alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (StampedLock.java)

This example Java source code file (StampedLock.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

abits, cancelled, interruptedexception, origin, parkblocker, rbits, rfull, runit, sbits, state, threading, threads, wbit, wcowait, wnode, wstatus

The StampedLock.java Java example source code

/*
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

/*
 * This file is available under and governed by the GNU General Public
 * License version 2 only, as published by the Free Software Foundation.
 * However, the following notice accompanied the original version of this
 * file:
 *
 * Written by Doug Lea with assistance from members of JCP JSR-166
 * Expert Group and released to the public domain, as explained at
 * http://creativecommons.org/publicdomain/zero/1.0/
 */

package java.util.concurrent.locks;

import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.LockSupport;

/**
 * A capability-based lock with three modes for controlling read/write
 * access.  The state of a StampedLock consists of a version and mode.
 * Lock acquisition methods return a stamp that represents and
 * controls access with respect to a lock state; "try" versions of
 * these methods may instead return the special value zero to
 * represent failure to acquire access. Lock release and conversion
 * methods require stamps as arguments, and fail if they do not match
 * the state of the lock. The three modes are:
 *
 * <ul>
 *
 *  <li>Writing. Method {@link #writeLock} possibly blocks
 *   waiting for exclusive access, returning a stamp that can be used
 *   in method {@link #unlockWrite} to release the lock. Untimed and
 *   timed versions of {@code tryWriteLock} are also provided. When
 *   the lock is held in write mode, no read locks may be obtained,
 *   and all optimistic read validations will fail.  </li>
 *
 *  <li>Reading. Method {@link #readLock} possibly blocks
 *   waiting for non-exclusive access, returning a stamp that can be
 *   used in method {@link #unlockRead} to release the lock. Untimed
 *   and timed versions of {@code tryReadLock} are also provided. </li>
 *
 *  <li>Optimistic Reading. Method {@link #tryOptimisticRead}
 *   returns a non-zero stamp only if the lock is not currently held
 *   in write mode. Method {@link #validate} returns true if the lock
 *   has not been acquired in write mode since obtaining a given
 *   stamp.  This mode can be thought of as an extremely weak version
 *   of a read-lock, that can be broken by a writer at any time.  The
 *   use of optimistic mode for short read-only code segments often
 *   reduces contention and improves throughput.  However, its use is
 *   inherently fragile.  Optimistic read sections should only read
 *   fields and hold them in local variables for later use after
 *   validation. Fields read while in optimistic mode may be wildly
 *   inconsistent, so usage applies only when you are familiar enough
 *   with data representations to check consistency and/or repeatedly
 *   invoke method {@code validate()}.  For example, such steps are
 *   typically required when first reading an object or array
 *   reference, and then accessing one of its fields, elements or
 *   methods. </li>
 *
 * </ul>
 *
 * <p>This class also supports methods that conditionally provide
 * conversions across the three modes. For example, method {@link
 * #tryConvertToWriteLock} attempts to "upgrade" a mode, returning
 * a valid write stamp if (1) already in writing mode (2) in reading
 * mode and there are no other readers or (3) in optimistic mode and
 * the lock is available. The forms of these methods are designed to
 * help reduce some of the code bloat that otherwise occurs in
 * retry-based designs.
 *
 * <p>StampedLocks are designed for use as internal utilities in the
 * development of thread-safe components. Their use relies on
 * knowledge of the internal properties of the data, objects, and
 * methods they are protecting.  They are not reentrant, so locked
 * bodies should not call other unknown methods that may try to
 * re-acquire locks (although you may pass a stamp to other methods
 * that can use or convert it).  The use of read lock modes relies on
 * the associated code sections being side-effect-free.  Unvalidated
 * optimistic read sections cannot call methods that are not known to
 * tolerate potential inconsistencies.  Stamps use finite
 * representations, and are not cryptographically secure (i.e., a
 * valid stamp may be guessable). Stamp values may recycle after (no
 * sooner than) one year of continuous operation. A stamp held without
 * use or validation for longer than this period may fail to validate
 * correctly.  StampedLocks are serializable, but always deserialize
 * into initial unlocked state, so they are not useful for remote
 * locking.
 *
 * <p>The scheduling policy of StampedLock does not consistently
 * prefer readers over writers or vice versa.  All "try" methods are
 * best-effort and do not necessarily conform to any scheduling or
 * fairness policy. A zero return from any "try" method for acquiring
 * or converting locks does not carry any information about the state
 * of the lock; a subsequent invocation may succeed.
 *
 * <p>Because it supports coordinated usage across multiple lock
 * modes, this class does not directly implement the {@link Lock} or
 * {@link ReadWriteLock} interfaces. However, a StampedLock may be
 * viewed {@link #asReadLock()}, {@link #asWriteLock()}, or {@link
 * #asReadWriteLock()} in applications requiring only the associated
 * set of functionality.
 *
 * <p>Sample Usage. The following illustrates some usage idioms
 * in a class that maintains simple two-dimensional points. The sample
 * code illustrates some try/catch conventions even though they are
 * not strictly needed here because no exceptions can occur in their
 * bodies.<br>
 *
 *  <pre>{@code
 * class Point {
 *   private double x, y;
 *   private final StampedLock sl = new StampedLock();
 *
 *   void move(double deltaX, double deltaY) { // an exclusively locked method
 *     long stamp = sl.writeLock();
 *     try {
 *       x += deltaX;
 *       y += deltaY;
 *     } finally {
 *       sl.unlockWrite(stamp);
 *     }
 *   }
 *
 *   double distanceFromOrigin() { // A read-only method
 *     long stamp = sl.tryOptimisticRead();
 *     double currentX = x, currentY = y;
 *     if (!sl.validate(stamp)) {
 *        stamp = sl.readLock();
 *        try {
 *          currentX = x;
 *          currentY = y;
 *        } finally {
 *           sl.unlockRead(stamp);
 *        }
 *     }
 *     return Math.sqrt(currentX * currentX + currentY * currentY);
 *   }
 *
 *   void moveIfAtOrigin(double newX, double newY) { // upgrade
 *     // Could instead start with optimistic, not read mode
 *     long stamp = sl.readLock();
 *     try {
 *       while (x == 0.0 && y == 0.0) {
 *         long ws = sl.tryConvertToWriteLock(stamp);
 *         if (ws != 0L) {
 *           stamp = ws;
 *           x = newX;
 *           y = newY;
 *           break;
 *         }
 *         else {
 *           sl.unlockRead(stamp);
 *           stamp = sl.writeLock();
 *         }
 *       }
 *     } finally {
 *       sl.unlock(stamp);
 *     }
 *   }
 * }}</pre>
 *
 * @since 1.8
 * @author Doug Lea
 */
public class StampedLock implements java.io.Serializable {
    /*
     * Algorithmic notes:
     *
     * The design employs elements of Sequence locks
     * (as used in linux kernels; see Lameter's
     * http://www.lameter.com/gelato2005.pdf
     * and elsewhere; see
     * Boehm's http://www.hpl.hp.com/techreports/2012/HPL-2012-68.html)
     * and Ordered RW locks (see Shirako et al
     * http://dl.acm.org/citation.cfm?id=2312015)
     *
     * Conceptually, the primary state of the lock includes a sequence
     * number that is odd when write-locked and even otherwise.
     * However, this is offset by a reader count that is non-zero when
     * read-locked.  The read count is ignored when validating
     * "optimistic" seqlock-reader-style stamps.  Because we must use
     * a small finite number of bits (currently 7) for readers, a
     * supplementary reader overflow word is used when the number of
     * readers exceeds the count field. We do this by treating the max
     * reader count value (RBITS) as a spinlock protecting overflow
     * updates.
     *
     * Waiters use a modified form of CLH lock used in
     * AbstractQueuedSynchronizer (see its internal documentation for
     * a fuller account), where each node is tagged (field mode) as
     * either a reader or writer. Sets of waiting readers are grouped
     * (linked) under a common node (field cowait) so act as a single
     * node with respect to most CLH mechanics.  By virtue of the
     * queue structure, wait nodes need not actually carry sequence
     * numbers; we know each is greater than its predecessor.  This
     * simplifies the scheduling policy to a mainly-FIFO scheme that
     * incorporates elements of Phase-Fair locks (see Brandenburg &
     * Anderson, especially http://www.cs.unc.edu/~bbb/diss/).  In
     * particular, we use the phase-fair anti-barging rule: If an
     * incoming reader arrives while read lock is held but there is a
     * queued writer, this incoming reader is queued.  (This rule is
     * responsible for some of the complexity of method acquireRead,
     * but without it, the lock becomes highly unfair.) Method release
     * does not (and sometimes cannot) itself wake up cowaiters. This
     * is done by the primary thread, but helped by any other threads
     * with nothing better to do in methods acquireRead and
     * acquireWrite.
     *
     * These rules apply to threads actually queued. All tryLock forms
     * opportunistically try to acquire locks regardless of preference
     * rules, and so may "barge" their way in.  Randomized spinning is
     * used in the acquire methods to reduce (increasingly expensive)
     * context switching while also avoiding sustained memory
     * thrashing among many threads.  We limit spins to the head of
     * queue. A thread spin-waits up to SPINS times (where each
     * iteration decreases spin count with 50% probability) before
     * blocking. If, upon wakening it fails to obtain lock, and is
     * still (or becomes) the first waiting thread (which indicates
     * that some other thread barged and obtained lock), it escalates
     * spins (up to MAX_HEAD_SPINS) to reduce the likelihood of
     * continually losing to barging threads.
     *
     * Nearly all of these mechanics are carried out in methods
     * acquireWrite and acquireRead, that, as typical of such code,
     * sprawl out because actions and retries rely on consistent sets
     * of locally cached reads.
     *
     * As noted in Boehm's paper (above), sequence validation (mainly
     * method validate()) requires stricter ordering rules than apply
     * to normal volatile reads (of "state").  To force orderings of
     * reads before a validation and the validation itself in those
     * cases where this is not already forced, we use
     * Unsafe.loadFence.
     *
     * The memory layout keeps lock state and queue pointers together
     * (normally on the same cache line). This usually works well for
     * read-mostly loads. In most other cases, the natural tendency of
     * adaptive-spin CLH locks to reduce memory contention lessens
     * motivation to further spread out contended locations, but might
     * be subject to future improvements.
     */

    private static final long serialVersionUID = -6001602636862214147L;

    /** Number of processors, for spin control */
    private static final int NCPU = Runtime.getRuntime().availableProcessors();

    /** Maximum number of retries before enqueuing on acquisition */
    private static final int SPINS = (NCPU > 1) ? 1 << 6 : 0;

    /** Maximum number of retries before blocking at head on acquisition */
    private static final int HEAD_SPINS = (NCPU > 1) ? 1 << 10 : 0;

    /** Maximum number of retries before re-blocking */
    private static final int MAX_HEAD_SPINS = (NCPU > 1) ? 1 << 16 : 0;

    /** The period for yielding when waiting for overflow spinlock */
    private static final int OVERFLOW_YIELD_RATE = 7; // must be power 2 - 1

    /** The number of bits to use for reader count before overflowing */
    private static final int LG_READERS = 7;

    // Values for lock state and stamp operations
    private static final long RUNIT = 1L;
    private static final long WBIT  = 1L << LG_READERS;
    private static final long RBITS = WBIT - 1L;
    private static final long RFULL = RBITS - 1L;
    private static final long ABITS = RBITS | WBIT;
    private static final long SBITS = ~RBITS; // note overlap with ABITS

    // Initial value for lock state; avoid failure value zero
    private static final long ORIGIN = WBIT << 1;

    // Special value from cancelled acquire methods so caller can throw IE
    private static final long INTERRUPTED = 1L;

    // Values for node status; order matters
    private static final int WAITING   = -1;
    private static final int CANCELLED =  1;

    // Modes for nodes (int not boolean to allow arithmetic)
    private static final int RMODE = 0;
    private static final int WMODE = 1;

    /** Wait nodes */
    static final class WNode {
        volatile WNode prev;
        volatile WNode next;
        volatile WNode cowait;    // list of linked readers
        volatile Thread thread;   // non-null while possibly parked
        volatile int status;      // 0, WAITING, or CANCELLED
        final int mode;           // RMODE or WMODE
        WNode(int m, WNode p) { mode = m; prev = p; }
    }

    /** Head of CLH queue */
    private transient volatile WNode whead;
    /** Tail (last) of CLH queue */
    private transient volatile WNode wtail;

    // views
    transient ReadLockView readLockView;
    transient WriteLockView writeLockView;
    transient ReadWriteLockView readWriteLockView;

    /** Lock sequence/state */
    private transient volatile long state;
    /** extra reader count when state read count saturated */
    private transient int readerOverflow;

    /**
     * Creates a new lock, initially in unlocked state.
     */
    public StampedLock() {
        state = ORIGIN;
    }

    /**
     * Exclusively acquires the lock, blocking if necessary
     * until available.
     *
     * @return a stamp that can be used to unlock or convert mode
     */
    public long writeLock() {
        long s, next;  // bypass acquireWrite in fully unlocked case only
        return ((((s = state) & ABITS) == 0L &&
                 U.compareAndSwapLong(this, STATE, s, next = s + WBIT)) ?
                next : acquireWrite(false, 0L));
    }

    /**
     * Exclusively acquires the lock if it is immediately available.
     *
     * @return a stamp that can be used to unlock or convert mode,
     * or zero if the lock is not available
     */
    public long tryWriteLock() {
        long s, next;
        return ((((s = state) & ABITS) == 0L &&
                 U.compareAndSwapLong(this, STATE, s, next = s + WBIT)) ?
                next : 0L);
    }

    /**
     * Exclusively acquires the lock if it is available within the
     * given time and the current thread has not been interrupted.
     * Behavior under timeout and interruption matches that specified
     * for method {@link Lock#tryLock(long,TimeUnit)}.
     *
     * @param time the maximum time to wait for the lock
     * @param unit the time unit of the {@code time} argument
     * @return a stamp that can be used to unlock or convert mode,
     * or zero if the lock is not available
     * @throws InterruptedException if the current thread is interrupted
     * before acquiring the lock
     */
    public long tryWriteLock(long time, TimeUnit unit)
        throws InterruptedException {
        long nanos = unit.toNanos(time);
        if (!Thread.interrupted()) {
            long next, deadline;
            if ((next = tryWriteLock()) != 0L)
                return next;
            if (nanos <= 0L)
                return 0L;
            if ((deadline = System.nanoTime() + nanos) == 0L)
                deadline = 1L;
            if ((next = acquireWrite(true, deadline)) != INTERRUPTED)
                return next;
        }
        throw new InterruptedException();
    }

    /**
     * Exclusively acquires the lock, blocking if necessary
     * until available or the current thread is interrupted.
     * Behavior under interruption matches that specified
     * for method {@link Lock#lockInterruptibly()}.
     *
     * @return a stamp that can be used to unlock or convert mode
     * @throws InterruptedException if the current thread is interrupted
     * before acquiring the lock
     */
    public long writeLockInterruptibly() throws InterruptedException {
        long next;
        if (!Thread.interrupted() &&
            (next = acquireWrite(true, 0L)) != INTERRUPTED)
            return next;
        throw new InterruptedException();
    }

    /**
     * Non-exclusively acquires the lock, blocking if necessary
     * until available.
     *
     * @return a stamp that can be used to unlock or convert mode
     */
    public long readLock() {
        long s = state, next;  // bypass acquireRead on common uncontended case
        return ((whead == wtail && (s & ABITS) < RFULL &&
                 U.compareAndSwapLong(this, STATE, s, next = s + RUNIT)) ?
                next : acquireRead(false, 0L));
    }

    /**
     * Non-exclusively acquires the lock if it is immediately available.
     *
     * @return a stamp that can be used to unlock or convert mode,
     * or zero if the lock is not available
     */
    public long tryReadLock() {
        for (;;) {
            long s, m, next;
            if ((m = (s = state) & ABITS) == WBIT)
                return 0L;
            else if (m < RFULL) {
                if (U.compareAndSwapLong(this, STATE, s, next = s + RUNIT))
                    return next;
            }
            else if ((next = tryIncReaderOverflow(s)) != 0L)
                return next;
        }
    }

    /**
     * Non-exclusively acquires the lock if it is available within the
     * given time and the current thread has not been interrupted.
     * Behavior under timeout and interruption matches that specified
     * for method {@link Lock#tryLock(long,TimeUnit)}.
     *
     * @param time the maximum time to wait for the lock
     * @param unit the time unit of the {@code time} argument
     * @return a stamp that can be used to unlock or convert mode,
     * or zero if the lock is not available
     * @throws InterruptedException if the current thread is interrupted
     * before acquiring the lock
     */
    public long tryReadLock(long time, TimeUnit unit)
        throws InterruptedException {
        long s, m, next, deadline;
        long nanos = unit.toNanos(time);
        if (!Thread.interrupted()) {
            if ((m = (s = state) & ABITS) != WBIT) {
                if (m < RFULL) {
                    if (U.compareAndSwapLong(this, STATE, s, next = s + RUNIT))
                        return next;
                }
                else if ((next = tryIncReaderOverflow(s)) != 0L)
                    return next;
            }
            if (nanos <= 0L)
                return 0L;
            if ((deadline = System.nanoTime() + nanos) == 0L)
                deadline = 1L;
            if ((next = acquireRead(true, deadline)) != INTERRUPTED)
                return next;
        }
        throw new InterruptedException();
    }

    /**
     * Non-exclusively acquires the lock, blocking if necessary
     * until available or the current thread is interrupted.
     * Behavior under interruption matches that specified
     * for method {@link Lock#lockInterruptibly()}.
     *
     * @return a stamp that can be used to unlock or convert mode
     * @throws InterruptedException if the current thread is interrupted
     * before acquiring the lock
     */
    public long readLockInterruptibly() throws InterruptedException {
        long next;
        if (!Thread.interrupted() &&
            (next = acquireRead(true, 0L)) != INTERRUPTED)
            return next;
        throw new InterruptedException();
    }

    /**
     * Returns a stamp that can later be validated, or zero
     * if exclusively locked.
     *
     * @return a stamp, or zero if exclusively locked
     */
    public long tryOptimisticRead() {
        long s;
        return (((s = state) & WBIT) == 0L) ? (s & SBITS) : 0L;
    }

    /**
     * Returns true if the lock has not been exclusively acquired
     * since issuance of the given stamp. Always returns false if the
     * stamp is zero. Always returns true if the stamp represents a
     * currently held lock. Invoking this method with a value not
     * obtained from {@link #tryOptimisticRead} or a locking method
     * for this lock has no defined effect or result.
     *
     * @param stamp a stamp
     * @return {@code true} if the lock has not been exclusively acquired
     * since issuance of the given stamp; else false
     */
    public boolean validate(long stamp) {
        U.loadFence();
        return (stamp & SBITS) == (state & SBITS);
    }

    /**
     * If the lock state matches the given stamp, releases the
     * exclusive lock.
     *
     * @param stamp a stamp returned by a write-lock operation
     * @throws IllegalMonitorStateException if the stamp does
     * not match the current state of this lock
     */
    public void unlockWrite(long stamp) {
        WNode h;
        if (state != stamp || (stamp & WBIT) == 0L)
            throw new IllegalMonitorStateException();
        state = (stamp += WBIT) == 0L ? ORIGIN : stamp;
        if ((h = whead) != null && h.status != 0)
            release(h);
    }

    /**
     * If the lock state matches the given stamp, releases the
     * non-exclusive lock.
     *
     * @param stamp a stamp returned by a read-lock operation
     * @throws IllegalMonitorStateException if the stamp does
     * not match the current state of this lock
     */
    public void unlockRead(long stamp) {
        long s, m; WNode h;
        for (;;) {
            if (((s = state) & SBITS) != (stamp & SBITS) ||
                (stamp & ABITS) == 0L || (m = s & ABITS) == 0L || m == WBIT)
                throw new IllegalMonitorStateException();
            if (m < RFULL) {
                if (U.compareAndSwapLong(this, STATE, s, s - RUNIT)) {
                    if (m == RUNIT && (h = whead) != null && h.status != 0)
                        release(h);
                    break;
                }
            }
            else if (tryDecReaderOverflow(s) != 0L)
                break;
        }
    }

    /**
     * If the lock state matches the given stamp, releases the
     * corresponding mode of the lock.
     *
     * @param stamp a stamp returned by a lock operation
     * @throws IllegalMonitorStateException if the stamp does
     * not match the current state of this lock
     */
    public void unlock(long stamp) {
        long a = stamp & ABITS, m, s; WNode h;
        while (((s = state) & SBITS) == (stamp & SBITS)) {
            if ((m = s & ABITS) == 0L)
                break;
            else if (m == WBIT) {
                if (a != m)
                    break;
                state = (s += WBIT) == 0L ? ORIGIN : s;
                if ((h = whead) != null && h.status != 0)
                    release(h);
                return;
            }
            else if (a == 0L || a >= WBIT)
                break;
            else if (m < RFULL) {
                if (U.compareAndSwapLong(this, STATE, s, s - RUNIT)) {
                    if (m == RUNIT && (h = whead) != null && h.status != 0)
                        release(h);
                    return;
                }
            }
            else if (tryDecReaderOverflow(s) != 0L)
                return;
        }
        throw new IllegalMonitorStateException();
    }

    /**
     * If the lock state matches the given stamp, performs one of
     * the following actions. If the stamp represents holding a write
     * lock, returns it.  Or, if a read lock, if the write lock is
     * available, releases the read lock and returns a write stamp.
     * Or, if an optimistic read, returns a write stamp only if
     * immediately available. This method returns zero in all other
     * cases.
     *
     * @param stamp a stamp
     * @return a valid write stamp, or zero on failure
     */
    public long tryConvertToWriteLock(long stamp) {
        long a = stamp & ABITS, m, s, next;
        while (((s = state) & SBITS) == (stamp & SBITS)) {
            if ((m = s & ABITS) == 0L) {
                if (a != 0L)
                    break;
                if (U.compareAndSwapLong(this, STATE, s, next = s + WBIT))
                    return next;
            }
            else if (m == WBIT) {
                if (a != m)
                    break;
                return stamp;
            }
            else if (m == RUNIT && a != 0L) {
                if (U.compareAndSwapLong(this, STATE, s,
                                         next = s - RUNIT + WBIT))
                    return next;
            }
            else
                break;
        }
        return 0L;
    }

    /**
     * If the lock state matches the given stamp, performs one of
     * the following actions. If the stamp represents holding a write
     * lock, releases it and obtains a read lock.  Or, if a read lock,
     * returns it. Or, if an optimistic read, acquires a read lock and
     * returns a read stamp only if immediately available. This method
     * returns zero in all other cases.
     *
     * @param stamp a stamp
     * @return a valid read stamp, or zero on failure
     */
    public long tryConvertToReadLock(long stamp) {
        long a = stamp & ABITS, m, s, next; WNode h;
        while (((s = state) & SBITS) == (stamp & SBITS)) {
            if ((m = s & ABITS) == 0L) {
                if (a != 0L)
                    break;
                else if (m < RFULL) {
                    if (U.compareAndSwapLong(this, STATE, s, next = s + RUNIT))
                        return next;
                }
                else if ((next = tryIncReaderOverflow(s)) != 0L)
                    return next;
            }
            else if (m == WBIT) {
                if (a != m)
                    break;
                state = next = s + (WBIT + RUNIT);
                if ((h = whead) != null && h.status != 0)
                    release(h);
                return next;
            }
            else if (a != 0L && a < WBIT)
                return stamp;
            else
                break;
        }
        return 0L;
    }

    /**
     * If the lock state matches the given stamp then, if the stamp
     * represents holding a lock, releases it and returns an
     * observation stamp.  Or, if an optimistic read, returns it if
     * validated. This method returns zero in all other cases, and so
     * may be useful as a form of "tryUnlock".
     *
     * @param stamp a stamp
     * @return a valid optimistic read stamp, or zero on failure
     */
    public long tryConvertToOptimisticRead(long stamp) {
        long a = stamp & ABITS, m, s, next; WNode h;
        U.loadFence();
        for (;;) {
            if (((s = state) & SBITS) != (stamp & SBITS))
                break;
            if ((m = s & ABITS) == 0L) {
                if (a != 0L)
                    break;
                return s;
            }
            else if (m == WBIT) {
                if (a != m)
                    break;
                state = next = (s += WBIT) == 0L ? ORIGIN : s;
                if ((h = whead) != null && h.status != 0)
                    release(h);
                return next;
            }
            else if (a == 0L || a >= WBIT)
                break;
            else if (m < RFULL) {
                if (U.compareAndSwapLong(this, STATE, s, next = s - RUNIT)) {
                    if (m == RUNIT && (h = whead) != null && h.status != 0)
                        release(h);
                    return next & SBITS;
                }
            }
            else if ((next = tryDecReaderOverflow(s)) != 0L)
                return next & SBITS;
        }
        return 0L;
    }

    /**
     * Releases the write lock if it is held, without requiring a
     * stamp value. This method may be useful for recovery after
     * errors.
     *
     * @return {@code true} if the lock was held, else false
     */
    public boolean tryUnlockWrite() {
        long s; WNode h;
        if (((s = state) & WBIT) != 0L) {
            state = (s += WBIT) == 0L ? ORIGIN : s;
            if ((h = whead) != null && h.status != 0)
                release(h);
            return true;
        }
        return false;
    }

    /**
     * Releases one hold of the read lock if it is held, without
     * requiring a stamp value. This method may be useful for recovery
     * after errors.
     *
     * @return {@code true} if the read lock was held, else false
     */
    public boolean tryUnlockRead() {
        long s, m; WNode h;
        while ((m = (s = state) & ABITS) != 0L && m < WBIT) {
            if (m < RFULL) {
                if (U.compareAndSwapLong(this, STATE, s, s - RUNIT)) {
                    if (m == RUNIT && (h = whead) != null && h.status != 0)
                        release(h);
                    return true;
                }
            }
            else if (tryDecReaderOverflow(s) != 0L)
                return true;
        }
        return false;
    }

    // status monitoring methods

    /**
     * Returns combined state-held and overflow read count for given
     * state s.
     */
    private int getReadLockCount(long s) {
        long readers;
        if ((readers = s & RBITS) >= RFULL)
            readers = RFULL + readerOverflow;
        return (int) readers;
    }

    /**
     * Returns {@code true} if the lock is currently held exclusively.
     *
     * @return {@code true} if the lock is currently held exclusively
     */
    public boolean isWriteLocked() {
        return (state & WBIT) != 0L;
    }

    /**
     * Returns {@code true} if the lock is currently held non-exclusively.
     *
     * @return {@code true} if the lock is currently held non-exclusively
     */
    public boolean isReadLocked() {
        return (state & RBITS) != 0L;
    }

    /**
     * Queries the number of read locks held for this lock. This
     * method is designed for use in monitoring system state, not for
     * synchronization control.
     * @return the number of read locks held
     */
    public int getReadLockCount() {
        return getReadLockCount(state);
    }

    /**
     * Returns a string identifying this lock, as well as its lock
     * state.  The state, in brackets, includes the String {@code
     * "Unlocked"} or the String {@code "Write-locked"} or the String
     * {@code "Read-locks:"} followed by the current number of
     * read-locks held.
     *
     * @return a string identifying this lock, as well as its lock state
     */
    public String toString() {
        long s = state;
        return super.toString() +
            ((s & ABITS) == 0L ? "[Unlocked]" :
             (s & WBIT) != 0L ? "[Write-locked]" :
             "[Read-locks:" + getReadLockCount(s) + "]");
    }

    // views

    /**
     * Returns a plain {@link Lock} view of this StampedLock in which
     * the {@link Lock#lock} method is mapped to {@link #readLock},
     * and similarly for other methods. The returned Lock does not
     * support a {@link Condition}; method {@link
     * Lock#newCondition()} throws {@code
     * UnsupportedOperationException}.
     *
     * @return the lock
     */
    public Lock asReadLock() {
        ReadLockView v;
        return ((v = readLockView) != null ? v :
                (readLockView = new ReadLockView()));
    }

    /**
     * Returns a plain {@link Lock} view of this StampedLock in which
     * the {@link Lock#lock} method is mapped to {@link #writeLock},
     * and similarly for other methods. The returned Lock does not
     * support a {@link Condition}; method {@link
     * Lock#newCondition()} throws {@code
     * UnsupportedOperationException}.
     *
     * @return the lock
     */
    public Lock asWriteLock() {
        WriteLockView v;
        return ((v = writeLockView) != null ? v :
                (writeLockView = new WriteLockView()));
    }

    /**
     * Returns a {@link ReadWriteLock} view of this StampedLock in
     * which the {@link ReadWriteLock#readLock()} method is mapped to
     * {@link #asReadLock()}, and {@link ReadWriteLock#writeLock()} to
     * {@link #asWriteLock()}.
     *
     * @return the lock
     */
    public ReadWriteLock asReadWriteLock() {
        ReadWriteLockView v;
        return ((v = readWriteLockView) != null ? v :
                (readWriteLockView = new ReadWriteLockView()));
    }

    // view classes

    final class ReadLockView implements Lock {
        public void lock() { readLock(); }
        public void lockInterruptibly() throws InterruptedException {
            readLockInterruptibly();
        }
        public boolean tryLock() { return tryReadLock() != 0L; }
        public boolean tryLock(long time, TimeUnit unit)
            throws InterruptedException {
            return tryReadLock(time, unit) != 0L;
        }
        public void unlock() { unstampedUnlockRead(); }
        public Condition newCondition() {
            throw new UnsupportedOperationException();
        }
    }

    final class WriteLockView implements Lock {
        public void lock() { writeLock(); }
        public void lockInterruptibly() throws InterruptedException {
            writeLockInterruptibly();
        }
        public boolean tryLock() { return tryWriteLock() != 0L; }
        public boolean tryLock(long time, TimeUnit unit)
            throws InterruptedException {
            return tryWriteLock(time, unit) != 0L;
        }
        public void unlock() { unstampedUnlockWrite(); }
        public Condition newCondition() {
            throw new UnsupportedOperationException();
        }
    }

    final class ReadWriteLockView implements ReadWriteLock {
        public Lock readLock() { return asReadLock(); }
        public Lock writeLock() { return asWriteLock(); }
    }

    // Unlock methods without stamp argument checks for view classes.
    // Needed because view-class lock methods throw away stamps.

    final void unstampedUnlockWrite() {
        WNode h; long s;
        if (((s = state) & WBIT) == 0L)
            throw new IllegalMonitorStateException();
        state = (s += WBIT) == 0L ? ORIGIN : s;
        if ((h = whead) != null && h.status != 0)
            release(h);
    }

    final void unstampedUnlockRead() {
        for (;;) {
            long s, m; WNode h;
            if ((m = (s = state) & ABITS) == 0L || m >= WBIT)
                throw new IllegalMonitorStateException();
            else if (m < RFULL) {
                if (U.compareAndSwapLong(this, STATE, s, s - RUNIT)) {
                    if (m == RUNIT && (h = whead) != null && h.status != 0)
                        release(h);
                    break;
                }
            }
            else if (tryDecReaderOverflow(s) != 0L)
                break;
        }
    }

    private void readObject(java.io.ObjectInputStream s)
        throws java.io.IOException, ClassNotFoundException {
        s.defaultReadObject();
        state = ORIGIN; // reset to unlocked state
    }

    // internals

    /**
     * Tries to increment readerOverflow by first setting state
     * access bits value to RBITS, indicating hold of spinlock,
     * then updating, then releasing.
     *
     * @param s a reader overflow stamp: (s & ABITS) >= RFULL
     * @return new stamp on success, else zero
     */
    private long tryIncReaderOverflow(long s) {
        // assert (s & ABITS) >= RFULL;
        if ((s & ABITS) == RFULL) {
            if (U.compareAndSwapLong(this, STATE, s, s | RBITS)) {
                ++readerOverflow;
                state = s;
                return s;
            }
        }
        else if ((LockSupport.nextSecondarySeed() &
                  OVERFLOW_YIELD_RATE) == 0)
            Thread.yield();
        return 0L;
    }

    /**
     * Tries to decrement readerOverflow.
     *
     * @param s a reader overflow stamp: (s & ABITS) >= RFULL
     * @return new stamp on success, else zero
     */
    private long tryDecReaderOverflow(long s) {
        // assert (s & ABITS) >= RFULL;
        if ((s & ABITS) == RFULL) {
            if (U.compareAndSwapLong(this, STATE, s, s | RBITS)) {
                int r; long next;
                if ((r = readerOverflow) > 0) {
                    readerOverflow = r - 1;
                    next = s;
                }
                else
                    next = s - RUNIT;
                 state = next;
                 return next;
            }
        }
        else if ((LockSupport.nextSecondarySeed() &
                  OVERFLOW_YIELD_RATE) == 0)
            Thread.yield();
        return 0L;
    }

    /**
     * Wakes up the successor of h (normally whead). This is normally
     * just h.next, but may require traversal from wtail if next
     * pointers are lagging. This may fail to wake up an acquiring
     * thread when one or more have been cancelled, but the cancel
     * methods themselves provide extra safeguards to ensure liveness.
     */
    private void release(WNode h) {
        if (h != null) {
            WNode q; Thread w;
            U.compareAndSwapInt(h, WSTATUS, WAITING, 0);
            if ((q = h.next) == null || q.status == CANCELLED) {
                for (WNode t = wtail; t != null && t != h; t = t.prev)
                    if (t.status <= 0)
                        q = t;
            }
            if (q != null && (w = q.thread) != null)
                U.unpark(w);
        }
    }

    /**
     * See above for explanation.
     *
     * @param interruptible true if should check interrupts and if so
     * return INTERRUPTED
     * @param deadline if nonzero, the System.nanoTime value to timeout
     * at (and return zero)
     * @return next state, or INTERRUPTED
     */
    private long acquireWrite(boolean interruptible, long deadline) {
        WNode node = null, p;
        for (int spins = -1;;) { // spin while enqueuing
            long m, s, ns;
            if ((m = (s = state) & ABITS) == 0L) {
                if (U.compareAndSwapLong(this, STATE, s, ns = s + WBIT))
                    return ns;
            }
            else if (spins < 0)
                spins = (m == WBIT && wtail == whead) ? SPINS : 0;
            else if (spins > 0) {
                if (LockSupport.nextSecondarySeed() >= 0)
                    --spins;
            }
            else if ((p = wtail) == null) { // initialize queue
                WNode hd = new WNode(WMODE, null);
                if (U.compareAndSwapObject(this, WHEAD, null, hd))
                    wtail = hd;
            }
            else if (node == null)
                node = new WNode(WMODE, p);
            else if (node.prev != p)
                node.prev = p;
            else if (U.compareAndSwapObject(this, WTAIL, p, node)) {
                p.next = node;
                break;
            }
        }

        for (int spins = -1;;) {
            WNode h, np, pp; int ps;
            if ((h = whead) == p) {
                if (spins < 0)
                    spins = HEAD_SPINS;
                else if (spins < MAX_HEAD_SPINS)
                    spins <<= 1;
                for (int k = spins;;) { // spin at head
                    long s, ns;
                    if (((s = state) & ABITS) == 0L) {
                        if (U.compareAndSwapLong(this, STATE, s,
                                                 ns = s + WBIT)) {
                            whead = node;
                            node.prev = null;
                            return ns;
                        }
                    }
                    else if (LockSupport.nextSecondarySeed() >= 0 &&
                             --k <= 0)
                        break;
                }
            }
            else if (h != null) { // help release stale waiters
                WNode c; Thread w;
                while ((c = h.cowait) != null) {
                    if (U.compareAndSwapObject(h, WCOWAIT, c, c.cowait) &&
                        (w = c.thread) != null)
                        U.unpark(w);
                }
            }
            if (whead == h) {
                if ((np = node.prev) != p) {
                    if (np != null)
                        (p = np).next = node;   // stale
                }
                else if ((ps = p.status) == 0)
                    U.compareAndSwapInt(p, WSTATUS, 0, WAITING);
                else if (ps == CANCELLED) {
                    if ((pp = p.prev) != null) {
                        node.prev = pp;
                        pp.next = node;
                    }
                }
                else {
                    long time; // 0 argument to park means no timeout
                    if (deadline == 0L)
                        time = 0L;
                    else if ((time = deadline - System.nanoTime()) <= 0L)
                        return cancelWaiter(node, node, false);
                    Thread wt = Thread.currentThread();
                    U.putObject(wt, PARKBLOCKER, this);
                    node.thread = wt;
                    if (p.status < 0 && (p != h || (state & ABITS) != 0L) &&
                        whead == h && node.prev == p)
                        U.park(false, time);  // emulate LockSupport.park
                    node.thread = null;
                    U.putObject(wt, PARKBLOCKER, null);
                    if (interruptible && Thread.interrupted())
                        return cancelWaiter(node, node, true);
                }
            }
        }
    }

    /**
     * See above for explanation.
     *
     * @param interruptible true if should check interrupts and if so
     * return INTERRUPTED
     * @param deadline if nonzero, the System.nanoTime value to timeout
     * at (and return zero)
     * @return next state, or INTERRUPTED
     */
    private long acquireRead(boolean interruptible, long deadline) {
        WNode node = null, p;
        for (int spins = -1;;) {
            WNode h;
            if ((h = whead) == (p = wtail)) {
                for (long m, s, ns;;) {
                    if ((m = (s = state) & ABITS) < RFULL ?
                        U.compareAndSwapLong(this, STATE, s, ns = s + RUNIT) :
                        (m < WBIT && (ns = tryIncReaderOverflow(s)) != 0L))
                        return ns;
                    else if (m >= WBIT) {
                        if (spins > 0) {
                            if (LockSupport.nextSecondarySeed() >= 0)
                                --spins;
                        }
                        else {
                            if (spins == 0) {
                                WNode nh = whead, np = wtail;
                                if ((nh == h && np == p) || (h = nh) != (p = np))
                                    break;
                            }
                            spins = SPINS;
                        }
                    }
                }
            }
            if (p == null) { // initialize queue
                WNode hd = new WNode(WMODE, null);
                if (U.compareAndSwapObject(this, WHEAD, null, hd))
                    wtail = hd;
            }
            else if (node == null)
                node = new WNode(RMODE, p);
            else if (h == p || p.mode != RMODE) {
                if (node.prev != p)
                    node.prev = p;
                else if (U.compareAndSwapObject(this, WTAIL, p, node)) {
                    p.next = node;
                    break;
                }
            }
            else if (!U.compareAndSwapObject(p, WCOWAIT,
                                             node.cowait = p.cowait, node))
                node.cowait = null;
            else {
                for (;;) {
                    WNode pp, c; Thread w;
                    if ((h = whead) != null && (c = h.cowait) != null &&
                        U.compareAndSwapObject(h, WCOWAIT, c, c.cowait) &&
                        (w = c.thread) != null) // help release
                        U.unpark(w);
                    if (h == (pp = p.prev) || h == p || pp == null) {
                        long m, s, ns;
                        do {
                            if ((m = (s = state) & ABITS) < RFULL ?
                                U.compareAndSwapLong(this, STATE, s,
                                                     ns = s + RUNIT) :
                                (m < WBIT &&
                                 (ns = tryIncReaderOverflow(s)) != 0L))
                                return ns;
                        } while (m < WBIT);
                    }
                    if (whead == h && p.prev == pp) {
                        long time;
                        if (pp == null || h == p || p.status > 0) {
                            node = null; // throw away
                            break;
                        }
                        if (deadline == 0L)
                            time = 0L;
                        else if ((time = deadline - System.nanoTime()) <= 0L)
                            return cancelWaiter(node, p, false);
                        Thread wt = Thread.currentThread();
                        U.putObject(wt, PARKBLOCKER, this);
                        node.thread = wt;
                        if ((h != pp || (state & ABITS) == WBIT) &&
                            whead == h && p.prev == pp)
                            U.park(false, time);
                        node.thread = null;
                        U.putObject(wt, PARKBLOCKER, null);
                        if (interruptible && Thread.interrupted())
                            return cancelWaiter(node, p, true);
                    }
                }
            }
        }

        for (int spins = -1;;) {
            WNode h, np, pp; int ps;
            if ((h = whead) == p) {
                if (spins < 0)
                    spins = HEAD_SPINS;
                else if (spins < MAX_HEAD_SPINS)
                    spins <<= 1;
                for (int k = spins;;) { // spin at head
                    long m, s, ns;
                    if ((m = (s = state) & ABITS) < RFULL ?
                        U.compareAndSwapLong(this, STATE, s, ns = s + RUNIT) :
                        (m < WBIT && (ns = tryIncReaderOverflow(s)) != 0L)) {
                        WNode c; Thread w;
                        whead = node;
                        node.prev = null;
                        while ((c = node.cowait) != null) {
                            if (U.compareAndSwapObject(node, WCOWAIT,
                                                       c, c.cowait) &&
                                (w = c.thread) != null)
                                U.unpark(w);
                        }
                        return ns;
                    }
                    else if (m >= WBIT &&
                             LockSupport.nextSecondarySeed() >= 0 && --k <= 0)
                        break;
                }
            }
            else if (h != null) {
                WNode c; Thread w;
                while ((c = h.cowait) != null) {
                    if (U.compareAndSwapObject(h, WCOWAIT, c, c.cowait) &&
                        (w = c.thread) != null)
                        U.unpark(w);
                }
            }
            if (whead == h) {
                if ((np = node.prev) != p) {
                    if (np != null)
                        (p = np).next = node;   // stale
                }
                else if ((ps = p.status) == 0)
                    U.compareAndSwapInt(p, WSTATUS, 0, WAITING);
                else if (ps == CANCELLED) {
                    if ((pp = p.prev) != null) {
                        node.prev = pp;
                        pp.next = node;
                    }
                }
                else {
                    long time;
                    if (deadline == 0L)
                        time = 0L;
                    else if ((time = deadline - System.nanoTime()) <= 0L)
                        return cancelWaiter(node, node, false);
                    Thread wt = Thread.currentThread();
                    U.putObject(wt, PARKBLOCKER, this);
                    node.thread = wt;
                    if (p.status < 0 &&
                        (p != h || (state & ABITS) == WBIT) &&
                        whead == h && node.prev == p)
                        U.park(false, time);
                    node.thread = null;
                    U.putObject(wt, PARKBLOCKER, null);
                    if (interruptible && Thread.interrupted())
                        return cancelWaiter(node, node, true);
                }
            }
        }
    }

    /**
     * If node non-null, forces cancel status and unsplices it from
     * queue if possible and wakes up any cowaiters (of the node, or
     * group, as applicable), and in any case helps release current
     * first waiter if lock is free. (Calling with null arguments
     * serves as a conditional form of release, which is not currently
     * needed but may be needed under possible future cancellation
     * policies). This is a variant of cancellation methods in
     * AbstractQueuedSynchronizer (see its detailed explanation in AQS
     * internal documentation).
     *
     * @param node if nonnull, the waiter
     * @param group either node or the group node is cowaiting with
     * @param interrupted if already interrupted
     * @return INTERRUPTED if interrupted or Thread.interrupted, else zero
     */
    private long cancelWaiter(WNode node, WNode group, boolean interrupted) {
        if (node != null && group != null) {
            Thread w;
            node.status = CANCELLED;
            // unsplice cancelled nodes from group
            for (WNode p = group, q; (q = p.cowait) != null;) {
                if (q.status == CANCELLED) {
                    U.compareAndSwapObject(p, WCOWAIT, q, q.cowait);
                    p = group; // restart
                }
                else
                    p = q;
            }
            if (group == node) {
                for (WNode r = group.cowait; r != null; r = r.cowait) {
                    if ((w = r.thread) != null)
                        U.unpark(w);       // wake up uncancelled co-waiters
                }
                for (WNode pred = node.prev; pred != null; ) { // unsplice
                    WNode succ, pp;        // find valid successor
                    while ((succ = node.next) == null ||
                           succ.status == CANCELLED) {
                        WNode q = null;    // find successor the slow way
                        for (WNode t = wtail; t != null && t != node; t = t.prev)
                            if (t.status != CANCELLED)
                                q = t;     // don't link if succ cancelled
                        if (succ == q ||   // ensure accurate successor
                            U.compareAndSwapObject(node, WNEXT,
                                                   succ, succ = q)) {
                            if (succ == null && node == wtail)
                                U.compareAndSwapObject(this, WTAIL, node, pred);
                            break;
                        }
                    }
                    if (pred.next == node) // unsplice pred link
                        U.compareAndSwapObject(pred, WNEXT, node, succ);
                    if (succ != null && (w = succ.thread) != null) {
                        succ.thread = null;
                        U.unpark(w);       // wake up succ to observe new pred
                    }
                    if (pred.status != CANCELLED || (pp = pred.prev) == null)
                        break;
                    node.prev = pp;        // repeat if new pred wrong/cancelled
                    U.compareAndSwapObject(pp, WNEXT, pred, succ);
                    pred = pp;
                }
            }
        }
        WNode h; // Possibly release first waiter
        while ((h = whead) != null) {
            long s; WNode q; // similar to release() but check eligibility
            if ((q = h.next) == null || q.status == CANCELLED) {
                for (WNode t = wtail; t != null && t != h; t = t.prev)
                    if (t.status <= 0)
                        q = t;
            }
            if (h == whead) {
                if (q != null && h.status == 0 &&
                    ((s = state) & ABITS) != WBIT && // waiter is eligible
                    (s == 0L || q.mode == RMODE))
                    release(h);
                break;
            }
        }
        return (interrupted || Thread.interrupted()) ? INTERRUPTED : 0L;
    }

    // Unsafe mechanics
    private static final sun.misc.Unsafe U;
    private static final long STATE;
    private static final long WHEAD;
    private static final long WTAIL;
    private static final long WNEXT;
    private static final long WSTATUS;
    private static final long WCOWAIT;
    private static final long PARKBLOCKER;

    static {
        try {
            U = sun.misc.Unsafe.getUnsafe();
            Class<?> k = StampedLock.class;
            Class<?> wk = WNode.class;
            STATE = U.objectFieldOffset
                (k.getDeclaredField("state"));
            WHEAD = U.objectFieldOffset
                (k.getDeclaredField("whead"));
            WTAIL = U.objectFieldOffset
                (k.getDeclaredField("wtail"));
            WSTATUS = U.objectFieldOffset
                (wk.getDeclaredField("status"));
            WNEXT = U.objectFieldOffset
                (wk.getDeclaredField("next"));
            WCOWAIT = U.objectFieldOffset
                (wk.getDeclaredField("cowait"));
            Class<?> tk = Thread.class;
            PARKBLOCKER = U.objectFieldOffset
                (tk.getDeclaredField("parkBlocker"));

        } catch (Exception e) {
            throw new Error(e);
        }
    }
}

Other Java examples (source code examples)

Here is a short list of links related to this Java StampedLock.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.