alvinalexander.com | career | drupal | java | mac | mysql | perl | scala | uml | unix  

Java example source code file (LongPipeline.java)

This example Java source code file (LongPipeline.java) is included in the alvinalexander.com "Java Source Code Warehouse" project. The intent of this project is to help you "Learn Java by Example" TM.

Learn more about this Java project at its project page.

Java - Java tags/keywords

e_in, head, intfunction, longconsumer, longpipeline, longstream, optionallong, override, p_in, sink, spliterator, statelessop, streamshape, unsupportedoperationexception, util

The LongPipeline.java Java example source code

/*
 * Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */
package java.util.stream;

import java.util.LongSummaryStatistics;
import java.util.Objects;
import java.util.OptionalDouble;
import java.util.OptionalLong;
import java.util.PrimitiveIterator;
import java.util.Spliterator;
import java.util.Spliterators;
import java.util.function.BiConsumer;
import java.util.function.BinaryOperator;
import java.util.function.IntFunction;
import java.util.function.LongBinaryOperator;
import java.util.function.LongConsumer;
import java.util.function.LongFunction;
import java.util.function.LongPredicate;
import java.util.function.LongToDoubleFunction;
import java.util.function.LongToIntFunction;
import java.util.function.LongUnaryOperator;
import java.util.function.ObjLongConsumer;
import java.util.function.Supplier;

/**
 * Abstract base class for an intermediate pipeline stage or pipeline source
 * stage implementing whose elements are of type {@code long}.
 *
 * @param <E_IN> type of elements in the upstream source
 * @since 1.8
 */
abstract class LongPipeline<E_IN>
        extends AbstractPipeline<E_IN, Long, LongStream>
        implements LongStream {

    /**
     * Constructor for the head of a stream pipeline.
     *
     * @param source {@code Supplier<Spliterator>} describing the stream source
     * @param sourceFlags the source flags for the stream source, described in
     *        {@link StreamOpFlag}
     * @param parallel {@code true} if the pipeline is parallel
     */
    LongPipeline(Supplier<? extends Spliterator source,
                 int sourceFlags, boolean parallel) {
        super(source, sourceFlags, parallel);
    }

    /**
     * Constructor for the head of a stream pipeline.
     *
     * @param source {@code Spliterator} describing the stream source
     * @param sourceFlags the source flags for the stream source, described in
     *        {@link StreamOpFlag}
     * @param parallel {@code true} if the pipeline is parallel
     */
    LongPipeline(Spliterator<Long> source,
                 int sourceFlags, boolean parallel) {
        super(source, sourceFlags, parallel);
    }

    /**
     * Constructor for appending an intermediate operation onto an existing pipeline.
     *
     * @param upstream the upstream element source.
     * @param opFlags the operation flags
     */
    LongPipeline(AbstractPipeline<?, E_IN, ?> upstream, int opFlags) {
        super(upstream, opFlags);
    }

    /**
     * Adapt a {@code Sink<Long> to an {@code LongConsumer}, ideally simply
     * by casting.
     */
    private static LongConsumer adapt(Sink<Long> sink) {
        if (sink instanceof LongConsumer) {
            return (LongConsumer) sink;
        } else {
            if (Tripwire.ENABLED)
                Tripwire.trip(AbstractPipeline.class,
                              "using LongStream.adapt(Sink<Long> s)");
            return sink::accept;
        }
    }

    /**
     * Adapt a {@code Spliterator<Long>} to a {@code Spliterator.OfLong}.
     *
     * @implNote
     * The implementation attempts to cast to a Spliterator.OfLong, and throws
     * an exception if this cast is not possible.
     */
    private static Spliterator.OfLong adapt(Spliterator<Long> s) {
        if (s instanceof Spliterator.OfLong) {
            return (Spliterator.OfLong) s;
        } else {
            if (Tripwire.ENABLED)
                Tripwire.trip(AbstractPipeline.class,
                              "using LongStream.adapt(Spliterator<Long> s)");
            throw new UnsupportedOperationException("LongStream.adapt(Spliterator<Long> s)");
        }
    }


    // Shape-specific methods

    @Override
    final StreamShape getOutputShape() {
        return StreamShape.LONG_VALUE;
    }

    @Override
    final <P_IN> Node evaluateToNode(PipelineHelper helper,
                                           Spliterator<P_IN> spliterator,
                                           boolean flattenTree,
                                           IntFunction<Long[]> generator) {
        return Nodes.collectLong(helper, spliterator, flattenTree);
    }

    @Override
    final <P_IN> Spliterator wrap(PipelineHelper ph,
                                        Supplier<Spliterator supplier,
                                        boolean isParallel) {
        return new StreamSpliterators.LongWrappingSpliterator<>(ph, supplier, isParallel);
    }

    @Override
    @SuppressWarnings("unchecked")
    final Spliterator.OfLong lazySpliterator(Supplier<? extends Spliterator supplier) {
        return new StreamSpliterators.DelegatingSpliterator.OfLong((Supplier<Spliterator.OfLong>) supplier);
    }

    @Override
    final void forEachWithCancel(Spliterator<Long> spliterator, Sink sink) {
        Spliterator.OfLong spl = adapt(spliterator);
        LongConsumer adaptedSink =  adapt(sink);
        do { } while (!sink.cancellationRequested() && spl.tryAdvance(adaptedSink));
    }

    @Override
    final Node.Builder<Long> makeNodeBuilder(long exactSizeIfKnown, IntFunction generator) {
        return Nodes.longBuilder(exactSizeIfKnown);
    }


    // LongStream

    @Override
    public final PrimitiveIterator.OfLong iterator() {
        return Spliterators.iterator(spliterator());
    }

    @Override
    public final Spliterator.OfLong spliterator() {
        return adapt(super.spliterator());
    }

    // Stateless intermediate ops from LongStream

    @Override
    public final DoubleStream asDoubleStream() {
        return new DoublePipeline.StatelessOp<Long>(this, StreamShape.LONG_VALUE,
                                                    StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
            @Override
            Sink<Long> opWrapSink(int flags, Sink sink) {
                return new Sink.ChainedLong<Double>(sink) {
                    @Override
                    public void accept(long t) {
                        downstream.accept((double) t);
                    }
                };
            }
        };
    }

    @Override
    public final Stream<Long> boxed() {
        return mapToObj(Long::valueOf);
    }

    @Override
    public final LongStream map(LongUnaryOperator mapper) {
        Objects.requireNonNull(mapper);
        return new StatelessOp<Long>(this, StreamShape.LONG_VALUE,
                                     StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
            @Override
            Sink<Long> opWrapSink(int flags, Sink sink) {
                return new Sink.ChainedLong<Long>(sink) {
                    @Override
                    public void accept(long t) {
                        downstream.accept(mapper.applyAsLong(t));
                    }
                };
            }
        };
    }

    @Override
    public final <U> Stream mapToObj(LongFunction mapper) {
        Objects.requireNonNull(mapper);
        return new ReferencePipeline.StatelessOp<Long, U>(this, StreamShape.LONG_VALUE,
                                                          StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
            @Override
            Sink<Long> opWrapSink(int flags, Sink sink) {
                return new Sink.ChainedLong<U>(sink) {
                    @Override
                    public void accept(long t) {
                        downstream.accept(mapper.apply(t));
                    }
                };
            }
        };
    }

    @Override
    public final IntStream mapToInt(LongToIntFunction mapper) {
        Objects.requireNonNull(mapper);
        return new IntPipeline.StatelessOp<Long>(this, StreamShape.LONG_VALUE,
                                                 StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
            @Override
            Sink<Long> opWrapSink(int flags, Sink sink) {
                return new Sink.ChainedLong<Integer>(sink) {
                    @Override
                    public void accept(long t) {
                        downstream.accept(mapper.applyAsInt(t));
                    }
                };
            }
        };
    }

    @Override
    public final DoubleStream mapToDouble(LongToDoubleFunction mapper) {
        Objects.requireNonNull(mapper);
        return new DoublePipeline.StatelessOp<Long>(this, StreamShape.LONG_VALUE,
                                                    StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
            @Override
            Sink<Long> opWrapSink(int flags, Sink sink) {
                return new Sink.ChainedLong<Double>(sink) {
                    @Override
                    public void accept(long t) {
                        downstream.accept(mapper.applyAsDouble(t));
                    }
                };
            }
        };
    }

    @Override
    public final LongStream flatMap(LongFunction<? extends LongStream> mapper) {
        return new StatelessOp<Long>(this, StreamShape.LONG_VALUE,
                                     StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT | StreamOpFlag.NOT_SIZED) {
            @Override
            Sink<Long> opWrapSink(int flags, Sink sink) {
                return new Sink.ChainedLong<Long>(sink) {
                    @Override
                    public void begin(long size) {
                        downstream.begin(-1);
                    }

                    @Override
                    public void accept(long t) {
                        try (LongStream result = mapper.apply(t)) {
                            // We can do better that this too; optimize for depth=0 case and just grab spliterator and forEach it
                            if (result != null)
                                result.sequential().forEach(i -> downstream.accept(i));
                        }
                    }
                };
            }
        };
    }

    @Override
    public LongStream unordered() {
        if (!isOrdered())
            return this;
        return new StatelessOp<Long>(this, StreamShape.LONG_VALUE, StreamOpFlag.NOT_ORDERED) {
            @Override
            Sink<Long> opWrapSink(int flags, Sink sink) {
                return sink;
            }
        };
    }

    @Override
    public final LongStream filter(LongPredicate predicate) {
        Objects.requireNonNull(predicate);
        return new StatelessOp<Long>(this, StreamShape.LONG_VALUE,
                                     StreamOpFlag.NOT_SIZED) {
            @Override
            Sink<Long> opWrapSink(int flags, Sink sink) {
                return new Sink.ChainedLong<Long>(sink) {
                    @Override
                    public void begin(long size) {
                        downstream.begin(-1);
                    }

                    @Override
                    public void accept(long t) {
                        if (predicate.test(t))
                            downstream.accept(t);
                    }
                };
            }
        };
    }

    @Override
    public final LongStream peek(LongConsumer action) {
        Objects.requireNonNull(action);
        return new StatelessOp<Long>(this, StreamShape.LONG_VALUE,
                                     0) {
            @Override
            Sink<Long> opWrapSink(int flags, Sink sink) {
                return new Sink.ChainedLong<Long>(sink) {
                    @Override
                    public void accept(long t) {
                        action.accept(t);
                        downstream.accept(t);
                    }
                };
            }
        };
    }

    // Stateful intermediate ops from LongStream

    @Override
    public final LongStream limit(long maxSize) {
        if (maxSize < 0)
            throw new IllegalArgumentException(Long.toString(maxSize));
        return SliceOps.makeLong(this, 0, maxSize);
    }

    @Override
    public final LongStream skip(long n) {
        if (n < 0)
            throw new IllegalArgumentException(Long.toString(n));
        if (n == 0)
            return this;
        else
            return SliceOps.makeLong(this, n, -1);
    }

    @Override
    public final LongStream sorted() {
        return SortedOps.makeLong(this);
    }

    @Override
    public final LongStream distinct() {
        // While functional and quick to implement, this approach is not very efficient.
        // An efficient version requires a long-specific map/set implementation.
        return boxed().distinct().mapToLong(i -> (long) i);
    }

    // Terminal ops from LongStream

    @Override
    public void forEach(LongConsumer action) {
        evaluate(ForEachOps.makeLong(action, false));
    }

    @Override
    public void forEachOrdered(LongConsumer action) {
        evaluate(ForEachOps.makeLong(action, true));
    }

    @Override
    public final long sum() {
        // use better algorithm to compensate for intermediate overflow?
        return reduce(0, Long::sum);
    }

    @Override
    public final OptionalLong min() {
        return reduce(Math::min);
    }

    @Override
    public final OptionalLong max() {
        return reduce(Math::max);
    }

    @Override
    public final OptionalDouble average() {
        long[] avg = collect(() -> new long[2],
                             (ll, i) -> {
                                 ll[0]++;
                                 ll[1] += i;
                             },
                             (ll, rr) -> {
                                 ll[0] += rr[0];
                                 ll[1] += rr[1];
                             });
        return avg[0] > 0
               ? OptionalDouble.of((double) avg[1] / avg[0])
               : OptionalDouble.empty();
    }

    @Override
    public final long count() {
        return map(e -> 1L).sum();
    }

    @Override
    public final LongSummaryStatistics summaryStatistics() {
        return collect(LongSummaryStatistics::new, LongSummaryStatistics::accept,
                       LongSummaryStatistics::combine);
    }

    @Override
    public final long reduce(long identity, LongBinaryOperator op) {
        return evaluate(ReduceOps.makeLong(identity, op));
    }

    @Override
    public final OptionalLong reduce(LongBinaryOperator op) {
        return evaluate(ReduceOps.makeLong(op));
    }

    @Override
    public final <R> R collect(Supplier supplier,
                               ObjLongConsumer<R> accumulator,
                               BiConsumer<R, R> combiner) {
        BinaryOperator<R> operator = (left, right) -> {
            combiner.accept(left, right);
            return left;
        };
        return evaluate(ReduceOps.makeLong(supplier, accumulator, operator));
    }

    @Override
    public final boolean anyMatch(LongPredicate predicate) {
        return evaluate(MatchOps.makeLong(predicate, MatchOps.MatchKind.ANY));
    }

    @Override
    public final boolean allMatch(LongPredicate predicate) {
        return evaluate(MatchOps.makeLong(predicate, MatchOps.MatchKind.ALL));
    }

    @Override
    public final boolean noneMatch(LongPredicate predicate) {
        return evaluate(MatchOps.makeLong(predicate, MatchOps.MatchKind.NONE));
    }

    @Override
    public final OptionalLong findFirst() {
        return evaluate(FindOps.makeLong(true));
    }

    @Override
    public final OptionalLong findAny() {
        return evaluate(FindOps.makeLong(false));
    }

    @Override
    public final long[] toArray() {
        return Nodes.flattenLong((Node.OfLong) evaluateToArrayNode(Long[]::new))
                .asPrimitiveArray();
    }


    //

    /**
     * Source stage of a LongPipeline.
     *
     * @param <E_IN> type of elements in the upstream source
     * @since 1.8
     */
    static class Head<E_IN> extends LongPipeline {
        /**
         * Constructor for the source stage of a LongStream.
         *
         * @param source {@code Supplier<Spliterator>} describing the stream
         *               source
         * @param sourceFlags the source flags for the stream source, described
         *                    in {@link StreamOpFlag}
         * @param parallel {@code true} if the pipeline is parallel
         */
        Head(Supplier<? extends Spliterator source,
             int sourceFlags, boolean parallel) {
            super(source, sourceFlags, parallel);
        }

        /**
         * Constructor for the source stage of a LongStream.
         *
         * @param source {@code Spliterator} describing the stream source
         * @param sourceFlags the source flags for the stream source, described
         *                    in {@link StreamOpFlag}
         * @param parallel {@code true} if the pipeline is parallel
         */
        Head(Spliterator<Long> source,
             int sourceFlags, boolean parallel) {
            super(source, sourceFlags, parallel);
        }

        @Override
        final boolean opIsStateful() {
            throw new UnsupportedOperationException();
        }

        @Override
        final Sink<E_IN> opWrapSink(int flags, Sink sink) {
            throw new UnsupportedOperationException();
        }

        // Optimized sequential terminal operations for the head of the pipeline

        @Override
        public void forEach(LongConsumer action) {
            if (!isParallel()) {
                adapt(sourceStageSpliterator()).forEachRemaining(action);
            } else {
                super.forEach(action);
            }
        }

        @Override
        public void forEachOrdered(LongConsumer action) {
            if (!isParallel()) {
                adapt(sourceStageSpliterator()).forEachRemaining(action);
            } else {
                super.forEachOrdered(action);
            }
        }
    }

    /** Base class for a stateless intermediate stage of a LongStream.
     *
     * @param <E_IN> type of elements in the upstream source
     * @since 1.8
     */
    abstract static class StatelessOp<E_IN> extends LongPipeline {
        /**
         * Construct a new LongStream by appending a stateless intermediate
         * operation to an existing stream.
         * @param upstream The upstream pipeline stage
         * @param inputShape The stream shape for the upstream pipeline stage
         * @param opFlags Operation flags for the new stage
         */
        StatelessOp(AbstractPipeline<?, E_IN, ?> upstream,
                    StreamShape inputShape,
                    int opFlags) {
            super(upstream, opFlags);
            assert upstream.getOutputShape() == inputShape;
        }

        @Override
        final boolean opIsStateful() {
            return false;
        }
    }

    /**
     * Base class for a stateful intermediate stage of a LongStream.
     *
     * @param <E_IN> type of elements in the upstream source
     * @since 1.8
     */
    abstract static class StatefulOp<E_IN> extends LongPipeline {
        /**
         * Construct a new LongStream by appending a stateful intermediate
         * operation to an existing stream.
         * @param upstream The upstream pipeline stage
         * @param inputShape The stream shape for the upstream pipeline stage
         * @param opFlags Operation flags for the new stage
         */
        StatefulOp(AbstractPipeline<?, E_IN, ?> upstream,
                   StreamShape inputShape,
                   int opFlags) {
            super(upstream, opFlags);
            assert upstream.getOutputShape() == inputShape;
        }

        @Override
        final boolean opIsStateful() {
            return true;
        }

        @Override
        abstract <P_IN> Node opEvaluateParallel(PipelineHelper helper,
                                                      Spliterator<P_IN> spliterator,
                                                      IntFunction<Long[]> generator);
    }
}

Other Java examples (source code examples)

Here is a short list of links related to this Java LongPipeline.java source code file:

... this post is sponsored by my books ...

#1 New Release!

FP Best Seller

 

new blog posts

 

Copyright 1998-2021 Alvin Alexander, alvinalexander.com
All Rights Reserved.

A percentage of advertising revenue from
pages under the /java/jwarehouse URI on this website is
paid back to open source projects.