slots remain empty (null) until they are
     * needed.
     *
     * A single spinlock ("cellsBusy") is used for initializing and
     * resizing the table, as well as populating slots with new Cells.
     * There is no need for a blocking lock; when the lock is not
     * available, threads try other slots (or the base).  During these
     * retries, there is increased contention and reduced locality,
     * which is still better than alternatives.
     *
     * The Thread probe fields maintained via ThreadLocalRandom serve
     * as per-thread hash codes. We let them remain uninitialized as
     * zero (if they come in this way) until they contend at slot
     * 0. They are then initialized to values that typically do not
     * often conflict with others.  Contention and/or table collisions
     * are indicated by failed CASes when performing an update
     * operation. Upon a collision, if the table size is less than
     * the capacity, it is doubled in size unless some other thread
     * holds the lock. If a hashed slot is empty, and lock is
     * available, a new Cell is created. Otherwise, if the slot
     * exists, a CAS is tried.  Retries proceed by "double hashing",
     * using a secondary hash (Marsaglia XorShift) to try to find a
     * free slot.
     *
     * The table size is capped because, when there are more threads
     * than CPUs, supposing that each thread were bound to a CPU,
     * there would exist a perfect hash function mapping threads to
     * slots that eliminates collisions. When we reach capacity, we
     * search for this mapping by randomly varying the hash codes of
     * colliding threads.  Because search is random, and collisions
     * only become known via CAS failures, convergence can be slow,
     * and because threads are typically not bound to CPUS forever,
     * may not occur at all. However, despite these limitations,
     * observed contention rates are typically low in these cases.
     *
     * It is possible for a Cell to become unused when threads that
     * once hashed to it terminate, as well as in the case where
     * doubling the table causes no thread to hash to it under
     * expanded mask.  We do not try to detect or remove such cells,
     * under the assumption that for long-running instances, observed
     * contention levels will recur, so the cells will eventually be
     * needed again; and for short-lived ones, it does not matter.
     */

    /**
     * Padded variant of AtomicLong supporting only raw accesses plus CAS.
     *
     * JVM intrinsics note: It would be possible to use a release-only
     * form of CAS here, if it were provided.
     */
    @sun.misc.Contended static final class Cell {
        volatile long value;
        Cell(long x) { value = x; }
        final boolean cas(long cmp, long val) {
            return UNSAFE.compareAndSwapLong(this, valueOffset, cmp, val);
        }

        // Unsafe mechanics
        private static final sun.misc.Unsafe UNSAFE;
        private static final long valueOffset;
        static {
            try {
                UNSAFE = sun.misc.Unsafe.getUnsafe();
                Class<?> ak = Cell.class;
                valueOffset = UNSAFE.objectFieldOffset
                    (ak.getDeclaredField("value"));
            } catch (Exception e) {
                throw new Error(e);
            }
        }
    }

    /** Number of CPUS, to place bound on table size */
    static final int NCPU = Runtime.getRuntime().availableProcessors();

    /**
     * Table of cells. When non-null, size is a power of 2.
     */
    transient volatile Cell[] cells;

    /**
     * Base value, used mainly when there is no contention, but also as
     * a fallback during table initialization races. Updated via CAS.
     */
    transient volatile long base;

    /**
     * Spinlock (locked via CAS) used when resizing and/or creating Cells.
     */
    transient volatile int cellsBusy;

    /**
     * Package-private default constructor
     */
    Striped64() {
    }

    /**
     * CASes the base field.
     */
    final boolean casBase(long cmp, long val) {
        return UNSAFE.compareAndSwapLong(this, BASE, cmp, val);
    }

    /**
     * CASes the cellsBusy field from 0 to 1 to acquire lock.
     */
    final boolean casCellsBusy() {
        return UNSAFE.compareAndSwapInt(this, CELLSBUSY, 0, 1);
    }

    /**
     * Returns the probe value for the current thread.
     * Duplicated from ThreadLocalRandom because of packaging restrictions.
     */
    static final int getProbe() {
        return UNSAFE.getInt(Thread.currentThread(), PROBE);
    }

    /**
     * Pseudo-randomly advances and records the given probe value for the
     * given thread.
     * Duplicated from ThreadLocalRandom because of packaging restrictions.
     */
    static final int advanceProbe(int probe) {
        probe ^= probe << 13;   // xorshift
        probe ^= probe >>> 17;
        probe ^= probe << 5;
        UNSAFE.putInt(Thread.currentThread(), PROBE, probe);
        return probe;
    }

    /**
     * Handles cases of updates involving initialization, resizing,
     * creating new Cells, and/or contention. See above for
     * explanation. This method suffers the usual non-modularity
     * problems of optimistic retry code, relying on rechecked sets of
     * reads.
     *
     * @param x the value
     * @param fn the update function, or null for add (this convention
     * avoids the need for an extra field or function in LongAdder).
     * @param wasUncontended false if CAS failed before call
     */
    final void longAccumulate(long x, LongBinaryOperator fn,
                              boolean wasUncontended) {
        int h;
        if ((h = getProbe()) == 0) {
            ThreadLocalRandom.current(); // force initialization
            h = getProbe();
            wasUncontended = true;
        }
        boolean collide = false;                // True if last slot nonempty
        for (;;) {
            Cell[] as; Cell a; int n; long v;
            if ((as = cells) != null && (n = as.length) > 0) {
                if ((a = as[(n - 1) & h]) == null) {
                    if (cellsBusy == 0) {       // Try to attach new Cell
                        Cell r = new Cell(x);   // Optimistically create
                        if (cellsBusy == 0 && casCellsBusy()) {
                            boolean created = false;
                            try {               // Recheck under lock
                                Cell[] rs; int m, j;
                                if ((rs = cells) != null &&
                                    (m = rs.length) > 0 &&
                                    rs[j = (m - 1) & h] == null) {
                                    rs[j] = r;
                                    created = true;
                                }
                            } finally {
                                cellsBusy = 0;
                            }
                            if (created)
                                break;
                            continue;           // Slot is now non-empty
                        }
                    }
                    collide = false;
                }
                else if (!wasUncontended)       // CAS already known to fail
                    wasUncontended = true;      // Continue after rehash
                else if (a.cas(v = a.value, ((fn == null) ? v + x :
                                             fn.applyAsLong(v, x))))
                    break;
                else if (n >= NCPU || cells != as)
                    collide = false;            // At max size or stale
                else if (!collide)
                    collide = true;
                else if (cellsBusy == 0 && casCellsBusy()) {
                    try {
                        if (cells == as) {      // Expand table unless stale
                            Cell[] rs = new Cell[n << 1];
                            for (int i = 0; i < n; ++i)
                                rs[i] = as[i];
                            cells = rs;
                        }
                    } finally {
                        cellsBusy = 0;
                    }
                    collide = false;
                    continue;                   // Retry with expanded table
                }
                h = advanceProbe(h);
            }
            else if (cellsBusy == 0 && cells == as && casCellsBusy()) {
                boolean init = false;
                try {                           // Initialize table
                    if (cells == as) {
                        Cell[] rs = new Cell[2];
                        rs[h & 1] = new Cell(x);
                        cells = rs;
                        init = true;
                    }
                } finally {
                    cellsBusy = 0;
                }
                if (init)
                    break;
            }
            else if (casBase(v = base, ((fn == null) ? v + x :
                                        fn.applyAsLong(v, x))))
                break;                          // Fall back on using base
        }
    }

    /**
     * Same as longAccumulate, but injecting long/double conversions
     * in too many places to sensibly merge with long version, given
     * the low-overhead requirements of this class. So must instead be
     * maintained by copy/paste/adapt.
     */
    final void doubleAccumulate(double x, DoubleBinaryOperator fn,
                                boolean wasUncontended) {
        int h;
        if ((h = getProbe()) == 0) {
            ThreadLocalRandom.current(); // force initialization
            h = getProbe();
            wasUncontended = true;
        }
        boolean collide = false;                // True if last slot nonempty
        for (;;) {
            Cell[] as; Cell a; int n; long v;
            if ((as = cells) != null && (n = as.length) > 0) {
                if ((a = as[(n - 1) & h]) == null) {
                    if (cellsBusy == 0) {       // Try to attach new Cell
                        Cell r = new Cell(Double.doubleToRawLongBits(x));
                        if (cellsBusy == 0 && casCellsBusy()) {
                            boolean created = false;
                            try {               // Recheck under lock
                                Cell[] rs; int m, j;
                                if ((rs = cells) != null &&
                                    (m = rs.length) > 0 &&
                                    rs[j = (m - 1) & h] == null) {
                                    rs[j] = r;
                                    created = true;
                                }
                            } finally {
                                cellsBusy = 0;
                            }
                            if (created)
                                break;
                            continue;           // Slot is now non-empty
                        }
                    }
                    collide = false;
                }
                else if (!wasUncontended)       // CAS already known to fail
                    wasUncontended = true;      // Continue after rehash
                else if (a.cas(v = a.value,
                               ((fn == null) ?
                                Double.doubleToRawLongBits
                                (Double.longBitsToDouble(v) + x) :
                                Double.doubleToRawLongBits
                                (fn.applyAsDouble
                                 (Double.longBitsToDouble(v), x)))))
                    break;
                else if (n >= NCPU || cells != as)
                    collide = false;            // At max size or stale
                else if (!collide)
                    collide = true;
                else if (cellsBusy == 0 && casCellsBusy()) {
                    try {
                        if (cells == as) {      // Expand table unless stale
                            Cell[] rs = new Cell[n << 1];
                            for (int i = 0; i < n; ++i)
                                rs[i] = as[i];
                            cells = rs;
                        }
                    } finally {
                        cellsBusy = 0;
                    }
                    collide = false;
                    continue;                   // Retry with expanded table
                }
                h = advanceProbe(h);
            }
            else if (cellsBusy == 0 && cells == as && casCellsBusy()) {
                boolean init = false;
                try {                           // Initialize table
                    if (cells == as) {
                        Cell[] rs = new Cell[2];
                        rs[h & 1] = new Cell(Double.doubleToRawLongBits(x));
                        cells = rs;
                        init = true;
                    }
                } finally {
                    cellsBusy = 0;
                }
                if (init)
                    break;
            }
            else if (casBase(v = base,
                             ((fn == null) ?
                              Double.doubleToRawLongBits
                              (Double.longBitsToDouble(v) + x) :
                              Double.doubleToRawLongBits
                              (fn.applyAsDouble
                               (Double.longBitsToDouble(v), x)))))
                break;                          // Fall back on using base
        }
    }

    // Unsafe mechanics
    private static final sun.misc.Unsafe UNSAFE;
    private static final long BASE;
    private static final long CELLSBUSY;
    private static final long PROBE;
    static {
        try {
            UNSAFE = sun.misc.Unsafe.getUnsafe();
            Class<?> sk = Striped64.class;
            BASE = UNSAFE.objectFieldOffset
                (sk.getDeclaredField("base"));
            CELLSBUSY = UNSAFE.objectFieldOffset
                (sk.getDeclaredField("cellsBusy"));
            Class<?> tk = Thread.class;
            PROBE = UNSAFE.objectFieldOffset
                (tk.getDeclaredField("threadLocalRandomProbe"));
        } catch (Exception e) {
            throw new Error(e);
        }
    }

}

Other Java examples (source code examples)

Here is a short list of links related to this Java Striped64.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.